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The role of sample cluster means in multilevel models: a
view on endogeneity and measurement error issues

Abstract

The paper explores some issues related to endogeneity in multilevel models, fo-
cusing on the case where the random effects are correlated with a level 1 covariate in
a linear random intercept model. We consider two basic specifications, without and
with the sample cluster mean. It is generally acknowledged that the omission of the
cluster mean may cause omitted-variable bias. However, it is often neglected that the
inclusion of the sample cluster mean in place of the population cluster mean entails a
measurement error that yields biased estimators for both the slopes and the variance
components. In particular, the contextual effect is attenuated, while the level 2 vari-
ance is inflated. We derive explicit formulae for measurement error biases that allow
us to implement simple post-estimation corrections based on the reliability of the
covariate. In the first part of the paper, the issue is tackled in a standard framework
where the population cluster mean is treated as a latent variable. Later we consider a
different framework arising when sampling from clusters of finite size, where the la-
tent variable methods may have a poor performance, and we show how to effectively
modify the measurement error correction. The theoretical analysis is supplemented
with a simulation study and a discussion of the implications for effectiveness evalu-
ation.

Keywords: cluster mean, contextual effect, effectiveness evaluation, random effects,
reliability.

1 Introduction

Regression analysis with data from observational studies is often threatened by endogene-
ity, namely a lack of independence of the model errors from the covariates, which yields
biased estimators of the model parameters. Two major sources of endogeneity, which will
be considered in the paper, are covariate omission and covariate measurement error.

Multilevel random effects models have at least one error term at each hierarchical
level, so the endogeneity can concern errors at any level. Our contribution considers two-
level random intercept models and focuses on the level 2 endogeneity arising when the
level 2 errors (random effects) are correlated with level 1 covariates. This issue is well
known in the setting of panel data (Hausman and Taylor, 1981), but the topic has recently
received attention also in a more general perspective: see Skrondal and Rabe-Hesketh
(2004), Fielding (2004), Ebbes et al. (2004), Kim and Frees (2007) and Snijders and
Berkhof (2008).

Let us consider a random intercept model with a level 1 covariate X,

Yij = 0 + Xy + v + ey



where 7 = 1,2,...,n; is the elementary (level 1) index and j = 1,2,..., J is the cluster
(level 2) index. For example, in a panel setting the elementary units are waves and the
clusters are individuals, while in a cross-sectional framework the elementary units are in-
dividuals and the clusters are entities such as institutions or geographical areas. Moreover,
Xi; 1s alevel 1 covariate with slope 7, v; are level 2 errors (random effects) and e;; are
level 1 errors.

Level 2 endogeneity is characterized by E(v; | X;;) # 0, with the consequence that
the standard estimators of ; are biased. Note that Cov(v;, X;;) # 0 is a sufficient, though
not necessary, condition for level 2 endogeneity.

If E(v; | Xi;) is assumed to be a linear function of the cluster mean X ;, a straightfor-
ward remedy to endogeneity is to add X ; to the model equation (Mundlak, 1978). From
another point of view (Neuhaus and Kalbfleish, 1998; Snijders and Berkhof, 2008), the
inclusion of Yj as a further regressor is just a way to disentangle the between-cluster and
within-cluster effects, whose difference is known as the contextual effect, a key concept
in social sciences and education (Raudenbush and Willms, 1995). However, it is usually
not recognized that in most cases yj is a sample cluster mean used to measure a popula-
tion cluster mean: as a consequence, the model including 7]- is affected by measurement
error and thus the contextual effect is attenuated, while the level 2 variance is inflated. In
the paper we deal with the measurement error issue, studying the biases and proposing
simple post-estimation corrections based on the reliability of the covariate. In order to get
simple expressions, we focus on the balanced case, i.e. clusters of equal size n, though
we also consider the extension to unbalanced hierarchies. The properties of the corrected
estimators are evaluated through a simulation study.

Our approach is complementary to Croon and van Veldhoven (2007) and Liidtke et
al. (2008), who deal with the attenuation of the contextual effect in a structural equation
perspective, while Shin and Raudenbush (2010) tackle the issue in the framework of mul-
tivariate multilevel models with missing data. Our analysis is peculiar in many respects:
(i) we interpret the measurement error of the sample cluster mean in terms of level 2 en-
dogeneity, namely a correlation between covariates and random effects; this allows us to
establish connections with the case where the cluster mean is omitted, in order to outline
a comprehensive framework for analyzing the issues related to the cluster mean; (i7) com-
pared to the existing literature, which focuses on the contextual coefficient, we explicitly
investigate also the bias of the level 2 variance, showing that its pattern is only partially
related to the bias of the contextual coefficient; (iii) we exploit the reliability of the co-
variate to develop simple post-estimation corrections for both the contextual coefficient
and the level 2 variance; (iv) we propose an effective adjustment for the case where the
values of the covariate are sampled from clusters of finite size: this is a relevant case that
is not properly handled by the current methods relying on latent variable modelling; (v)
we discuss how the issues related to the cluster mean affect the effectiveness evaluation
of educational institutions.

In our treatment the covariate X;; is assumed to be measured without error, so the
measurement error only affects the sample cluster mean X ; just because it is a measure
of a population cluster mean. The case of multilevel models where a covariate itself is
measured with error is treated for example by Woodhouse et al. (1996), Hutchison (2004),
Ferrao and Goldstein (2009) and Liidtke et al. (2009).

The rest of the paper is organized as follows. Section 2 describes the data generating



model, where the cluster mean is a latent variable. Section 3 explores the nature of level
2 endogeneity in the model without the cluster mean, while Section 4 deals with the
measurement error induced by the use of the sample cluster mean. Section 5 shows how to
correct the biases using the reliability of the covariate and reviews the alternative approach
based on structural equation models. Section 6 discusses the nature of the cluster mean,
showing that the latent variable approach is not appropriate when sampling from clusters
of finite size. The subsequent Section 7 derives the adjustments needed in this case.
In Section 8 the performances of the estimators are investigated through a simulation
study. Section 9 discusses the implications for effectiveness evaluation and Section 10
concludes.

2 The Latent Cluster Mean model

Let us now define the model of interest, which we assume to have generated the data.
The observed variables are a response Y;; and a covariate X;; which both vary within and
between clusters indexed by j. For the covariate X;; we specify a variance component
model

with the following assumptions: (X1) X JB are iid with mean px and variance 7% > 0;
(X2) X}} are iid with mean 0 and variance 0% > 0; (X3) X and X/}’ are independent.

Assumptions (X1)-(X3) imply the usual variance decomposition Var(X;;) = 7% +
0% . The Intraclass Correlation Coefficient (ICC) is px = 7% /(7% + 0%).

The assumptions 7% > 0 and 0% > 0 imply that X;; varies both within and between
clusters. If the covariate X;; were purely within (i.e. 7% = 0), level 2 endogeneity would
not be an issue; however, purely within covariates are rare in practice.

