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Abstract

Within the principal stratification framework for causal inference, modeling partial com-

pliance is challenging because the continuous nature of the principal strata raises subtle

specification issues. In this context, we propose an approach based on the assumption

that the joint distribution of the degree of compliance to the treatment and the degree of

compliance to the control follows a Plackett copula, so that their association is modeled

in a flexible way through a single parameter. Moreover, given the two compliances, the

distribution of the outcomes is parameterized in a flexible way through a regression model

which may include interaction and quadratic terms and may also be heteroscedastic. In

order to estimate the parameters of the resulting model, and then the causal effect of the

treatment, we adopt a maximum likelihood approach via the EM algorithm. In applying

this approach, the marginal distributions of the two compliances are estimated by their

empirical distribution functions, so that no constraints are posed on these distributions.

Since the two compliances cannot be jointly observed, there is not direct empirical support

for the association parameter. We describe a strategy for studying this parameter by a

profile likelihood method and discuss an analysis of the sensitivity of the causal inference

results to its value. We apply the proposed approach to data previously analyzed by Efron

and Feldman (1991) and Jin and Rubin (2008). Estimated causal effects are in line with

those of previous analyses, but the pattern of association between the compliances is qual-

itatively different, apparently due to the flexibility of the copula and to allowing regression

equations in the proposed method to include interactions and heteroscedasticity.

Keywords: causal inference, compliance, EM algorithm, profile likelihood, sensitivity anal-

ysis.
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1 Introduction

In clinical trials, non-compliance to the assigned treatment is a frequent and tricky problem.

In the case of all-or-none compliance, the Instrumental Variable (IV) estimator represents a

standard solution to estimate the causal effect of receiving the treatment. Angrist et al. (1996)

showed that, under certain assumptions, the IV estimate can be interpreted as the complier

average causal effect (CACE), a fundamental quantity within the potential-outcome approach

to causal inference (Rubin, 1978). Subsequently, Frangakis and Rubin (2002) outlined a general

framework, known as principal stratification, to address causal inference in the presence of

an intermediate variable (i.e., a variable that is measured after treatment has been assigned).

Compliance status is an example of an intermediate variable, and the CACE is a particular

principal causal effect, corresponding to the average effect of treatment in the principal stratum

of compliers.

In the potential-outcome approach to causal inference, any post-treatment variable has one

potential version for each level of the treatment. In the case of binary treatment, such as drug

versus placebo, and a binary intermediate variable, such as all-or-none compliance, there are

four possible configurations: “always-takers” (who take the whole dose under both drug and

placebo assignment), “compliers” (who receive the whole dose when assigned to drug treatment

but no dose when assigned to placebo treatment), “never-takers” (who receive no drug dose

under either treatment assignment), and “defiers” (who receive the opposite treatment of the

treatment they were assigned). The potential-outcome framework makes it clear that it is

generally a mistake to condition on a post-treatment concomitant variable (Cochran, 1957;

Rubin, 2005); the principal stratification approach works by viewing an individual’s vector

of potential outcomes as an immutable characteristic of the individual that is unaffected by

treatment. In a randomized study, principal strata can be expected to be balanced across

treatment arms.

Since only one potential outcome is observed on an individual, stratum membership is not

directly observable. However, for any individual the admissible strata are only a subset of all

strata: for example, an individual assigned to drug treatment who actually takes the drug can

be either a “complier” or an “always-taker”; accordingly, the implied statistical model may be

seen as a constrained latent class model (Grilli, 2011).

Sometimes, an individual may take a portion of the drug or placebo, and then we say that

the clinical trial is affected by partial compliance. In this case, the intermediate variable for
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compliance status can be thought of as continuous. The principal stratification framework is

still valid, but with a continuum of compliance behaviors, a latent-class approach with discrete

classes cannot be applied directly. A solution proposed by Jin and Rubin (2008), hereafter

JR, is to use a more structured model by specifying functional relationships between potential

outcomes and potential values of the intermediate variables. The method was illustrated through

re-analysis of the data investigated by Efron and Feldman (1991), hereafter EF, involving partial

compliance with a medication aiming to control cholesterol levels.

The analysis carried out by EF relies on an assumption that drug and placebo compliances

are linked by a deterministic function that allows one, in effect, to impute missing compliance

status. Specifically, EF used an equipercentile equating function implying that if the proportion

of drug doses taken by an individual assigned to active treatment is at a given percentile of the

distribution of observed compliance behavior, then it is assumed that the individual’s placebo

compliance behavior would be at the same percentile of observed placebo compliances. The

same rule can be used to determine the corresponding drug compliance status for an individual

assigned to the placebo arm. JR (Sections 1 and 2.3) argued that “the EF assumption of a

deterministic relation between drug and placebo compliances is overly restrictive”, in particular

because it “denies the possibility that two patients who take the same amount of placebo

under control may take different amounts of drug under treatment, possibly because of different

tolerances to the drug’s side effects”. Instead, JR cast the problem in a principal stratification

framework and formulated the weaker assumption of negative side effect monotonicity, according

to which the drug compliance is no larger than the placebo compliance. Such an assumption

seems plausible in placebo-controlled experiments where the drug has some negative side effects.

However, this kind of monotonicity is violated if, for instance, there exists a subset of patients

having positive side effects from reported cholesterol reductions after periodic blood tests, a

possibility noted by JR (Section 2.4).

Relaxing the EF assumption that drug and placebo compliances are linked by a deterministic

function requires specifying a model for the compliances. To this end, JR specified a parametric

model for compliance behavior based on beta distributions, while for the potential outcomes

they utilized a regression parameterization consistent with that adopted by EF. The Bayesian

analysis performed by JR suggested that a strict equipercentile equating assumption was not

essential and was arguably too restrictive.

We argue that the specification of a parametric model for the drug and placebo compliances is

a critical point. In fact, the two compliances cannot be jointly observed and we have empirical
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evidence on their relationship only indirectly through the model on the potential outcomes.

The scarcity of the empirical support on this relationship, however, may be masked in a fully

parametric Bayesian analysis, with results sensitive to the specification of the model and to the

choice of the prior distributions. Moreover, the assumption of negative side effect monotonicity

might be unduly restrictive.

