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Multilevel models for ordinal data

Leonardo Grilli and Carla Rampichini

Synopsis

This chapter is devoted to regression models for ordinal responses with special emphasis
on random effects models for multilevel or clustered data. After a brief discussion on
ordinal variables in the first section, the second section reviews the most common regression
models for ordinal responses focusing on cumulative models, namely models based on
cumulative probabilities. The third section deals with random effects cumulative models for
multilevel data, discussing several issues peculiar to the random effects extension such as the
distinction between marginal and conditional effects, the measures of unobserved cluster-
level heterogeneity, the consequences of adding covariates, and the main types of predicted
probabilities. The last part of the third section deals with estimation, inference and prediction,
with a brief look on available software. The fourth section presents an application of random
effects cumulative models to the analysis of student ratings on university courses.

Keywords: clustered data, correlated responses, cumulative model, mixed model,
proportional odds model, random effects, unobserved heterogeneity.

19.1 Ordinal variables

Satisfaction is usually measured using graded scales, also called Likert scales, such as ‘Very
dissatisfied’, ‘Dissatisfied’, ‘Satisfied’ and ‘Very satisfied’. The resulting statistical variable
Y is ordinal, namely it has ordered categories. Sometimes a score is associated with each
label (e.g. ‘1: Very dissatisfied’, ‘2: Dissatisfied’, . . . ), but even in this case the variable Y
is genuinely ordinal: it is not measured on an interval scale since the distances between the
categories are unknown and the scoring system is just an arbitrary assumption. For example,
the common choice of scoring the categories with the integers 1,2,3... amounts to assuming
that the categories are evenly spaced (e.g. the difference between ‘Very dissatisfied’ and
‘Dissatisfied’ is the same as the difference between ‘Dissatisfied’ and ‘Satisfied’).
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The statistical methods for ordinal variables avoid the arbitrariness of scoring systems
and thus are generally to be preferred. Nonetheless, in the social sciences the use of scoring
systems to convert categories into numbers is common practice since the statistical methods
for quantitative variables are more powerful and easier to implement and interpret. The
consequences of analyzing ordinal variables with methods for continuous variables have been
investigated both analytically (Olsson 1979) and via simulations (Muthén and Kaplan 1985).
In general, the bias depends on the number of categories (five is usually a minimum to get
an acceptable bias) and the skewness of the distribution: indeed, the bias increases with the
degree of skewness and may become large in the case of floor or ceiling effects, namely when
the largest frequency corresponds to a category at the extremes of the scale. The bias may
be reduced by using sophisticated scoring systems (Fielding 1997), but we do not pursue the
matter further and later on we focus on the proper methods for ordinal variables.

An ordinal variable is a categorical variable supplemented with information on the ordering
of the categories: indeed, the statistical methods for ordinal variables are designed to exploit
such information. Formally, a categorical variable Y with categories yc, c = 1, . . . , C, has
a multinomial distribution with probabilities πc = Pr(Y = yc). The set of C probabilities
π1, π2, . . . , πC has one redundant probability due to the constraint π1 + π2 + . . .+ πC = 1.
When the categories are ordered, the cumulative probabilities are defined as γc = Pr(Y ≤
yc) = π1 + π2 + . . .+ πc. Note that the non-redundant cumulative probabilities are C − 1
since the last one is γC = 1.

It is often useful to assume that an ordinal variable Y with C categories is generated by
a latent continuous variable Y ∗ with a set of C − 1 thresholds α∗

c such that Y = yc if and
only if α∗

c−1 < Y ∗ ≤ α∗
c . For example, if satisfaction is expressed using a 4-point scale (e.g.

‘Very dissatisfied’, ‘Dissatisfied’, ‘Satisfied’, ‘Very satisfied’), we can postulate the existence
of a latent satisfaction on a continuous scale which is categorized by 3 thresholds. Figure
19.1 represents the density of the underlying satisfaction Y ∗, the thresholds α∗

c and the
corresponding observed satisfaction Y .