While X;; is observable, the components X JB and XZ-?/ are unobservable, so in the
models they must be replaced with their observable counterparts, i.e. the sample cluster
mean X; = 13" X for X 7 and the centered covariate X;; = X;; — X for X}/. The
consequences of such substitutions will be explored in Sections 4 and 5. For the moment
we reason as if X7 and X" were observable.

In a regression model of Y;; on X;; the effect of the between component X JB 1s, in
general, different from the effect of the within component X Z‘;V . We therefore specify the
regression model as a Latent Cluster Mean model:

Yij =« +5WX1-VJV +BBXJB +u; + €, (2)

where [y is the within slope and (g is the between slope. In many settings, the between
and within slopes are conceptually different and may even have opposite signs, so it is
important to distinguish them (Snijders and Bosker, 1999).

In the following we will often use the alternative parametrization

Y;j:()é‘i‘ﬁwa—F(SX]B—i-uj—l-em s (3)

where 0 = S — By is the contextual coefficient (Raudenbush and Willms, 1995).



Considering an arbitrary cluster j of sample size n and defining X}V = (X¥,..., XV,
the assumptions on the model errors are: (Y1) u; | X JB , X;V are iid with mean O and vari-
ance TélXBXW; (Y2) e;; | X7, X} are iid with mean 0 and variance af,‘XBXW; (Y3) u,
and e;; are independent given X ” and XV

A key part of the assumption on the level 2 errors u; is E(u; | X, X}") = 0, which
is known as level 2 exogeneity and implies that each level 2 error is uncorrelated with
the covariates, i.e. Cov(u;, X)) = 0,7 = 1,...,n, and Cov(u;, X) = 0. Level 2
endogeneity arises when the level 2 errors are correlated with the covariates.

In the Latent Cluster Mean model (2), under the stated assumptions the residual
variance of Y;; decomposes as Té‘XBXW + 012/|XBXW' The ICC is thus py|xsxw =
732,‘ B XW / (T§| xBxw T O'%l B XW)’ which equals the residual correlation among the re-
sponses of two units belonging to the same cluster.

3 Level 2 endogeneity in the Raw Covariate model: omitted-
variable bias

The Latent Cluster Mean model (3) may be wrongly specified by omitting X JB . In such a
case, the term 0. X JB is absorbed by the level 2 error and the model reduces to the following
Raw Covariate model:

Yij =n+ BwXij +v; +ej 4)

where ) = (ar+0pux) and v; = 6(X P — jux) +u;. However, the estimable slope of Xj; is
not By if X; is correlated with v;. Indeed, Cov(v;, X;;) = Cov(v;, X) = 7%, which
is null only if the contextual effect 4 is null. Since v; depends on X;; only through X7,
the correlation among v; and X;; has bounds that depend on the ICC of the covariate. In
fact, it can be shown that the squared correlation among the random effects v; and the
covariate X;; is an increasing function of 62 and lies in the interval (0, px).

Therefore, when ¢ # 0 the Raw Covariate model (4) is affected by level 2 endogene-
ity, which can be seen as a consequence of omitting the population cluster mean X jB from
the Latent Cluster Mean model (3). Alternatively, such endogeneity can be viewed as
stemming from a wrong equality assumption on the between and within slopes in model
(2): in such a case, the estimable slope of the Raw Covariate model is a weighted average
of B and By (Snijders and Bosker, 1999, sec. 3.6).

The level 2 endogeneity of the Raw Covariate model also implies that the estimable
variances are different from the theoretical variances, which are 0%| v = Var(e;) =

2
Oy |xBXW and
2 _ _ 2.2 2
Tyix = Var(v;) = 6"ty + Ty |XBXW- (5)

In fact, when § # 0, the bias in the estimate of fy, also affects the estimates of the
variances. Denoting with v the bias of the slope, which cannot be expressed in closed
form, it turns out that the estimable variance at level 1 is

wQO'g( -+ 0-§2/|XBXW7 (6)



and the estimable variance at level 2 is
(0 —¢)*r% + 7—)2/|XBXW' (7

Both variances depend on the bias of the slope ) and exceed the corresponding population
variances alz,‘ngw and TéleXW.

The endogeneity issue is less important when the clusters are large, since the estimate
of the slope of X;; in the Raw Covariate model tends to Sy, as n — oo (Raudenbush and
Willms, 1995). Thus, in designs with large clusters the Raw Covariate model gives an
approximately unbiased estimate of [y, regardless of the contextual effect. At the same
time, as the bias of the slope tends to zero, the estimable level 2 variance tends to T§| X
which is larger than 7'32/‘ XBxW-

A popular solution to the endogeneity problem is the fixed effects approach, i.e. replac-
ing the random effects with cluster-specific intercepts (Wooldridge, 2002). This approach
allows us to unbiasedly estimate the within slope, but it precludes estimating the between
slope and the contextual coefficient. Moreover, the level 2 variance is not a model param-
eter and it can only be estimated quite inefficiently as the variance of the estimated fixed
effects.

4 Level 2 endogeneity in the Sample Cluster Mean model:
measurement error bias

The level 2 endogeneity of the Raw Covariate model can be avoided by allowing between
and within effects to be different, as in the Latent Cluster Mean model (2). However, this
model cannot be fitted since X JB and X ZV are unobservable. Their sample counterparts are

the sample cluster mean X; = = 3" | X, and the centered covariate )?Z-j = X;; — X;,
respectively. In other words, the unobservable split X;; = X JB + Xi‘;V is replaced with the

. = > = W > =W
observable split X;; = X; + X;;. Note that X; = X7 + X" and X;; = X} — X,
=W . i
where X ;' is the sample cluster mean of the latent within components XZ-V]V . Thus both
X jB and X ZV are measured with error: this is an instance of classical error model (Carroll
et al., 2006) with the peculiarity that the measurement errors of the two covariates have
the same absolute value but opposite signs.

The sample cluster mean has variance

Var(X;) = Var(X]B) + Var(yz/v) =73 +ox/n (8)
and reliability
VCLT(XB) 72 1 -1
Ax = == :(1+W> : ©)
Var(X;)  7x +ox/n (7% /0% )n

The reliability of the sample cluster mean as a measure of the cluster component X jB
lies in the interval (0, 1) and it is an increasing function of the product of the variance ratio
7% /0% by the cluster size n. For example, a reliability 2/3 is obtained with n = 2 and
7% = 0% (a panel data configuration) or with n = 10 and 7% = 0.200% (a cross-section

configuration).



The estimable version of the Latent Cluster Mean model (2) with )?Z-j in place of X ZV]V
and X ; in place of X7 will be called Sample Cluster Mean model:

Yij=a+ BW)zij + 88X+ 2 + e (10)
or, alternatively,
Y;‘j =+ BwX” + (5Y] + Zj + eij y (11)

where z; = u; — 57?/, with E(z;) = 0 and Var(z;) = 6°0% /n + 73 ysxw. We note
that, due to the bias on 9, the previous expression is different from the estimable level 2
variance, which is given later in formula (15). B

The within slope 3y can be unbiasedly estimated since X;; is a purely within covariate
and thus orthogonal to both z; and Yj. On the other hand, the between slope 35 and the
contextual coefficient § are estimated with bias: in fact, Cov(z;, X;) = —do% /n, so if
§ # 0 then X is endogenous. The relevance of level 2 endogeneity can be summarized
by the squared correlation among the random effects z; and the sample cluster mean Yj,
which is an increasing function of 6% and lies in the interval (0,1 — Ax).