To investigate the above issues, we propose an approach in which the marginal distributions

of the two compliances are left unspecified and their joint distribution is modeled through

the Plackett copula (Nelsen, 2006), avoiding in this way any monotonicity assumption. The

association between the two compliances is thus summarized by a single parameter which can

be studied via profile likelihood. Specifically, we first estimate the marginal distribution of

each type of compliance by the empirical distribution function and then, for a given value

of the Plackett association parameter, we obtain the maximum likelihood (ML) estimate of

the model parameters through the EM algorithm (Dempster et al., 1977). The computational

task is performed by a series of Matlab functions which are available from the authors upon

request. In the application, the method we propose turns out to be flexible and straightforward

to implement, yielding an alternative way of modeling and interpreting such data.

Similarly to JR, we aim at drawing causal inference in a principal stratification framework

and the use of different modes of inference (Bayesian in JR versus ML here) is more a matter of

convenience than a substantial issue. Our analysis differs from the JR’s essentially because we

allow more flexibility in the potential outcome regressions (interaction terms and heteroscedas-

ticity) and in the joint distribution of the compliances.

The reminder of this paper is organized as follows. Section 2 describes the EF data and

shows the results of a preliminary model for these data. Section 3 outlines the proposed model

and Section 4 explains the estimation strategy. The next two sections illustrate the results of

fitting the proposed model to data from a randomized study of a cholesterol medication; in

particular, Section 5 summarizes the model selection procedure, whereas Section 6 illustrates

the main inferential results. Section 7 reports a final discussion. Details on the maximization

of the likelihood via the EM algorithm are given in the Appendix.

2 Motivating application and preliminary analysis

In this paper, we analyze the data set previously analyzed by EF and JR, which is a subset

of data from a placebo-controlled double-blinded randomized clinical trial designed to study
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the effectiveness of a certain drug, cholestyramine, for lowering cholesterol levels. The data set

includes three variables: the binary indicator for the treatment assignment, the proportion of

compliance rounded to the second decimal, and one continuous variable measuring the average

decrease in the cholesterol level during the study (visits at two-month intervals with an average

length of 7.3 years). Participants were assigned packets of drug or placebo and they were

asked to return unused packets at each visit. Thus, compliance is computed as the proportion

of assigned packets not returned, averaged over all visits. Although it seems conceivable to

investigate the dependence of compliance behavior at a given time on previous observations,

the data set available to us does not contain any information on missing visits or temporal

trends among the variables, so we focus our attention on analyzing average compliance over

time. Following ER and JR, we remove two outliers and then analyze data on 335 men: 164

assigned to active drug and 171 assigned to placebo.

Figure 1 helps to understand the role of compliance in the cholestyramine study. The left

panel refers to the treatment group, and the right panel refers to the control group. In both

panels, the y-axis reports the observed outcome of cholesterol reduction and the x-axis reports

the proportion of packets not returned as a reflection of medication compliance. The rising trend

in the left panel reveals that a higher compliance to drug is associated with a larger reduction

in the cholesterol level; therefore, the drug seems to be effective. However, the right panel also

shows an increasing, though less pronounced, trend. Since the placebo is not thought to have

a chemical impact on cholesterol levels, such a trend would seem to be due to compliance. The

effect of the observed compliance to drug is likely the combination of a “genuine” effect, due

to the chemical action of the drug, and a “collateral” effect, due to the correlation between

the degree of compliance and some unobserved characteristics of the patients which affect the

cholesterol level, such as the propensity to eat healthy food or to exercise.

The analysis would be straightforward if one could assume that compliance to placebo is

identical, unit by unit, to compliance to drug (what EF called the perfect blind assumption).

However, the quantile-quantile plot (see JR’s Figure 3) shows that the observed compliance to

placebo is considerably larger than the observed compliance to drug, presumably due to some

adverse side effects of the drug. The crucial methodological issue is then to properly model the

relationship between the two compliances in order to impute the missing placebo compliance to

patients in the treatment arm, and viceversa.

We now introduce some basic notation. For any individual i, with i = 1, . . . , n, we define

Zi to be a binary variable equal to 1 if the subject is assigned to the treatment arm (drug)
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Figure 1: Cholesterol reduction against degree of compliance observed in the treatment arm

(a) and control arm (b) for the cholestyramine data. The straight lines correspond to linear

regressions and the dashed curve corresponds to a quadratic regression.

and equal to 0 if he is assigned to the control arm (placebo). The potential compliances are

represented by the pair (di, Di), where di denotes the placebo compliance if subject i is assigned

to the control arm and Di denotes the drug compliance if he is assigned to the treatment arm.

Both di and Di are proportions and thus lie on the unit interval. The outcome variable has two

potential versions, denoted by Y
(0)
i (outcome under placebo) and Y

(1)
i (outcome under drug),

reflecting cholesterol reduction, with higher values implying more favorable outcomes.

Before developing a full model for the cholestyramine data, we fit regression models sepa-

rately for the patients assigned to drug (Zi = 1) and patients assigned to placebo (Zi = 0).

The results of this preliminary fitting are reported in Table 1, which reports for each model the

maximum log-likelihood, the number of parameters, and the value of the likelihood ratio (LR)

test statistic with respect to the previous and the initial model, together with the corresponding

p-value.

Following EF, we consider the regression model in which Y
(0)
i depends on di whereas Y

(1)
i

depends on Di and D2
i . Since the plots show patterns of increasing variance, we allow for

heteroscedasticity with V ar(Y
(0)
i |di, Zi = 0) = exp(δ00 + δ01di) and V ar(Y

(1)
i |Di, Zi = 1) =

exp(δ10 + δ11Di). This model, denoted as Initial in Table 1, gives rise to a log-likelihood of

−1426.33 with 9 parameters. Building on this model, we follow a procedure of model selection
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Table 1: Preliminary model selection: separate regressions for the two treatment arms.
Against previous Against initial

Model log-lik. #par. LR stat. p-value LR stat. p-value
Initial∗ -1426.33 9 - - - -
Previous + (δ00 = δ10, δ01 = 0) -1427.78 7 2.90 0.234 2.90 0.234
Previous + (β00 = β10) -1428.18 6 0.82 0.366 3.72 0.294
Previous + (β12 = 0) -1429.42 5 2.47 0.116 6.19 0.186

∗Initial model: Y
(0)
i

| di, Zi = 0 ∼ N [β00 + β01di, exp(δ00 + δ01di)], Y
(1)
i

|Di, Zi = 1 ∼ N [β10 + β11Di + β12D
2
i , exp(δ10 + δ11Di)]

in which we first try to simplify the variance structure. A reasonable restriction is δ00 = δ10

and δ01 = 0, so that heteroscedasticity is only in the second equation and Y
(1)
i has the same

variance as Y
(0)
i when Di = 0. The model can be further simplified by assuming that the two

equations have the same intercept and dropping the quadratic term from the equation for Y
(1)
i .