The existence of an underlying continuous variable cannot be proved or disproved:
it corresponds to a different approach useful for both interpretation and development
of analytical tools, for example the polychoric correlations (e.g. Agresti 2010). The
representation based on a latent continuous variable is conceptually appealing in settings such
as customer satisfaction since it disentangles the process generating the observed satisfaction
grade Y into two parts: the underlying satisfaction level Y ∗ and the measurement process
corresponding to the thresholds α∗

c . In this perspective, the different ways of formulating
the question and defining the rating scale affect the observed satisfaction grade through
the thresholds. Similarly, if the rating scale adopted in the questionnaire is perceived in a
different way by a subset of respondents, this affects the observed satisfaction grade through
the thresholds. Indeed, the standard assumption that the set of thresholds is the same for
all respondents is a measurement invariance assumption, which can be relaxed by allowing
heterogenous thresholds (Johnson 2003).

In the next two sections we review the main regression models for an ordinal response:
in section 19.2 we consider the standard, single-level models for independent observations,
while in section 19.3 we consider the multilevel extension to deal with correlated
observations. In single-level models (also called marginal models) the probabilities are
conditioned on the covariates but not on the random effects, while in multilevel models (also
called conditional models) the probabilities are conditioned both on the covariates and on
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Figure 19.1 Density of underlying satisfaction, thresholds and observed satisfaction.

the random effects. In this chapter the probabilities and parameters for multilevel models
have no superscript, while those for single-level models have the superscript ◦ (for example,
the vector of regression coefficients is β in a multilevel model and β◦ in the corresponding
single-level model). In all the models we will denote the statistical units by a subscript with
double index ij, where j = 1, 2, . . . , J is the level 2 (cluster) index and i = 1, 2, . . . , nj is
the level 1 index (the double index is superfluous in single-level models, but we use it to keep
the same notation across the chapter).

19.2 Standard models for ordinal data
We assume to observe an ordinal response Yij with C categories for level 1 unit i in cluster j,
alongside with a vector of covariates xij (including the constant term). A regression model
establishes a relationship between the covariates and the set of probabilities of the categories
π◦
cij = Pr(Yij = yc|xij), c = 1, . . . , C. Since one of the probabilities is redundant, any

model must incorporate suitable restrictions to insure the identification of the parameters.
Models for ordinal data also incorporate restrictions to reflect the ordering of the categories.

Models for ordinal data need not be expressed in terms of the set of category probabilities
π◦
cij : they may also refer to convenient one-to-one transformations, such as the set of

cumulative probabilities γ◦
cij = Pr(Yij ≤ yc|xij). Indeed, the most popular models for

ordinal data are expressed in terms of these cumulative probabilities.
Early papers on regression models for ordinal data include McKelvey and Zavoina (1975),

McCullagh (1980), and Winship and Mare (1984). The textbook of Agresti (2010) gives
a thorough treatment of ordinal data, while O’Connell (2010) provides applied researchers
in the social sciences with accessible and comprehensive coverage of analyses for ordinal
outcomes. Other valuable books fully devoted to ordinal outcomes are Johnson and Albert
(1999) in a Bayesian perspective, and Greene and Hensher (2010) in the setting of choice
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theory. Books on statistical modelling often have a chapter on ordinal regression models, for
example Skrondal and Rabe-Hesketh (2004) and Hilbe (2009).

19.2.1 Cumulative models

A cumulative regression model for an ordinal response Yij with C categories is defined by
a set of C − 1 equations where the cumulative probabilities γ◦

cij are related to the covariates
xij . We consider cumulative generalised linear models where the cumulative probabilities
are related to the covariates through a linear predictor x′

ijβ
◦ and a monotone link function g:

g(γ◦
cij) = α◦

c − x′
ijβ

◦ c = 1, 2, . . . , C − 1. (19.1)

The parameters α◦
c , called thresholds or cutpoints, are in increasing order, α◦

1 < α◦
2 <

. . . < α◦
C−1. The vector of regression coefficients β◦ (including the intercept β◦

0 ) does not
have the category index c, thus the effects of the covariates are constant across response
categories, a feature called the parallel regression assumption: indeed, plotting g(γ◦

cij)
against a covariate yields C − 1 parallel lines (or parallel curves if the covariate has non-
linear terms). Cumulative models are known in psychometrics as graded response models
(Samejima 1969) or difference models (Thissen and Steinberg 1986). The last name indicates
that the probabilities of the categories are obtained by difference: π◦

cij = γ◦
cij − γ◦

c−1,ij =

g−1(α◦
c − x′

ijβ
◦)− g−1(α◦

c−1 − x′
ijβ

◦).
The minus sign before the linear predictor in model (19.1) implies that increasing a

covariate with a positive slope is associated with a shift towards the right-end of the response
scale, namely a rise of the probabilities of the higher categories. Some authors write the
model with a plus before the linear predictor: in that case the interpretation of the effects of
the covariates is reversed.