In general, the correlation among z; and Yj induced by the measurement error of Yj
yields biased estimates of «, g, § and 7'3‘ 5 xw, While By and 032/‘ B xw are unbiasedly
estimated.

Let us first derive the bias on Sp. The estimable between slope is denoted with 55 ,,,,
where the subscript m stands for measurement error due to the sample cluster mean. To
see how (g, is related to Bp and By, let us consider the model obtained by taking the
sample cluster means of the variables in the Sample Cluster Mean model (10), namely
Y, = a+ BsX, + 2; + €;. In the balanced case, by the least squares criterion 35, =
Cov(X;,Y;)/Var(X;), which implies

Bm = AxBp + (1= Ax)pw = B — (1 = Ax)d . (12)

Therefore, the within slope (5 is overestimated if 6 < 0 and underestimated if 9 > 0. In
both cases the bias is a decreasing function of the reliability and vanishes when Ax = 1.
The estimable contextual coefficient ¢, is

Om = Bem — Pw = Ax(Bs — Bw) = Ax0 (13)

so the population contextual coefficient J is attenuated by the reliability of the covariate,
with relative bias —(1 — Ax).

The measurement error also affects the intercept of the Sample Cluster Mean model:
indeed, from (10) and (12) it follows that the estimable intercept is

= a4 (1= Ax)dux - (14)

The measurement error caused by the sample cluster mean also affects the estimation
of the level 2 variance. In fact, the estimable slope of X; is ¢, rather than J, so the actual



level 2 error in model (11) is (6 — 8,,,) X; + 2;. The estimable level 2 variance is thus
7‘32/‘XBXW7m = Var[(d — 5m)7j + 2]
— Var[1-A)8(XP+ X, )= 0X, +uy]
— Var[(1 = Ax)dXE = \x6X, +uj]
= (1-Xx)%0%7x + )&52% + Ty xBxW
= (1-Ax)8°7% + Ty xexw - (15)

Therefore, the Sample Cluster Mean model entails an overestimation of the population
lerel 2 variance 7'12/| XBXW- On Fhe contrary, the level 1 variance 0)2,| B xw 18 unbiasedly
estimated, so the ICC is overestimated.

The two cases of endogeneity discussed so far are summarized in Table 1.

Table 1: Two types of endogeneity arising when the Latent Cluster Mean model is
wrongly specified: omitted variable (Raw Covariate model) and measurement error (Sam-
ple Cluster Mean model).

Raw Covariate model Sample Cluster Mean model
Model equation Yij=n+pwXij +vj+ey Yij=a+BwXiy+ 5Yj + 25 + ey
Regressor omission yes (if § # 0) no
Measurement error no yes (if A\x < 1)

R 2

Level 2 error covariance Cov(vj, X;j) = 07% Cov(z, X ;) = —07%
Estimable Sy Bw + Bw
Estimable § - Ax 0
Estimable level 1 variance 1/)203( + 0’%,‘ XBXW 03,‘ XBXW
Estimable level 2 variance (6 — )72 + T}Q,‘XJBXW (1—-x)7T%6% + Tf,leXW

It is instructive to compare the Raw Covariate model (4), which has a single covariate
Xij;, with the Sample Cluster Mean model (11), which has covariates X;; and yj. Both
models are affected by level 2 endogeneity when § # 0. However, in the Raw Covariate
model the endogeneity arises from the omission of the relevant covariate X JB , while in the
Sample Cluster Mean model the endogeneity is due to the measurement error caused by
using 7]» instead of X JB . In the Sample Cluster Mean model the problem is less serious
since the slope of X;; is not affected and a simple correction is available for the slope
of Yj. Note that in the Sample Cluster Mean model the covariance between the random
effects and the sample cluster mean depends not only on the model parameters, but also
on the design through the cluster size n.

The Raw Covariate model and the Sample Cluster Mean model can be fitted via like-
lihood methods such as FIML (Full Information Maximum Likelihood) and REML (RE-
stricted Maximum Likelihood). FIML and REML are two versions of the Generalized
Least Squares estimator for the fixed effects that differ in the estimation of the variance
components (Skrondal and Rabe-Hesketh, 2004): FIML is efficient, but it underestimates
the level 2 variance, so our setting we prefer to use the unbiased, even if less efficient,
REML.



5 Correcting the measurement error biases of the Sample
Cluster Mean model

In order to overcome the measurement error problem due to the use of the sample cluster
mean, two main routes are possible: (i) fit the Sample Cluster Mean model and then
correct the estimates using the reliability; and (i7) directly fit the Latent Cluster Mean
model, which is a structural equation model.

5.1 Correction of measurement error biases via the reliability

The expressions of the biases derived in Section 4 can be exploited to correct the biased
estimates yielded by the Sample Cluster Mean model. The key quantity for these correc-
tions is the reliability of the sample cluster mean A, that can be estimated by plugging
estimates of 0% and 7% into equation (9). Unbiased estimates of ¢% and 7% can be ob-
tained by fitting a variance component model for X;;, or using the so-called ANOVA
formulae based on the observed between and within sum of squares (Snijders and Bosker,
1999).

In most applications the parameter of main interest is the contextual coefficient 9,
which can be unbiasedly estimated with a simple correction derived from formula (13):

5= m
Ax

where the subscript ¢ means corrected and the estimate of d,, is obtained from the Sample
Cluster Mean model. R

The expectation and sampling variance of d. can be approximated via the first-order
Taylor approximation for the ratio of two random variables (Casella and Berger, 2001):

) (16)

-~

E<36>:E<§—Z>:i—";:5 (17)

Var (gc) =Var (%) ~ (%)2

where the formula for the variance is obtained using C’ov(gm, h) x) = 0. The sampling
variance (18) can be estimated by plugging in the point estimates of d,,, and Ax and their
estimated sampling variances (the sampling variance of )\ x can be computed via the delta
method). R

Even if the corrected estimator ¢, is approximately unbiased, it follows from (18) that
the sampling variance of d.. is higher than the sampling variance of the standard estimator
dm- Thus, the convenience of the correction should be evaluated in terms of mean squared
errors (MSE). Noting that in large samples F(d,, — ) ~ —(1 — Ax)d and E(6. — 0) ~ 0,
the two estimators have approximately the following mean squared errors:

and

~

Var(d,) n Var(/):x)
62, A% ’

(18)

~ ~

MSE(6,,) ~ Var(d,) + (1 — Ax)?6>

-~

MSE(6.) ~ )\%Var(gm) + f—;Var(XX).
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The comparison between the two MSE is not trivial. Anyway, for given values of Ax and
J, the correction is convenient when Var(Ax) is small, i.e. when the number of clusters
J is large. The pattern of the MSE with respect to ¢ and .J is explored via the simulations
described in Section 8.2.