The equality of the intercepts implies that patients with no compliance at all have the same

outcome regardless of the treatment arm; EF found further empirical evidence in favor of such

a restriction.

Compared to the homoscedastic model with quadratic term for Y
(1)
i , adopted by JR, the

final model of Table 1 has two fewer parameters and a higher log-likelihood. The estimated

conditional distributions are

Y
(0)
i | di, Zi = 0 ∼ N [−0.869 + 12.081di, exp(5.294)] , (1)

Y
(1)
i |Di, Zi = 1 ∼ N [−0.869 + 56.106Di, exp(5.294 + 1.366Di)] . (2)

The corresponding regression lines are drawn in Figure 1, where the left panel also reports a

dashed curve for the quadratic regression.

3 Proposed copula model

We now describe a proposed copula model for the random variables defined in the previous

section, namely the treatment indicator Zi, the potential placebo compliance di, the potential

drug compliance Di, the potential outcome under placebo Y
(0)
i , and the potential outcome under

drug Y
(1)
i .

In line with JR (Section 2.2), we rely on two standard assumptions, namely the Stable Unit

Treatment Value Assumption (SUTVA) and ignorable treatment assignment. These assumptions

simplify the model formulation by avoiding the need to worry about interference between units

or to model the assignment mechanism. Even if these assumptions are untestable, they are
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reasonable in carefully designed randomized trials such as the cholestyramine study discussed

in Section 2. Also in line with JR (Section 2.3), we assume strong access monotonicity, namely

that the drug compliance is null for patients assigned to placebo and placebo compliance is null

for patients assigned to drug, which we regard as plausible in the present context since the trial

prevented patients assigned to drug from taking placebo, and vice versa.

Under strong access monotonicity, the compliance behavior can be represented by the pair

(di, Di) instead of the four variables that would be needed in an “extended partial compliance”

framework (JR, Section 2.1).

EF and JR made further assumptions about the relationship between drug and placebo com-

pliances: EF assumed equipercentile equating of the compliances (a deterministic relationship),

whereas JR assumed negative side effect monotonicity (a stochastic relationship with Di ≤ di);

the approach here does not invoke either of these assumptions.

As in JR, we adopt a principal stratification approach where the principal strata are defined

by the values of the pair (di, Di). Therefore, the principal causal effect (PCE) is defined as the

average difference Y
(1)
i − Y

(0)
i for individuals belonging to the same principal stratum:

PCE (di, Di) = E
(
Y

(1)
i − Y

(0)
i | di, Di

)
. (3)

By representing the PCE as a function of di and Di, we can think of principal causal effects on

what Gilbert and Hudgens (2008) refer to as the causal effect predictiveness (CEP) surface.

Within a principal stratum, we adopt the following specification for the conditional distri-

bution of each potential outcome given the pair of potential compliance values:

Y
(z)
i | di, Di ∼ N

[
µz(di, Di), σ

2
z(di, Di)

]
, z = 0, 1, (4)

with µz(di, Di) = bz(di, Di)
′βz and σ

2
z(di, Di) = exp[cz(di, Di)

′γz], where bz and cz are functions

to be appropriately chosen. The implied principal causal effect is PCE (di, Di) = b1(di, Di)
′β1−

b0(di, Di)
′β0. In JR (Section 3.2) the mean under control is linear in di and Di, the mean under

treatment is linear in di and quadratic in Di, whereas the variances are both constant; the model

here is a generalization allowing comparison of different specifications.

It is important to note that the identification of the PCE relies on the modeling assumptions

specified by (4), especially those concerning the conditional means µ0(di, Di) and µ1(di, Di).

Unfortunately, the functional forms of the conditional means cannot be tested separately since

di and Di are never jointly observed. The same issue concerns the variance functions. The

normality assumption, while also relevant, is expected to play a minor role and can be checked

by studying alternative Box-Cox transformations (see Section 6).
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A further issue concerns the correlation between Y
(0)
i and Y

(1)
i conditional on the stratum.

This correlation is not estimable and the standard solution is setting it to zero. In their approach,

JR performed a sensitivity analysis by setting the correlation to arbitrary values and found no

important changes in the inferential conclusions when it varies; therefore, we do not pursue this

matter anymore.

For the joint distribution of the compliances, JR (Section 3.2) assumed that di has distribu-

tion Beta(α1, α2) and (conditional on di) the ratio Di/di has distribution Beta(α3, α4), which

implies Di ≤ di (negative side effect monotonicity). Even if the compliances di and Di cannot be

jointly observed, empirical evidence on their correlation is indirectly induced by the equations

for the outcomes, see (4), where both compliances enter as regressors. Indeed, the specification

of JR allows di and Di to be correlated, although in a particular way that should not be viewed

as the only possible way.

On this issue we consider the sensitivity of inference for the causal effect of treatment on

cholesterol outcomes to the model for the compliances. We propose to use copulas, which are

families of functions that can be applied to the marginal distributions of two random variables

to obtain a corresponding joint distribution (Nelsen, 2006), focusing on copulas that can be

characterized by a single parameter corresponding to a measure of association between the two

random variables. Here we choose to model the joint distribution of di and Di by the Plackett

copula (Plackett, 1965), which is briefly illustrated in the following.

Let X and Y be two random variables with distribution functions FX and FY , respectively,

and let u = FX(x) and v = FY (y). Then the Plackett copula of X and Y is the function

Cψ(u, v) =


uv if ψ = 1,

[1+(ψ−1)(u+v)]−{[1+(ψ−1)(u+v)]2−4ψ(ψ−1)uv}
1
2

2(ψ−1)
if ψ > 0, ψ ̸= 1.

(5)

By Sklar’s theorem (Nelsen, 2006), Cψ(FX(x), FY (y)) is a joint distribution function with

marginal distributions FX and FY . The parameter ψ is a measure of association between

the two random variables: ψ = 1 corresponds to independence, ψ < 1 to negative association,

and ψ > 1 to positive association. The parameter ψ is related to the Spearman correlation

coefficient ρ by the function ρ = (ψ + 1)/(ψ − 1)− 2ψ logψ/(ψ − 1)2.