In model (19.1) we cannot simultaneously estimate the constant of the linear predictor and
all the C − 1 thresholds: in fact, adding an arbitrary constant to the linear predictor can be
counteracted by adding the same constant to each threshold. This identification problem is
usually solved by either omitting the constant from the linear predictor (β◦

0 = 0) or fixing the
first threshold to zero (α◦

1 = 0).
Typical choices of the link function g are logit, probit and complementary log-log. The

logit link is widely used (except in the social sciences) mainly because of the connection
with odds ratios. In the following we will focus on the logit cumulative model, also known
as the proportional odds model:

logit(γ◦
cij) = α◦

c − x′
ijβ

◦ c = 1, 2, . . . , C − 1, (19.2)

where the logit on the left hand side is a cumulative logit, namely the logarithm of the odds
of not exceeding the c-th category:

logit(γ◦
cij) = log

γ◦
cij

1− γ◦
cij

= log
Pr(Yij ≤ yc)

Pr(Yij > yc)
. (19.3)

In model (19.2) the parallel regression assumption implies the proportional odds property:
in fact, the ratio of the odds of not exceeding the c-th category for units ij and i′j′ is
exp(−(x′

ij − x′
i′j′)β

◦), which does not depend on c and thus is constant across response
categories.
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The parallel regression assumption of the cumulative models may be too restrictive (for a
test see Brant 1990). Such an assumption can be relaxed by allowing the thresholds to depend
on covariates or, alternatively, by allowing covariates to have category-specific slopes (these
models are called partial proportional odds after Peterson and Harrell 1990). Another way to
relax the parallel regression assumption is to let the variance of the residual in the underlying
linear model (see subsection 19.3.1) to depend on covariates (Cox 1995) or, alternatively,
to use a scaled link such as the scaled probit link of Skrondal and Rabe-Hesketh (2004). A
further approach is to introduce latent classes (Breen and Luijkx 2010). Models violating the
parallel regression assumption should be used with care since they raise identification and
interpretation issues (Agresti 2010).

19.2.2 Other models

Even if the rest of this chapter will be devoted to the multilevel extension of cumulative
models, we briefly mention some non-cumulative models that may be preferable in some
contexts and can be extended to handle multilevel data as well.

A wide class of models is obtained by specifying a multinomial logit model for the
probabilities of the categories π◦

cij = Pr(Yij = yc|xij) with additional parameter constraints
reflecting the ordering of the categories (Skrondal and Rabe-Hesketh 2004). An example is
the adjacent category logit model (Agresti 2010), where the linear predictor is equated to
the logarithm of the odds between adjacent categories π◦

cij/π
◦
c−1,ij . In fact, such a model

can be written as a multinomial logit model with linear predictor cx′
ijβ

◦, which can be seen
as either a model with category-specific slopes cβ◦ and category-invariant covariates xij

or a model with category-invariant slopes β◦ and category-specific covariates xc
ij = cxij .

The last formulation is known in Item Response Theory as the partial credit model (Masters
1982), which is a generalization of the Rasch model to ordinal items.

A valuable alternative to traditional models for ordinal responses is represented by the
CUB models outlined in Chapter 13. While traditional models considered in this chapter are
based on a multinomial distribution, CUB models are based on a mixture between a shifted
binomial distribution (to be interpreted as feeling) and a discrete uniform distribution (to be
interpreted as uncertainty).