Another important quantity in the applications is the level 2 variance T§| vBxw- An
approximately unbiased estimator can be derived from expression (15):

~

~2 ~92 T \=~2
Ty|xBXW c = TY|XBXW m — (1= Ax)7x0c - (19)

In principle, it is possible to derive a Taylor approximation of the sampling variance of
?12/‘ XBXW ¢ but this is not relevant as Wald tests for variance components are not appro-
priate. The usual test for the nullity of a variance component is a LRT with a halved
p-value (Snijders and Bosker, 1999), but it is not simple to define an analogous test based
on the corrected variance (19). A proper test can be obtained with the structural equation
approach presented in Section 5.2.

In unbalanced designs, the value of the reliability A x changes with the cluster size, so
there is no more a unique value of )\ x. There are two main ways to obtain a pooled value
of Ax to be used for correcting the measurement bias: (i) compute the reliability using the
average cluster size \x(7), where n in formula (9) is replaced with the average cluster
sizem = J ! Z‘j]:l n;; (if) compute the reliability Ax ;) for each cluster and then take the
average reliability Ay = J ! ijl Ax(j)-

In balanced designs, A\x = Ax(7), while in unbalanced designs A\x < Ax(7), and
the difference increases with the degree of unbalancedness. The simulations reported in

Section 8.3 show that \x is closer to the actual attenuation factor and yields a satisfactory
correction in most cases.

5.2 The structural equation approach

In general, the bias stemming from covariate measurement error can be amended by fitting
a structural equation model that includes a measurement model for the covariate. This
is true also for the special case of the measurement error of the sample cluster mean
investigated by Liidtke er al. (2008); see also Croon and van Veldhoven (2007).

The structural equation approach consists in the simultaneous estimation of the mea-
surement model (1) for the covariate X;; and the regression model (2) for the response
Y;;. This strategy cannot be easily implemented in standard software. A notable exception
is Mplus (Muthén and Muthén, 2007), which can fit the model via maximum likelihood.
Section 8.2 reports some simulation results for the structural equation estimator, in or-
der to make a comparison with the performance of the reliability-corrected estimator of
Section 5.1.

The structural equation approach gives standard errors that account for measurement
error, so the inferential procedures are correct, e.g. it is straightforward to perform a
likelihood ratio test for the level 2 variance. More importantly, this approach can be easily
extended to complex models, such as models with several covariates, random slopes and
categorical responses.

Liidtke et al. (2008) argue that the structural equation approach is strictly appropriate
when the cluster mean is a reflective measure, while it may yield biased results for for-
mative measures depending on the sampling design. In the next Section we discuss the

9



nature of the cluster mean, reviewing the concepts of reflective and formative constructs.
Subsequently, we deal with the case where the structural equation approach is not appro-
priate, namely when the cluster mean is a formative measure and the population is made
of clusters of finite size. We will show that in such a case, the reliability correction is still
appropriate as long as the reliability is properly defined and estimated.

6 Nature of the cluster mean

The Latent Cluster Mean model defined in Section 2 assumes that the population cluster
mean is a latent variable measured through the mean of a random sample and thus it is
not observable, no matter how large the sample size is. This assumption underlies the
post-estimation correction based on the reliability (Section 5.1) and all the latent variable
approaches, such as structural equation models (Section 5.2) and the missing data method
of Shin and Raudenbush (2010). In applications where the latent cluster mean assumption
is not appropriate, the latent variable approaches are not suitable and they may have a poor
performance depending on the sampling design. On the other hand, the correction based
on the reliability can be easily adjusted as shown in Section 7.

Table 2 summarizes the characteristics of the cluster mean in some relevant cases:
in cases A and B the latent cluster mean assumption is appropriate, while in case C the
assumption is not appropriate and thus the measurement error correction requires a mod-
ification.

Table 2: Characteristics of the cluster mean in some relevant cases.

Source of
Case Nature of the Cluster size in within-cluster Variance of X ;
cluster mean the population variance of X;;
2
A reflective (irrelevant)  parallel measurement 7% + UTX
2
. . . . 2 O'_X
B formative infinite random sampling Ty +
2
. . . 2 0% N—
C formative finite random sampling Ty + XNt

In case A of Table 2 the population cluster mean is a latent construct and the level 1
units yield parallel measures of such construct. For example, the school climate may be
measured by asking each pupil to evaluate it. A construct of this kind, which is measured
(but not defined) by level 1 units, is called reflective by Liidtke et al. (2008). Another case
of parallel measurement arises when the level 1 units are repeated measures in a longi-
tudinal design. When measuring a latent construct the variability in the measures stems
from the instrument and does not disappear even if the whole population is observed.

On the other hand, in cases B and C of Table 2 the construct is formative, i.e. it is
defined by aggregating the values of the level 1 units, e.g. the school mean of an intake
test score. In cases B and C the variability in the measures arises only from random
sampling. In case B the size of the clusters in the population is infinite, i.e. the units
within a cluster cannot be exhaustively enumerated. For example, the clusters may be
different plants yielding a given product or groups of potential users of a certain service.
On the contrary, in case C' the clusters have finite size, such as the students of a school.
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To continue the example of the school climate, a formative approach consists in first
measuring the personal feelings of each pupil and then aggregating them using the school
mean. This approach falls in case C' since the personal feelings refer to the level 1 units
and the cluster mean is a way to form a level 2 construct. The issue of composing group-
level constructs from individual-level survey data is discussed at length in van Mierlo et
al. (2009).

7 Measurement error when sampling X;; from clusters
of finite size

Let us consider in detail the situation where the cluster mean is a formative measure and
the level 1 observations are randomly sampled from a population with clusters of finite
size. This is case C of Table 2, which differs from the other cases because the variance
of the cluster mean X ; has a different within-cluster component. This in turn affects the
reliability of X ; and thus the measurement error bias of the contextual coefficient. For
simplicity, we consider the balanced case where all the clusters have the same sample size
n and, if they are finite, also the same population size /N. As shown in equation (8), the

variance of the sample cluster mean Var (X ) is the sum of two components: the variance

of the population cluster mean Var(X ) and the residual variance Var(X; ) originated
within clusters and due to parallel measurement in case A and sampling in cases B and C.
This residual variance is the usual sampling variance of the mean % /n in cases A and B,
since they both imply that X;; follows model (1) with assumptions (X1)-(X3) of Section
2; on the contrary, in case C' (clusters of finite size) the variance of Yj originated within
clusters is the variance of the sample mean under simple random sampling from a finite
population

2 2
ox N—n o% n
= ~—=(1—— 2
n N-—1 n( N)7 20)

where n/N is the within-cluster sampling fraction. Thus, 0% /n is a good approximation
of the actual variance (20) if the within-cluster sampling fraction is low, but it substantially
overestimates the actual variance when large portions of the clusters are sampled. In
such cases the reliability of the cluster mean should be modified accordingly, yielding the
following adjusted reliability for sampling X;; from clusters of finite size:

f %
)\X - 2 o%x N-n (21)
X T N1

When the population is made of a finite number of clusters of finite size, 7% and o% are
not model parameters, but they are the between and within variances of X;; in the finite
population.