The copula has the merit of allowing us to study the association between the compliances

di and Di without specifying a model for their marginal distributions, which are estimated by

their empirical distribution functions.

The choice of the type of copula is expected to have minor consequences on the results. In-

deed, we also fitted the model using the Gaussian copula, noting that it is more computationally
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intensive but gives similar results (see Section 6.2).

4 Estimation

The model outlined in the previous section is based on three sets of parameters: (i) the pa-

rameters for the outcome under placebo θ0 = (β′
0,γ

′
0)

′; (ii) the parameters for the outcome

under treatment θ1 = (β′
1,γ

′
1)

′; (iii) the Plackett association parameter ψ. For fixed ψ, we first

estimate the joint distribution of di and Di by applying the copula to the empirical distribution

functions and then we estimate θ0 and θ1 by maximizing the likelihood of the observed data.

Inference for ψ is based on the profile likelihood for this parameter.

First of all, we outline how the joint distribution of (di, Di) is estimated from the observed

marginal distributions of the two compliances, given the value of the association parameter

ψ. Let D0 = {d∗1, . . . , d∗k0} be the ordered set of distinct values of di in the data; similarly,

let D1 = {D∗
1, . . . , D

∗
k1
} be the ordered set of distinct values of Di in the data, where k0

is the number of distinct compliance levels observed under control and k1 is the number of

distinct compliance levels observed under treatment. At each discontinuity point, the empirical

distribution functions of di and Di are, respectively,

F̂0h0 =

∑
i:Zi=0 1{di ≤ d∗h0}∑n

i=1(1− Zi)
, h0 = 1, . . . , k0,

F̂1h1 =

∑
i:Zi=1 1{Di ≤ D∗

h1
}∑n

i=1 Zi
, h1 = 1, . . . , k1,

where 1{·} denotes the indicator function. Then, the joint distribution of (di, Di) is estimated

by a discrete distribution having support set D0×D1 and probability masses defined by linking

the empirical distribution functions via the Plackett copula; see equation (5). Specifically, each

of the k0k1 support points (d∗h0 , D
∗
h1
) has probability

p̂h0h1(ψ) = C(F̂0h0 , F̂1h1 ;ψ)− C(F̂0,h0−1, F̂1h1 ;ψ)− C(F̂0h0 , F̂1,h1−1;ψ) + C(F̂0,h0−1, F̂1,h1−1;ψ),

where F00 ≡ 0 and F10 ≡ 0. Consequently, the conditional distribution of di given Di = D∗
h1

is

estimated by a discrete distribution with support set D0 and probabilities

p̂0h0|h1(ψ) =
p̂h0h1(ψ)∑k0
j=1 p̂jh1(ψ)

, h0 = 1, . . . , k0. (6)

Similarly, the estimated conditional distribution of Di given di = d∗h0 has support set D1 and

probabilities

p̂1h1|h0(ψ) =
p̂h0h1(ψ)∑k1
j=1 p̂h0j(ψ)

, h1 = 1, . . . , k1. (7)

10



Since (di, Di) are not jointly observed, the distributions of the potential outcomes in model

(4) cannot be directly used to define the model likelihood. However, we can use the distributions

(6) and (7) to integrate out the missing compliance. Therefore, the density of Y
(0)
i given di is

f̂(Y
(0)
i |di;θ0, ψ) =

k1∑
h1=1

f(Y
(0)
i |di, D∗

h1
;θ0, ψ)p̂1h1|h0i(ψ),

where h0i is an index between 1 and k0 such that di = d∗h0i and the density of Y
(0)
i given the

two compliances is defined by model (4). The conditional density f̂(Y
(0)
i |di;θ0, ψ) can be used

to define the likelihood since Y
(0)
i and di are jointly observed for subjects in the control arm.

Similarly, for subjects in the treatment arm we use the density of Y
(1)
i given Di

f̂(Y
(1)
i |Di;θ1, ψ) =

k0∑
h0=1

f(Y
(1)
i |d∗h0 , Di;θ1, ψ)p̂0h0|h1i(ψ),

where h1i is an index between 1 and k1 such that Di = D∗
h1i

.

For given ψ, the likelihood of the model is thus

Lψ(θ0,θ1) ∝
∏

i:Zi=0

f̂(Y
(0)
i |di;θ0, ψ)

∏
i:Zi=1

f̂(Y
(1)
i |Di;θ1, ψ), (8)

where we have omitted the component concerning the marginal distribution of the two compli-

ances
∏
i:Zi=0(F0h0i − F0,h0i−1)

∏
i:Zi=1(F1h1i − F1,h1i−1). In fact, such a component, which recalls

the saturated likelihood used in the empirical likelihood approach (Owen, 2001), is not relevant

for making inference on the parameters of interest.

Details on the maximization of the likelihood via the EM algorithm are given in the Ap-

pendix. Note that the model under consideration relies on regressors di and Di which are never

jointly observed: estimation through the EM algorithm is feasible because of the structure

imposed by the copula on the pair (di, Di). For any given value of the Plackett association

parameter ψ, the EM algorithm yields estimates of θ0 and θ1, which we denote by θ̂0(ψ) and

θ̂1(ψ) respectively. The profile log-likelihood function for ψ is then

ℓ(ψ) = logLψ(θ̂0(ψ), θ̂1(ψ)).

This function can be numerically maximized with respect to ψ to get the ML estimate ψ̂ of the

association parameter and the corresponding ML estimate of the other parameters. A graphical

representation of ℓ(ψ) helps to realize how the values of ψ are supported by the data and to

check for the presence of local maxima.
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5 Model selection

We choose among models defined by the distributions (4) for Y
(z)
i | di, Di, z = 0, 1, and the

copula (5) for (di, Di). We begin the model selection procedure from model M0, which specifies

the functions bz(di, Di) and cz(di, Di) so that the distributions of the potential outcomes in (4)

have means

µ0(di, Di) = β00 + diβ01 +Diβ02 + diDiβ03, (9)

µ1(di, Di) = β10 + diβ11 +Diβ12 +D2
i β13 + diDiβ14, (10)

and variances

σ2
z(di, Di) = exp(γz0 + diγz1 +Diγz2), z = 0, 1. (11)

This initial model is more general than the one adopted by JR because we include the interaction

between di and Di in both regression equations and we allow for heteroscedasticity. After

running the estimation algorithm, it turns out that this model has maximum log-likelihood

equal to −1420.82 with 16 parameters (9 for the regression parameters and 6 for the variance

parameters in addition to the Plackett association parameter).