19.3 Multilevel models for ordinal data
Let us now consider the multilevel extension of regression models for ordinal responses.
These models are outlined in most books on multilevel analysis. In addition, we recommend
the reviews of Agresti and Natarajan (2001) and Hedeker (2008), and chapter 10 of Agresti
(2010). As the field is vast, we focus on the most popular configuration in applications,
namely cumulative models (outlined in subsection 19.2.1) with a random intercept in a two-
level hierarchy:

g(γcij) = αc − (x′
ijβ + uj) c = 1, 2, . . . , C − 1, (19.4)

where j = 1, 2, . . . , J is the level 2 (cluster) index and i = 1, 2, . . . , nj is the level 1 index,
and γcij is the cumulative probability up to the c-th category for unit i in cluster j. The
term uj is a random effect representing unobserved factors at the cluster level: since it is
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shared by all the units of the cluster, it induces within-cluster correlated responses. If the
overall intercept β0 is unconstrained, we can view uj as a random shift of the intercept so
that the intercept of cluster j is β0 + uj ; otherwise, if the overall intercept is fixed to zero,
we can view uj as a random shift of the thresholds so that the set of thresholds of cluster j is
αc − uj , c = 1, 2, . . . , C − 1.

The standard assumption on the random effects uj is that, conditionally on the covariates,
they are independent and identically distributed with zero mean and a common cluster
variance σ2

u to be estimated. On the contrary, the assumption of common cluster variance
can be easily relaxed (Hedeker (2008), section 6.7), as well as the conventional normality
assumption (Agresti and Natarajan (2001), section 4.2). In order to get unbiased estimates,
the key part of the standard assumption is the exogeneity, namely the mean of the random
effects does not depend on the covariates: E(uj |{xij : i = 1, 2, . . . , nj}) = 0. A multilevel
model like the one in equation (19.4) may be useful in several kinds of applications in
customer satisfaction, for example: (i) analysis of a single response from customers clustered
in units offering a product or service (firms, schools, hospitals ...) or clustered in geographical
regions; (ii) analysis of repeated responses to a given question in a longitudinal survey on
a panel of customers; (iii) joint analysis of a set of items of a survey questionnaire on
customers. Note that customers are level 1 units in example (i) and level 2 units (clusters)
in examples (ii) and (iii).

The sample size required for reliably fitting a multilevel model for ordinal data depends on
several factors, including the complexity of the model, the value of the cluster variance and
the estimation method. Moreover, the requirement is higher for the variances of the random
effects than for the regression coefficients. Some guidelines are provided by recent simulation
studies on the closely related multilevel logit models for binary responses: Austin (2010)
considers a random intercept logit model, whereas Moineddin et al. (2007) focus on a logit
model where both the intercept and the slope randomly vary across clusters. In the random
intercept case, the estimates are reasonably good with most estimation methods even with 10
to 15 clusters as long as the average cluster size is at least 10. If the clusters are smaller, more
clusters are needed. In the random slope case, the requirement is considerably higher, say 30
clusters of size 30.

19.3.1 Representation as an underlying linear model with thresholds

As noted in section 19.1, an ordinal response Yij with C categories can be represented as an
underlying continuous response Y ∗

ij with a set of C − 1 thresholds α∗
c such that Yij = yc if

and only if α∗
c−1 < Y ∗

ij ≤ α∗
c . It follows that a cumulative generalised linear model for an

ordinal response is equivalent to a system composed of a set of thresholds α∗
c and a linear

regression model for an underlying continuous response:

Y ∗
ij = x′

ijβ
∗ + u∗

j + e∗ij , (19.5)

where e∗ij is a level 1 error with standard deviation σe∗ and u∗
j is a level 2 error with standard

deviation σu∗ . In fact,

Pr(Yij ≤ yc) = Pr(Y ∗
ij ≤ α∗

c) = Pr(e∗ij ≤ α∗
c − x′

ijβ
∗ − u∗

j ) = g−1(αc − x′
ijβ − uj).