The adjusted reliability )\g( is an increasing function of the within-cluster sampling
fraction n/N taking values in the interval (Ay, 1]: if n/N — 0 then X, — Ax, while if
n = N then )\Q = 1. Indeed, when the clusters are fully observed (n = N) the variance
of 7]- originated within clusters vanishes, so the measurement error of the sample cluster
mean is no more an issue.
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In order to estimate the adjusted reliability ML, it should be noted that the standard
estimators of the cluster variance 7% are biased when sampling from clusters of finite
size. Indeed, the cluster variance is estimated by subtracting the spurious variance due
to sampling from the variance of the observed cluster means. This fact is true for ML,
REML and ANOVA estimators and it is explicit in the ANOVA formulae

~2 2
~2
o

~2 Q2 X

Tx = SX,b -

where S?W is the sample-within variance, while Sg(jb is the sample-between variance

(Snijders and Bosker, 1999). In the case of clusters of finite size, the estimator of the

within variance 8_% is still unbiased, while the estimator of the between variance ?)2( 18

downward biased, since the spurious variance 5% /n is computed under the assumption of

random sampling from clusters of infinite size. In order to obtain an unbiased estimator,

the spurious variance should be modified as follows:
0% N —n

~2 2
R

(23)

Therefore, the adjusted reliability )\f( should be estimated by plugging in expression (21)
the standard ANOVA estimate 55 (22) and the modified ANOVA estimate 7% ; (23).
When the sampling design is unbalanced, similarly to the solution proposed in Section 5.1,
one should compute the adjusted reliability for each cluster and then correct the estimates
using the average adjusted reliability.

In summary, when the cluster mean is a formative measure and the level 1 obser-
vations are randomly sampled from finite-size clusters it is not appropriate to model the
population cluster mean as a latent variable, which is the core assumption of the structural
equation approach. In practice, the inappropriateness of the latent cluster mean assump-
tion affects the performance of the estimators, but the severity of the bias is strongly
related to the within-cluster sampling fraction. At one extreme, when the within-cluster
sampling fraction is one, namely all the units of the clusters are sampled, the measurement
error vanishes and the model parameters are unbiasedly estimated using the Sample Clus-
ter Mean model. At the other extreme, when the within-cluster sampling fraction is close
to zero, the Sample Cluster Mean model yields biased estimates; however, the situation is
well approximated by the latent cluster mean assumption and thus the structural equation
approach offers a satisfactory correction. Intermediate situations are more challenging.
In fact, when the within-cluster sampling fraction is far from one but not negligible (say
more than 5%), the Sample Cluster Mean model yields biased estimates and the structural
equation approach has a poor performance (Liidtke et al., 2008); indeed, the structural
equation approach overestimates the contextual coefficient. In the same situations, also
the correction based on the standard reliability (9) overestimates the contextual coeffi-
cient. However, the use of the reliability adjusted for finite-size clusters (21) solves the
problem as shown by the simulation study (see Table 8 later on).
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Table 3: Estimates from the Raw Covariate and Sample Cluster Mean models: Monte
Carlo mean for J = 200 clusters of size n = 10 and varying ¢ (data generated by a Latent
Cluster Mean model with 7')2( = 0.2, 0§< =1L a=0,0y =1, Té‘XBXW = U?/\XBXW =
1).

) Raw Covariate model Sample Cluster Mean model
(63 - ﬁW) n Bw 7'52/‘)( 012/|X « Bw J T}%‘xBxW 0'32/|XBXW
-1.50 -1.48 098 145 1.00 | -0.50 1.00 -1.01 1.16 1.00
-1.00 -099 098 1.19 1.00 | -0.35 1.00 -0.66 1.06 1.00
-0.50 -049 099 1.05 1.00 |-0.16 1.00 -0.34 1.02 1.00
-0.25 -0.25 1.00 1.01 1.00 |-0.09 1.00 -0.17 1.00 1.00
0.00 0.00 1.00 1.00 1.00 | 0.00 1.00 0.00 1.00 1.00
0.25 0.25 1.01 1.02 1.00 | 0.08 1.00 0.17 1.01 1.00
0.50 0.50 1.01 1.05 1.00 | 0.17 1.00 0.34 1.02 1.00
1.00 099 1.02 120 1.00 | 0.34 1.00 0.67 1.07 1.00
1.50 148 1.02 145 1.00 | 049 1.00 1.00 1.16 1.00

8 Simulation study

We perform a Monte Carlo study in order to assess the bias on the slopes and on the
residual variances and to evaluate the finite sample properties of the estimators. The data
are generated by the Latent Cluster Mean model defined by equations (1) and (3), while
the fitted models are the Raw Covariate model (4) and the Sample Cluster Mean model
(11). The estimator is REML in both cases.

The simulation study comprises several experiments with 1000 independent replica-
tions each. The experiments are variations on the following scenario: (7) the hierarchical
structure is balanced with J = 200 clusters of n = 10 observations each (2000 obser-
vations overall); (ii) the values of the covariate X;; are drawn from model (1) as the
sum of two independent normal variates with yx = 1, 7% = 0.2 and 0% = 1, imply-
ing a reliability Ay = 2/3; (iii) the values of the response Y;; are drawn from model
(3) with a = 0, By = 1, 6 = 1, normal level 1 and 2 errors with zero means and
712/‘ XBxW = 052/‘ wexw = 1. In the first part of the simulation study (Tables 3 to 5) the
contextual coefficient 0 takes several values in the interval [—1.5, +1.5], while in the sec-
ond part it is fixed at 6 = 1. Note that Sg is determined by the relationship Sz = S + 9,
for example 0 = 1 implies Sg = 2.

8.1 Comparing the Raw Covariate and Sample Cluster Mean models

Table 3 reports the Monte Carlo means of the REML estimates obtained from the Raw
Covariate model (4) and Sample Cluster Mean model (11). In both models all the param-
eters are unbiasedly estimated when the contextual coefficient § = S5 — By is zero, so in
the following we comment only the cases where § # 0.

In the Raw Covariate model, Py, is estimated with a bias having the same sign as o
and increasing with the absolute value of 0. Both level 1 and level 2 variances are inflated,
according to formulae (6) and (7) of Section 3. Since the bias of [y is small, the bias of
the level 1 variance is so tiny that it does not come out in Table 3. The level 2 variance is
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Table 4: Estimates from the Raw Covariate and Sample Cluster Mean models: Monte
Carlo mean for J = 1000 clusters of size n = 2 and varying ¢ (data generated by a Latent
Cluster Mean model with 7)2( = 03( =1La=0,0w=1, T)%‘XBXW = ‘712/|XBXW =1).