We then consider models incorporating constraints on the parameters βz and γz. The

results of the selection procedure are summarized in Table 2, with comparisons between nested

models carried out using likelihood ratio (LR) testing at the 5% significance level. Note that

the conclusions would be unchanged if we relied on the Bayesian Information Criterion (BIC)

of Schwarz (1978).

Table 2: Model selection (model Mk incorporates hypotheses H1 to Hk).

Against Mk−1 Against M0

Model log-lik. par. BIC LR stat. p-value LR stat. p-value
M0: initial model ∗ -1420.82 16 2934.67 - - - -
M1: M0 +H1(β00 = β10) -1420.85 15 2928.91 0.06 0.804 0.06 0.804
M2: M1 +H2(γ00 = γ10) -1422.24 14 2925.88 2.78 0.095 2.84 0.241
M3: M2 +H3(β01 = β11) -1423.24 13 2922.06 2.00 0.157 4.84 0.184
M4: M3 +H4(γ01 = γ02 = γ11 = 0) -1425.71 10 2909.56 4.94 0.176 9.78 0.134
M5: M4 +H5(β13 = 0) -1426.05 9 2904.42 0.68 0.410 10.46 0.164
M6: M5 +H6(β03 = 0) -1426.78 8 2900.07 1.46 0.227 11.92 0.155
M7: M6 +H7(β02 = 0) -1427.21 7 2895.12 0.86 0.354 12.78 0.173
M8: M7 +H8(ψ = 1) -1433.69 6 2902.27 12.97 0.000 25.75 0.004

∗ Initial model defined by equations (4) and (5), with means and variances specified in (9), (10), and (11).

The structure of the cholestyramine study suggests some possible simplifying hypotheses:

H1 : β00 = β10, implying µ0(0, 0) = µ1(0, 0), namely the expected outcome of a subject with
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null placebo and drug compliances is not affected by the treatment assignment; H2 : γ00 =

γ10, implying σ2
0(0, 0) = σ2

1(0, 0), namely the variance of the outcome of a subject with null

placebo and drug compliances is not affected by the treatment assignment; H3 : β01 = β11,

implying (together with H1) µ0(di, 0) = µ1(di, 0), which means that, for subjects with null drug

compliance, the dependence of the expected outcome on the placebo compliance is not affected

by the treatment assignment. Hypotheses H1 to H3 are sequentially incorporated in model M0,

obtaining model M3.

One could also try to simplify the variance equations. Under parameterization (11), the

restrictions considered in Section 2 may be written as H4 : γ01 = γ02 = γ11 = 0, implying that

the conditional variance of Y
(0)
i given (di, Di) is constant, whereas that of Y

(1)
i only depends on

Di. Including hypothesis H4 into model M3 yields model M4.

Simplifying the regression equations by setting some of the parameters in β0 and β1 to

zero while taking care to retain a hierarchical parameterization gives rise to H5 : β13 = 0,

H6 : β03 = 0, and H7 : β02 = 0, which are sequentially introduced in model M4 to yield models

M5, M6, and M7.

Finally, in order to test the hypothesis of independence between di and Di, we fit model

M8 which includes the restriction H8 : ψ = 1. The LR test statistic comparing model M8 with

model M7 is equal to 12.97 with a p-value smaller than 0.001; beyond this, we did not find

evidence requiring additional flexibility in model parameters and take M7 as the final model.

This model has maximum log-likelihood equal to −1427.21 with 7 parameters. The estimates

of the parameters of model M7 are reported in Table 3, together with the intervals obtained

through the non-parametric bootstrap (Efron and Tibshirani, 1994; Davison and Hinkley, 1997).

In particular, we re-sampled the observed individuals with replacement 1,000 times and fitted

the model for every sample obtained in this way; then, we computed 95% intervals using the

2.5% and 97.5% quantiles of the distribution of these estimates.

The use of bootstrap intervals is motivated by the skewness of the sampling distribution

of some parameters, in particular the Plackett parameter and the interaction between the two

compliances. We found bootstrap intervals to be in substantial agreement with profile likelihood

intervals. While acknowledging that there have been debates about the interpretation of boot-

strap intervals in complex problems (Schenker, 1985), we proceeded by interpreting bootstrap

intervals as confidence intervals. The bootstrap method also can be applied to transformations

of the parameters; in particular, we exploit it to produce interval estimates for principal causal

effects (see Section 6.1).
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Table 3: Parameter estimates for the selected model M7.
Parameter Estimate Bootstrap interval

β00 = β10: intercept for E(Y
(z)
i |di, Di), z = 0, 1 -0.269 (-5.272, 4.887)

β01 = β11: slope of di on E(Y
(z)
i |di, Di), z = 0, 1 11.243 (4.704, 18.053)

β12: slope of Di on E(Y
(1)
i |di, Di) -21.878 (-102.206, 9.407)

β14: slope of diDi on E(Y
(1)
i |di, Di) 73.359 (38.331, 155.840)

γ00 = γ10: intercept for log V ar(Y
(z)
i |di, Di), z = 0, 1 5.260 (5.053, 5.429)

γ12: slope of Di on log V ar(Y
(1)
i |di, Di) 1.161 (0.194, 1.560)

logψ: log of the Plackett association parameter 2.875 (0.914, 16.744)

The assumptions of model M7 imply that the conditional means of Y
(0)
i and Y

(1)
i are equal

when di = Di = 0 and the slope of di is the same in both equations when Di = 0. The estimated

distributions of the potential outcomes are

Y
(0)
i | di, Di ∼ N [−0.269 + 11.243di, exp(5.260)] , (12)

Y
(1)
i | di, Di ∼ N [−0.269 + 11.243di − 21.878Di + 73.359diDi, exp(5.260 + 1.161Di)] . (13)

The finding that di has a positive and significant coefficient on the conditional mean of both

potential outcomes seems to confirm that placebo compliance is a proxy for better cholesterol

control. On the other hand, the negative estimate β̂12 = −21.878 for the regression coefficient

for Di may be unexpected. However, this coefficient does not result to be significantly different

from 0 and, more importantly, it cannot be interpreted separately from the estimate of the

coefficient β14 for the interaction diDi. Indeed, the estimated slope for Di in E(Y
(1)
i |di, Di) is

−21.878 + 73.359di, which is negative only when di < 0.298; this happens for 12.3% of the

subjects in the control arm. Also note that the positive association between di and Di (due to

ψ̂ > 1) implies that the slope of Di tends to increase with Di itself. This pattern is compatible

with the quadratic relationship between outcome and compliance in the treatment arm (left

panel of Figure 1), which prompted both EF and JR to specify nonlinear functions. Thus, our

linear model with an interaction between drug and placebo compliances provides an alternative

explanation.

6 Inference

Inference under the selected model (modelM7 in Table 3) requires some care since the estimates

of the regression coefficients in (12) and (13) are related to the estimate of the parameter ψ

measuring the association between the drug compliance and the placebo compliance.

14



The uncertainty about ψ is evident in Figure 2, where the profile log-likelihood has values

close to the maximum for a wide interval of values of logψ. In fact, the 95% profile confidence

interval for logψ, which may be found as {logψ : ℓ(ψ) > −1429.13}, is equal to (1.017,∞)

corresponding to the interval (2.765,∞) for ψ. In general, it is not advisable to base the

inference exclusively on the point estimate of ψ. Specifically, it is important to assess the

sensitivity of the estimate of the PCE, as defined in (3), to the point estimate of ψ.
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Figure 2: Profile log-likelihood for logψ under model M7.

For clarity of exposition and to help the comparison with the previous analyses of EF and

JR, in the following we first illustrate the inference drawn under model M7 with ψ at its ML

estimate and then we perform a sensitivity analysis on the estimated PCE by letting ψ vary on

a suitable interval and considering alternative specifications of the adopted model.

6.1 Inference based on the maximum likelihood estimate of ψ

First of all, it is interesting to consider the relationship between the placebo compliance di and

the drug compliance Di. Under modelM7, the estimate of logψ is equal to 2.875, corresponding

to ψ̂ = 17.727, and the hypothesis of independence (ψ = 1) is rejected by the LR test; see Table

3. The resulting joint distribution of the two compliances di and Di is represented in Figure 3
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by a scatter plot of 1000 random draws, together with the curve of the estimated conditional

mean of Di given di.
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Figure 3: Scatter plot of 1000 draws from the estimated joint distribution of di and Di. The

solid curve represents E(Di|di).

Similarly to JR, we conclude that the equipercentile equating assumption of EF is not appro-

priate since the relationship between the two compliances is evidently not deterministic. Direct

calculation based on the estimated bivariate distribution yields a Pearson linear correlation of

0.689 and a Spearman rank correlation of 0.726, which is high, but far from the perfect rank

correlation implied by the equipercentile equating assumption.

The joint distribution of the drug and placebo compliances is also notably different from the

JR’s. In fact, the scatter plot in Figure 3 should be compared with one of the scatter plots of

JR’s Figure 5 reporting MCMC draws from (di, Di). The plots of JR show an accumulation of

points on the upper right angle (corresponding to high values of both di and Di) and along the

bisectrix (corresponding to Di = di). Since the negative side effect monotonicity assumed by JR

amounts to Di ≤ di, the bisectrix seems to act as a barrier and the accumulation of points along

this line suggests that the monotonicity assumption may be too restrictive. Indeed, 21.6% of the

points in our scatter plot goes beyond the bisectrix (Di > di), even if in most cases Di is only

slightly larger than di; these points correspond to individuals with positive side effects. It may

be that the population of patients is a mixture of three subpopulations of patients experiencing

negative side effects (Di < di), no side effects (Di = di), and positive side effects (Di > di).
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This structure, which is scientifically meaningful, could be explicitly modeled via latent classes,

but such an attempt would need a larger data set in order to provide reliable results.

We now consider the inference on the principal causal effects. Equations (12) and (13) with

ψ at its ML estimate imply that

PCE(di, Di) = (−21.878 + 73.359di)Di.

It is worth noting that, differently from JR, the dependence of the PCE on the dose of the taken

treatment is stronger at higher levels of the placebo compliance due to the interaction term diDi

entering the equation for Y
(1)
i . A consequence of the presence of this interaction term is that

the slope for Di on the PCE is negative for di < 0.298, but, as discussed above, this is not a

major issue.

The results in terms of estimated PCE are summarized by the surface in Figure 4, which

can be compared with the surface in the JR’s Figure 4.
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Figure 4: Estimated PCE surface under model M7.

A synthetic comparison is obtained by contrasting the Bayesian posterior median of JR with

our copula-based ML estimate at some interesting points (di, Di). In particular, we have:

• 5 (JR) vs. 0 (copula-based ML) at (0, 0), i.e. null compliance in both treatment arms;
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• -13 (JR) vs. 0 (copula-based ML) at (1, 0), i.e. full placebo compliance and null drug

compliance;

• 24 (JR) vs 30 (copula-based ML) at (0.89, 0.70), i.e. median placebo compliance and

median drug compliance;

• 50 (JR) vs 51 (copula-based ML) at (1, 1), i.e. full compliance in both treatment arms.

Our estimates of the PCE are thus in good agreement with those of JR.

Confidence intervals for the PCE are easily obtained via the non-parametric bootstrap, which

was discussed in Section 5 in connection with the bootstrap intervals for the model parameters

reported in Table 3. When the compliances are at their median values (di = 0.89, Di = 0.70),

the distribution of PCE across the 1,000 bootstrap samples has a median of 30.4 (identical to

the first decimal to the ML point estimate) and the 95% bootstrap interval is (22.5, 39.2). As

another example, when the compliances are at their first quartiles (di = 0.59, Di = 0.27), the

95% bootstrap interval of the PCE is (-3.1, 9.9) and thus there is not convincing evidence of a

positive effect.

Finally, we consider the problem of the prediction of the PCE as a function of the sole

compliance under treatment Di. This is of practical relevance since the placebo compliance

di is unknown and it must be integrated out from the joint distribution of (di, Di) in order to

predict the PCE for any level of drug compliance. To this end, Figure 5 shows the predicted

Y
(1)
i and PCE given Di only, together with the 95% bootstrap interval. These predictions are

obtained by replacing di with its conditional mean given Di, which is computed on the basis

of the conditional distribution in expression (6) with ψ at the ML estimate. As one would

expect, the predicted PCE is an increasing function of Di. Also note that the expectation of

Y
(1)
i (dashed curve) has a shape similar to that of the quadratic regression curve we fitted for

the patients in the treatment arm (left panel of Figure 1). This confirms the remark at the end

of Section 5 about the non-linearity induced by the interaction between di and Di.