) Raw Covariate model Sample Cluster Mean model
(BB — Bw) n Bw 7'12/\)( U}2f|X «Q Bw d 7'12/|XBXW 012/|XBXW
-1.50 -1.12 0.62 226 1.14 |-0.50 1.00 -1.00 1.75 1.00
-1.00 -0.70 0.70 149 1.09 | -0.33 1.00 -0.67 1.33 1.00
-0.50 -0.34 0.84 1.12 1.03 | -0.17 1.00 -0.33 1.08 1.00
-0.25 -0.17 092 1.03 1.01 | -0.08 1.00 -0.17 1.02 1.00
0.00 0.00 1.00 1.00 1.00 | 0.00 1.00 0.00 1.00 1.00
0.25 0.17 1.08 1.03 1.01 | 0.08 1.00 0.17 1.02 1.00
0.50 034 1.16 1.12 1.03 | 0.16 1.00 0.33 1.09 1.00
1.00 0.70 130 150 1.09 | 0.33 1.00 0.67 1.34 1.00
1.50 1.13 1.37 228 1.14 | 050 1.00 1.00 1.76 1.00

inflated to a greater extent, so the ICC is overestimated.

As discussed in Section 5, the Sample Cluster Mean model yields an unbiased estima-
tor of the within slope 3y and a biased estimator of the contextual coefficient d: according
to formula (13), the estimate of ¢ is attenuated by the reliability A\x = 2/3. The level 2
variance is inflated and depends on ¢ as shown by formula (15). On the contrary, the level
1 variance is immune from bias, so the ICC is overestimated.

In the simulations reported in Table 3 the reliability of the covariate is Ay = 2/3 and
thus the attenuation of d is about 2/3. It is worth to note that any configuration (n, 7%, 0% )
with the same value of \x yields the same attenuation of 4, but the pattern is different
for the inflation of the level 2 variance, which also depends on the cluster variance of
the covariate 7% as shown by expression (15). To highlight this point, we replicate the
simulation for an alternative design with the same reliability Ax = 2/3 but a smaller
cluster size n = 2 and a larger cluster variance of the covariate 7% = 1 (the number of
clusters is set to J = 1000 in order to maintain the total sample size nJ = 2000). This
design may arise in a panel study with two waves or a cross-section study with two units
per cluster, e.g. a study on eyes or twins. The simulation results reported in Table 4
confirm the theoretical findings for the Sample Cluster Mean model.

Moreover, the entries of Table 4 allows us to point out some interesting properties
of the Raw Covariate model. Firstly, the small cluster size n = 2 entails a substantial
bias on [y (recall from Section 3 that the magnitude of the bias on [y, is a decreasing
function of the cluster size n). Secondly, the residual variances are inflated according
to the formulae (6) and (7) of Section 3. However, if the target level 2 variance is not
752/‘ xw but 712,‘  defined in (5), then the bias is downward. For example, when § = 1
the MC mean of the estimated level 2 variance is 1.50, compared to qu vexw = 1 and

752/‘ « = 2. The existence of two meaningful level 2 variances such as 732,‘ 5w and 7'32/| « 18
a source of ambiguity: for example, when Kim and Frees (2007) state that a consequence
of endogeneity is a severe underestimation of the level 2 variance, they implicitly refer to

2
5 x-
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Table 5: ReliabilitAy—correcAted estimation of the contextual effect: Monte Carlo mean,
s.e. and MSE of ¢,, and 6. for J = 200 clusters of size n = 10 and varying ¢ (data
generated by a Latent Cluster Mean model with 7% = 0.2, 0% = 1, a = 0, By = 1,

2 _ 2 _
Ty xsxw = Oy|xBxW = 1.

) Om O MSE
(B — Pw) | MCmean MCs.e. | MCmean MCs.e. s.e.(0.)f Om O
-1.50 -0.995 0.152 -1.510 0.251 0.239 | 0.2784 0.0631
-1.00 -0.669 0.145 -1.014 0.229 0.223 | 0.1306 0.0527
-0.50 -0.337 0.139 -0.510 0.213 0.212 | 0.0458 0.0455
-0.25 -0.168 0.138 -0.256 0.214 0.212 | 0.0259 0.0457
0.00 -0.003 0.139 -0.005 0.213 0.210 | 0.0194 0.0452
0.25 0.172 0.141 0.262 0.216 0.211 | 0.0258 0.0468
0.50 0.332 0.137 0.501 0.209 0.212 | 0.0471 0.0437
1.00 0.667 0.143 1.010 0.226 0.224 | 0.1312 0.0512
1.50 1.003 0.143 1.520 0.239 0.239 | 0.2680 0.0576

1 MC mean of the standard errors calculated by formula (18).

8.2 Performances of reliability-corrected and structural equation es-
timators

A corrected estimator of the contextual effect d, denoted with /5\0, has been defined in equa-
tion (16) exploiting the fact that the attenuation of 9 in the Sample Cluster Mean model
equals the reliability of the covariate. In Section 5.1 we have shown that the reliability-
corrected estimator is approximately unbiased, but its sampling variance is larger than that
of the biased estimator 9,,. Therefore, it is of interest to assess if the correction is conve-
nient in terms of MSE. Table 5 reports the Monte Carlo means, standard errors and MSE
of (5 and (5 from the Sample Cluster Mean model, using the same model parameters
and data structure as in Table 3. In addition, Table 5 reports the Monte Carlo mean of the
standard errors of ¢, calculated by means of formula (18), showing that the approximation
performs well.

Both M SE (6 )and MSE (5 ) increase with the absolute value of §, but M SE (5 )
grows at a much lower rate. MSE(6,) is lower than MSE(3,,) for values of |5| greater
than 0.5, suggesting that the proposed correction is worthwhile in many situations. The
minimum value of ¢ for which the correction is convenient decreases as the number of
clusters J increases. For example, a simulation not reported here shows that with the
design of Table 4, where J = 1000, the correction is worthwhile even for |§| = 0.25.

The performance of the reliability-corrected estimator gc deteriorates as the number of
clusters J diminishes. Table 6 presents the results in the case 6 = 1, for varying number
of clusters J, while the cluster size is kept constant at n = 10 and the reliability is thus
Ax = 2/3.

When the number of clusters is small, say J < 30, there is a non negligible proportion
of samples yielding a low estimated cluster variance 7% of the covariate and thus a low
estimated reliability P\ x (see the column labelled %trunc in Table 6). This is a prob-
lem, since a small P\ x gives a large (50, with the consequence that the MC mean of (5 is
substantially higher than the true 6 when J < 50.