6.2 Sensitivity analysis

The fragile identification of the association parameter ψ prompts us to perform a sensitivity

analysis to assess how the estimated PCE depends on the value of this parameter. Sensitivity

bounds for PCE should always accompany the point estimate and should be the only reported

result when the profile likelihood is rather flat or multimodal. To compute these bounds we

estimate the PCE for every value of ψ on a suitable grid and we take the lower bound as the
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Figure 5: Expectation of Y
(1)
i and PCE with respect to Di. Dotted line: expectation of Y

(1)
i

under the preliminary model of equations (1) and (2); dashed line: expectation of Y
(1)
i under

model M7 of Section 5; the continuous line is the estimated PCE under the same model M7 and

the grey region represents the corresponding 95% pointwise bootstrap intervals.

smallest estimate and the upper bound as the largest one. In particular, we consider a set of

values of ψ corresponding to the 95% profile confidence interval found on the basis of the plot

in Figure 2. The sensitivity bounds for the PCE are reported in Table 4 for di and Di at their

minimum, first quartile, median, third quartile, and maximum.

Table 4: Sensitivity bounds for the PCE for ψ such that ℓ(ψ) > −1429.13 for di and Di at their

minimum, first quartile, median, third quartile, and maximum.
di = 0.00 di = 0.59 di = 0.89 di = 0.97 di = 1.00

Di = 0.00 (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
Di = 0.27 (−9.1,−1.6) (4.0, 8.4) (10.6, 13.4) (12.3, 14.8) (13.0, 15.3)
Di = 0.70 (−23.5,−4.1) (10.3, 21.7) (27.4, 34.8) (31.9, 38.3) (33.6, 39.6)
Di = 0.95 (−31.9,−5.6) (14.0, 29.5) (37.2, 47.3) (43.3, 52.0) (45.6, 53.8)
Di = 1.00 (−33.6,−5.9) (14.7, 31.0) (39.1, 49.8) (45.6, 54.8) (48.0, 56.6)

The PCE is stable at least for values (di, Di) in the middle of the data, i.e. around the

medians of the observed compliances, whereas wide intervals at unlikely compliance levels are

not necessarily cause for concern. In particular, Table 4 shows that the PCE at the median

point (0.89, 0.70) is quite stable, ranging from 27.4 to 34.8. At points where Di is larger than

di, such as di = 0.59 (the first quartile) and Di = 0.95 (the third quartile), the PCE shows a
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greater variation, ranging from 14.0 to 29.5. Note that to summarize the empirical evidence on

the existence of a positive PCE one should also account for the sampling variance, which can

be considerable at unlikely compliance levels: for example, the 95% bootstrap interval for the

PCE at di = 0.59 and Di = 0.95 is (−10.8, 34.7) and then the causal effect is not significant

even without considering its sensitivity to ψ.

The sensitivity bounds for the PCE in Table 4 are negative when di = 0 and Di > 0. We

interpret this pattern as a consequence of an extrapolation since in the fitted joint distribution

of the compliances (Figure 3) such configuration has a small probability. In general, one should

be very cautious when drawing inference on the PCE at an unlikely pair of compliances.

A sensitivity analysis can also be performed to assess how the estimate of the PCE depends

on the assumption of normality for the conditional distributions of the potential outcomes in

model (4). To this end, we exploit the Box and Cox (1964) transformation y∗ = [(y+30)λ−1]/λ,

where we added 30 to avoid negative values. Note that λ = 1 corresponds to the identity function

(up to a translation), whereas for λ = 0 the transformation is defined as log(y+30). We compute

the ML estimate of the parameters, including the association parameter ψ, for a grid of values

of λ in the [0, 2] interval. There is not evidence against the normality assumption since the

LR test does not reject the hypothesis λ = 1 (p-value=0.123). The estimated PCE is fairly

stable across the values of λ: for example, when the compliances are at their median values

(di = 0.89, Di = 0.70), the estimate ranges from 29.4 to 32.9. As expected, the robustness is

lower at points farther from the bulk of the data, such as points with Di larger than di: for

example, when di = 0.59 (the first quartile) and Di = 0.95 (the third quartile), the estimate of

the PCE ranges from 12.9 to 22.8.

Finally, to evaluate the dependence of the results on the type of copula, we replace the

Plackett copula with a Gaussian copula (Nelsen, 2006). Due to the use of the bivariate nor-

mal distribution function, the maximization of the likelihood is much more computationally

demanding, but the results are very close. In particular, the Pearson linear correlation between

di and Di turns out to be 0.680 (compared to 0.689), whereas the estimated PCE at di = 0.89

and Di = 0.70 is 30.8 (compared to 30.4) and the estimated PCE at di = 0.59 and Di = 0.95 is

18.2 (compared to 20.3).
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7 Final remarks

Principal stratification is a general and effective framework for casting problems of causal infer-

ence. However, building statistical models within such a framework is difficult since the suitable

models tend to be highly complex and their specification requires several assumptions for which

there may be little empirical support. Indeed, the specification process is usually assisted by a

set of assumptions with a clear subject-matter meaning to be justified by theoretical arguments

or external information. Assumptions are specially important when the principal strata are

continuous, such as in experimental studies with partial compliance. The approach illustrated

in this paper aims at relaxing the assumptions needed to model continuous principal strata,

exploiting the information in the data as much as possible.

The core of our approach is to link the observed marginal distributions of drug compliance

and placebo compliance by a copula, so that their association is modeled in a flexible way

through a single parameter. Since the marginal distributions are estimated by their empirical

distribution functions, the copula does not impose any restriction on them. The point is that

the two compliances are never jointly observed and the only empirical evidence about their

relationship comes from the regression equations for the outcomes; therefore, it is crucial to

represent their association with a single parameter to be estimated separately from the observed

marginal distributions. This allows us to study the association parameter via profile likelihood so

as to evaluate how inferential conclusions are supported by the data and to study the sensitivity

of the resulting causal inference.

The approach proposed in the paper has been applied to the cholestyramine data with

the main aim to make a comparison with the results of JR, who adopted the same principal

stratification framework, but developed a different model. The estimated principal causal effects

are in line with those estimated by JR, but the overall picture is somewhat different. Notably,

our method yields an estimated joint distribution of the drug and placebo compliances that

raises doubts on the appropriateness of JR’s negative side effect monotonicity assumption.

Moreover, the sensitivity analysis shows that the Principal Causal Effects are reliably estimated

at drug and placebo compliance levels near the sample medians, whereas inference at unlikely

compliance levels appears to be unduly affected by model assumptions.

The implementation of the EM algorithm for the proposed model turned out to be compu-

tationally simple and allowed us to easily compare, through likelihood ratio tests, a variety of

specifications for the conditional mean and variance of the potential outcomes given the two
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compliances. The selection process ended with a specification that differs from those of EF and

JR especially in the conditional distribution of the potential outcome under treatment. In fact,

the model for the mean includes an interaction term between the drug and placebo compli-

ances, whereas the variance has a heteroscedastic form. Heteroscedasticity and, in particular,

the interaction suggest alternative interesting ways of interpreting the cholestyramine data.

The analysis performed in this paper aims at estimating the causal effects within principal

strata defined by both drug compliance and placebo compliance, as in JR’s Section 3. Therefore,

the results should not be directly used to draw a dose-response function, since the effect of

the dose of the drug is mixed with the effect of the unobserved features associated with the

degree of compliance. The estimation of a dose-response function, carried out in JR’s Section 4,

requires further problematic assumptions such as the latent ignorability of the dosage assignment

mechanism at any level of placebo compliance. In a similar fashion, our model could be extended

to estimate a dose-response function.
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Appendix

In order to maximize the likelihood (8) with respect to θ0 and θ1 for given ψ, we exploit the

EM algorithm of Dempster et al. (1977). This algorithm relies on the likelihood of the complete

data, which correspond to the triple (di, Di, Y
(0)
i ) for every i such that Zi = 0 and (di, Di, Y

(1)
i )

for every i such that Zi = 1. Note that Di is missing in the first case, whereas di is missing in

the second case. For given ψ, the likelihood has expression

L
(C)
ψ (θ0,θ1) ∝

∏
i:Zi=0

f(Y
(0)
i |di, Di;θ0)p̂h0ih1i(ψ)

∏
i:Zi=1

f(Y
(1)
i |di, Di;θ1)p̂h0ih1i(ψ).
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However, p̂h0ih1i(ψ) does not depend on the parameters θ0 and θ1. Therefore, for given ψ and

up to a constant, the corresponding log-likelihood is

ℓ
(C)
ψ (θ0,θ1) =

∑
i:Zi=0

k1∑
h1=1

Wih1 log f(Y
(0)
i |di, D∗

h1
;θ0)

+
∑
i:Zi=1

k0∑
h0=1

wih0 log f(Y
(1)
i |d∗h0 , Di;θ1),

where Wih1 = 1{Di = D∗
h1
} and wih0 = 1{di = d∗h0}.

The EM algorithm alternates two steps until convergence in Lψ(θ0,θ1): at the E-step it

computes the expected value of ℓ
(C)
ψ (θ0,θ1) given the observed data and the current value of the

parameters; at the M-step it maximizes the above expected value with respect to θ0 and θ1.

The E-step is performed by computing the posterior probabilities

w̃ih0 =
f(Y

(1)
i |d∗h0 , Di;θ1)p̂0h0|h1i

f̂(Y
(1)
i |Di;θ1, ψ)

, h0 = 1, . . . , k0,

for every i such that Zi = 1, and

W̃ih1 =
f(Y

(0)
i |di, D∗

h1
;θ0)p̂1h1|h0i

f̂(Y
(0)
i |di;θ0, ψ)

, h1 = 1, . . . , k1,

for every i such that Zi = 0. The posterior probabilities are substituted to the binary variables

wih0 and Wih1 to obtain the expected value of the complete-data log-likelihood, denoted by

ℓ̃
(C)
ψ (θ0,θ1).

The M-step consists in updating the parameters θ0 and θ1 by maximizing ℓ̃
(C)
ψ (θ0,θ1). This

is equivalent to fitting the regression models in (4), once a suitable weight has been attached to

each observation. In practice, the M-step may be performed as follows:

• for given γ0 and γ1, update the parameter vector βz as

βz = [
∑
i:Zi=z

(X
(z)
i )′diag(w

(z)
i )X

(z)
i ]−1

∑
i:Zi=z

(X
(z)
i )′w

(z)
i Y

(z)
i , z = 0, 1,

where X
(0)
i is a design matrix with rows b0(di, D

∗
h1
)′ and the column vector w

(0)
i has

elements W̃ih1/σ
2
0(di, D

∗
h1
), whereas X

(1)
i is a design matrix with rows b1(d

∗
h0
, Di)

′ and the

column vector w
(1)
i has elements w̃ih0/σ

2
1(d

∗
h0
, Di).

• for given β0 and β1, use a standard numerical optimizer to update γ0 by maximizing

−
∑
i:Zi=0

k1∑
h1=1

W̃ih1{log σ2
0(di, D

∗
h1
) + [Y

(0)
i − µ0(di, D

∗
h1
)]2/σ2

0(di, D
∗
h1
)}
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and update γ1 by maximizing

−
∑
i:Zi=1

k0∑
h0=1

w̃ih0{log σ2
1(d

∗
h0
, Di) + [Y

(1)
i − µ1(d

∗
h0
, Di)]

2/σ2
1(d

∗
h0
, Di)}.

The M-step can be modified in a suitable way in order to take into account constraints on

the model parameters.

An important point concerns the choice of the starting values for the EM algorithm. We

choose the starting values for β0 and γ0 by regressing Y
(0)
i on b0(di, D̃i(ψ)) for subjects in

the control arm, where D̃i(ψ) is the conditional expected value of Di given di computed on

the basis of the conditional probabilities in (7). Given model (4), this preliminary fitting is

based on a heteroscedastic model with variance function σ2
0(di, D̃i(ψ)) depending on γ0. We

choose the starting values for β1 and γ1 in a similar way. These starting values are randomly

perturbed in order to try different initializations of the EM algorithm. This safeguards against

the multimodality of the likelihood.
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