15



Table 6: Alternative estimators of the contextual coefficient: Monte Carlo mean and MSE
for n = 10 and varying J (data generated by a Latent Cluster Mean model with 7% = 0.2,
0% =1La=008w=10= 1,T§|XBXW = 012/|XBXW =1).
5m 60 6c,trunc 55
J | mean MSE | mean MSE | mean MSE % trunc | mean MSE
20 | 0.676 0.332 | 1.187 1.749 | 1.091 0.702 18.5 1.135 1.071
30 | 0.687 0.248 | 1.152 0.731 | 1.101 0.465 13.0 1.083 0.525
50 | 0.674 0.182 | 1.060 0.236 | 1.052 0.224 4.8 1.051 0.265
75 | 0.667 0.163 | 1.038 0.147 | 1.036 0.144 2.0 1.021 0.152
100 | 0.662 0.161 | 1.013 0.115 | 1.012 0.114 1.1 1.008 0.102
200 | 0.667 0.131 | 1.010 0.051 | 1.010 0.051 0.0 1.001 0.049

To avoid the overestimation of ¢ one could use a truncated version of P\ x. For ex-
ample the estimator 56 wune 10 Table 6 is defined as 5C trune = 5 if Ay > 0.5 and
56 trune = =9, m/0.5 if h\ x < 0.5. Indeed, the 5C wrunc €stimator is approximately unbiased
and considerably reduces the MSE when the number of clusters ./ is small.

Table 6 reports also the results for the estimator of the contextual coefficient 5 ob-
tained with the structural equation approach outlined in Section 5.2. The structural equa-
tion model is fitted by means of the ML estimator implemented in Mplus (Muthén and
Muthén, 2007). A detailed simulation study on the properties of the structural estimator
is carried out by Liidtke et al. (2008).

The performances of reliability corrected and structural equation estimators are sim-
ilar in both mean and MSE, except in designs with few clusters (J < 30), where 6 is
better than 6 However, in such cases both estimators have a poor performance since they
are upward biased and have an high MSE.

In summary, when the number of clusters is small (J < 30), the utility of the reliability-
based colrection is doubtful, since the increase of the MSE, due to the large sample vari-
ance of \x, is not compensated by the bias reduction. In such cases, as pointed out by
the good performance of the truncated version . syune, it could be worthwhile to correct
the contextual coefficient using a more reliable value of the reliability of the covariate
obtained from external sources or previous studies.

8.3 Unbalanced case

To evaluate how the measurement error correction based on the reliability of X;; works in
unbalanced cases, we perform some simulations with varying cluster sizes n;. In particu-
lar we consider a balanced design with ./ = 200 and n = 10 and three unbalanced designs
with the same average cluster size, i.e. n = 10. Table 7 reports the Monte Carlo means
of the estimates of the contextual effect obtained with the Sample Cluster Mean model.
Moreover, Table 7 shows the estimated reliabilities A x (72) and A defined in Section 5.1,
and the corresponding corrected estimators of 4.

The attenuation of the contextual coefficient due to measurement error increases with
the degree of unbalancedness, while the reliability at the average cluster size \x(7) is
obviously constant. On the contrary, the average reliability Ax decreases with the degree
of unbalancedness and it is close to the true attenuation factor, except in the last case.
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Table 7: Reliability-corrected estimation of the contextual effect in the unbalanced case:
Monte Carlo mean of estimators of the reliability and the contextual coefficient for J =
200 and @ = 10 (data generated by a Latent Cluster Mean model with 7% = 0.2, 0% = 1,
a=0,06y=10=1, T}2,|X3XW = 032/|XBXW =1).

Cluster size n; Ax withm | average Ay
j=lo-100 j=101--200 | O | Ax(R) 0. | Ax  On

10 10 0.6 0.66 1.00 | 0.66 1.00

7 13 0.65| 066 098 |0.65 1.00

4 16 0.57 | 066 0.86|0.60 0095

1 19 034 | 066 0.51]048 0.71

Table 8: Reliability-corrected estimation of the contextual effect when sampling X;; from

clusters of finite size: Monte Carlo mean and MSE of gm, 5\0 and gf when sampling n = 10

values from J = 200 clusters of varying size N (true values: 7% = 0.2, 0% = 1, a = 0,

pw=1,0=1, T}%p{BxW = O?/‘xBxW =1)
MC Mean MSE
N n/N Mo | on o, o7 Om o, o/
10 1.00 1.000 | 1.003 2.247 1.003 | 0.0265 1.6950 0.0265
20 0.50 0.792 | 0.804 1.361 1.031 | 0.0595 0.2062 0.0376
40 0.25 0.722 | 0.725 1.163 1.016 | 0.0965 0.0896 0.0441
100 0.10 0.688 | 0.689 1.058 1.009 | 0.1153 0.0554 0.0434
200 0.05 0.677 | 0.678 1.032 1.010 | 0.1231 0.0511 0.0475
1000 0.01 0.669 | 0.669 1.030 1.003 | 0.1297 0.0477 0.0492

To summarize, the average reliability Ay tends to under-correct the estimate of &, but the
correction is satisfactory in most cases.

8.4 Sampling X;; from clusters of finite size

Let us now evaluate the performance of the estimator of the contextual effect based on
the adjusted reliability (21) when the cluster mean is a formative measure and the level
1 observations are randomly sampled from a population with clusters of finite size (see
Section 7).

To this end, we generate six finite populations with J = 200 clusters and varying
cluster size N € {10, 20, 40, 100, 200, 1000}. For each finite population, the values of
the covariate X;; are generated such as the level 2 variance is 73 = 0.2 and the level
1 variance is 0% = 1. At each replication of the MC simulation, a sample of 2000
observations is drawn as follows: first, we sample without replacement n = 10 values
of the covariate X;; from every cluster of the finite population; next, we generate the
corresponding responses Y;; according to the random intercept model (3).

Table 8 reports the results for the uncorrected estimator of the contextual coefficient
S\m and the corrected estimator SZ = /5\m / N , where X_{( is the estimate of the reliability
(21) for simple random sampling from clusters of finite size, using the ANOVA estimates
(22) and (23) defined in Section 7.
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The first row of Table 8 reports the results when the within-cluster sampling fraction
is 1, i.e. the values X;; are not sampled and thus the measurement error is not an issue.
On the contrary, the last row refers to a tiny within-cluster sampling fraction (n/N =
0.01), so Moo~ ) x = 2/3 and thus the attenuation due to measurement error is very
close to the case of sampling X;; from clusters of infinite size (see Table 5 at the row
9 = 1). In intermediate cases with n/N € {0.5,0.25,0.10,0.05}, the simulation results
show that the adjusted reliability Ag( is a good approximation of the attenuation of the
contextual coefficient due to measurement error, thus the corrected estimator Sf has a
good performance. On the contrary, the estimate Sc based on the standard reliability \x
yields an overcorrection that is remarkable for within-cluster sampling fractions of 0.25
or more.

As the within-cluster samphng fraction becomes larger, M SE(éc) increases, while
both M SE((S )and M SE((Sf ) decrease. Except for extreme sampling fractions, M SE (5f )
is the smallest one and thus the reliability )\f adjusted for finite-size clusters proves to be
an effective way to correct the contextual coefﬁcient.

9 Implications for effectiveness evaluation

A relevant use of the Latent Cluster Mean model (3) is for the assessment of the relative
effectiveness of a set of institutions, such as hospitals or schools (Grilli and Rampichini,
2009). To illustrate the point, we focus on the school effects framework of Raudenbush
and Willms (1995), where the level 2 units are schools and the level 1 units are pupils. In
the basic value-added specification, Y;; is a measure of pupil’s final attainment and .X;; is a
measure of prior attainment. Thus X JB is the school component of prior attainment and its
slope 0 is the contextual coefficient, whose estimate is usually positive in the educational
setting.

The total effect of school j, called Type A effect,is A; = 6X jB + u;, which is the sum
of the effects of context §.X ]B and school practice u;. The effect of the school practice
is called Type B effect: B; = u;. Therefore, T§| 5w 18 the variance of Type B effects,
while 752/‘ ¥ =0 TE + 752/‘ 5w defined in (5), is the variance of Type A effects. Students
and their families are interested in Type A effects, while evaluation agencies and school
staffs are interested in Type B effects.

In the applications the unobservable school component of prior attainment X JB is
replaced with the sample cluster mean Xj, so the Sample Cluster Mean model (11) is
adopted. The standard estimators of Type A and Type B effects are:

~ JE—

A=Y, —a-BuX, (24)

B;j=Y,—a—fsX;,=A;—0X,. (25)

The measurement error involved in using X, instead of X ]B is usually ignored in
the school evaluation framework, since the reliability \x is often over 0.90 (Raudenbush
and Willms, 1995). However, in order to deal with cases where the reliability \x is far
from one, it is essential to examine the consequences of the measurement error on the
assessment of Type A and Type B effectiveness.
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First note that the measurement error concerns Sg but not [y, so the estimator (25)
of the Type B effects is biased, while the Type A effects are unbiasedly estimated up to
a constant. Indeed the constant « is estimated with bias, as shown in (14), but this is
irrelevant for comparison purposes.

As for the variance of the effects, the estimable level 2 variance from the Sample
Cluster Mean model is T§| XBXW m defined in (15), which is higher than the variance of
Type B effects,

1 1
7-12/\XBXW,m - T}2/|XBXW = (1 - Ax)73%0% = ()\—2 - )\—) TXOm (26)
X X
and lower than the variance of Type A effects,
1
VX = T XEXW = AXTxOT = 1= Tx 0y, @7)
b's

Therefore, the variances of Type B and Type A effects can be estimated by correcting the
level 2 variance from the Sample Cluster Mean model using (26) and (27), respectively.
Note that for increasing cluster size n the reliability A x tends to 1, so the difference (26)
vanishes, while the difference (27) tends to 762

Raudenbush and Willms (1995) and Rettore and Martini (2001) tackle the problem
of estimating the variance of Type A effects from the Raw Covariate model in presence
of level 2 endogeneity. To this end, they both suggest to fit the Sample Cluster Mean
model and correct the estimated level 2 variance by adding the term 62V ar(X ), which
is taken as an estimate of the term 627% in (5). In both papers, the authors assume that
the measurement error is negligible, so no attempt to correct J,, is made. Nevertheless,
since Var(X,) = 7%/\x, the proposed correction term turns out to coincide with the
correction term (27), derived under an explicit treatment of measurement error. However,
ignoring the measurement error entails assuming that the level 2 variance from the Sample
Cluster Mean model is equal to the variance of Type B effects, which is not the case, as
shown in expression (26).

10 Concluding remarks

In many applications of multilevel analysis the between and within slopes are different,
namely there is a contextual effect. In such cases, the omission of the cluster mean from
the model equation generates level 2 endogeneity. However, the inclusion of the sample
cluster mean yields a model that is still affected by level 2 endogeneity which is due to
the measurement error caused by the substitution of the unobservable population cluster
mean of the covariate with the observable sample cluster mean. Focusing on the random
intercept model with a single covariate, in the paper we studied the effects of the measure-
ment error on the contextual coefficient and also on the variance components, an aspect
usually neglected. The attenuation factor of the contextual coefficient is the reliability of
the covariate. On the other hand, the level 2 variance is inflated by a quantity that de-
pends on several entities, namely the reliability of the covariate, the cluster variance of
the covariate, and the contextual coefficient. Our analysis focused on balanced designs,
but we showed that in unbalanced designs the average reliability is a good approxima-
tion of the attenuation factor. We also addressed the issue of sampling from clusters of
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finite size, showing that the attenuation is substantially weaker when the within-cluster
sampling fraction is high.

We suggested a simple procedure that yields unbiased estimates of the parameters of
interest. In particular, the correction of the contextual coefficient through the reliability
is straightforward and is carried out after fitting the multilevel model, so the task can be
easily performed using standard software for multilevel analysis. We derived an approx-
imate formula for the standard error of the corrected contextual coefficient and showed
that the correction is worthwhile in terms of MSE for moderate or large values of the
contextual coefficient. The correction can be applied even to the estimates obtained by
other researchers. Moreover, with good prior information on the ICC of the covariate, the
amount of attenuation can be evaluated when planning the sampling design.

An alternative approach for fitting random effects models with endogeneity is based
on Instrumental Variable (IV) estimators, proposed by Hausman and Taylor (1981) and
extended by Kim and Frees (2007). The key idea is that centering a covariate with re-
spect to the sample cluster mean yields an instrument for amending the effects of level 2
endogeneity. Contrary to standard IV applications, the centered covariate is an internal
instrument, namely it is derived without external data. This approach allows to estimate
only the within slope, so the measurement error on the contextual coefficient is not an
issue. Obviously, the IV method is not useful when the contextual effects of level 1 co-
variates are of interest. Instead of enhancing the estimators via instrumental variables, we
prefer to solve the level 2 endogeneity by expanding the model with the cluster means:
beyond the possibility to estimate the contextual effects, in this way the mechanism un-
derlying the endogeneity is made explicit and the parameters have a clear interpretation
that facilitates the connection with the theory.

The approach based on the reliability described in this paper is useful to understand
the consequences of the measurement error induced by sample cluster means and yields a
straightforward and effective correction when the model is simple. In a linear model with
several covariates the correction via the reliability is still feasible: the formulas become
complex, but they can be derived, e.g. following the lines of Croon and van Veldhoven
(2007). In non linear models the reliability approach leads to intractable formulas and it
can be useful only as a raw approximation.

In order to deal with measurement error in complex models, more general approaches
are preferable. In particular, the missing data method of Shin and Raudenbush (2010)
can be used with linear random slope models with several covariates, while the structural
equation approach (Liidtke er al., 2008) can be applied to a wide range of linear and non-
linear models. Both approaches, however, assume that the cluster mean is a latent variable
and thus they may have a poor performance when sampling from clusters of finite size.
In this case the reliability correction can be easily adjusted as shown in Section 7, while
further research is needed to develop general methods.
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