Therefore, the underlying linear model (19.5) with thresholds α∗
c and level 1 error e∗ij having

distribution function g−1 is equivalent to the cumulative model (19.4) with link function
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g. The relationship between a parameter of the cumulative model θ and the corresponding
parameter of the underlying model θ∗ is θ = θ∗σg/σe∗ , where σg is the standard deviation of
the distribution associated to the link function (e.g. σg = 1 for probit and σg = π/

√
3 ≃ 1.81

for logit).
When we specify the link function for the cumulative model, we implicitly specify the

distribution function of the level 1 error and, consequently, we fix the standard deviation of
the level 1 error to a conventional value: the probit link corresponds to a standard normal error
so the standard deviation is fixed to 1, whereas the logit link corresponds to a standard logistic
error so the standard deviation is fixed to π/

√
3 ≃ 1.81. Indeed, the measurement unit of

the underlying model is undefined since Pr(Y ∗
ij ≤ α∗

c) = Pr(kY ∗
ij ≤ kα∗

c) for any constant
k, thus the standard deviation σe∗ is not identifiable. This indeterminacy is solved in the
cumulative model (19.4) since its parameters are measured on a conventional scale defined
by the link (the level 1 standard deviation does not appear as parameter). The change of scale
is the reason why replacing probit with logit causes an expansion of the estimated slopes of
about 1.81. The model specification requires some care in case of level 1 heteroscedasticity,
for example when σe∗ changes across strata (Grilli and Rampichini 2002).

The representation through an underlying linear model makes clear why the estimated
slopes from a cumulative model are approximately invariant to merging of the categories.

19.3.2 Marginal versus conditional effects

The slopes β of the random intercept cumulative model (19.4) represent conditional or
cluster-specific effects: they summarize the relationship between the covariates xij and the
conditional cumulative probabilities γcij = Pr(Yij ≤ yc|xij , uj), which are conditional on
the random effect and thus refer to a specific cluster of the population. On the other hand,
the slopes β◦ of the standard cumulative model (19.1) represent marginal or population-
averaged effects: they summarize the relationship between the covariates xij and the
marginal cumulative probabilities γ◦

cij = Pr(Yij ≤ yc|xij), which are marginal with respect
to the random effect and thus refer to the whole population.

Marginal effects are smaller in absolute value than conditional effects, namely |β◦
m| ≤

|βm| for every covariate. Such attenuation can be shown using the representation with the
underlying linear model. In fact, in subsection 19.3.1 we showed that the m-th slope of
the random intercept cumulative model (19.4) is βm = β∗

mσg/σe∗ ; on the other hand, if the
random effect u∗

j is omitted, the underlying linear model (19.5) has a composite level 1 error
d∗ij = u∗

j + e∗ij with standard deviation σd∗ =
√

σ2
u∗ + σ2

e∗ , thus the corresponding slope of
the single-level cumulative model (19.1) is β◦

m = β∗
mσg/σd∗ . Since σd∗ ≥ σe∗ it follows that

|β◦
m| ≤ |βm| for every covariate. Clearly, the attenuation is stronger the larger is the level 2

variance compared to the level 1 variance, namely the higher is the unobserved heterogeneity
due to the clustering of the units. Under the standard assumption of a normal random effect,
the analytical development outlined above is exact in the probit case (since a random intercept
probit model implies a marginal probit model) and approximate in general (for example, a
random intercept logit model does not imply a marginal logit model).

Marginal and conditional slopes are population parameters: regardless of the estimation
methods, a model without random effects has marginal slopes, while a model with random
effects has conditional slopes. In most applications, conditional slopes are of interest as they
refer to the cluster-specific effects, which are more informative about causal processes.
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Finally, note that if the responses are correlated within the clusters, random effects models
yield correct standard errors, while marginal models, namely without random effects, yield
wrong standard errors (usually underestimated). Thus, if one is interested in marginal effects
in presence of correlated data, two alternatives are possible: (1) fit a random effects model
and then recover the marginal effects, or (2) fit a marginal model using a correction for the
standard errors, such as the GEE method or a robust estimator of the standard errors (Agresti
and Natarajan 2001).

19.3.3 Summarizing the cluster-level unobserved heterogeneity

In a linear random intercept model like (19.5) the level of unobserved heterogeneity due
to the clustering of the units is summarized by the Intraclass Correlation Coefficient
(ICC) ρ = σ2

u∗/(σ2
u∗ + σ2

e∗). In a linear model the ICC is both the proportion of the
between-cluster variance with respect to the total variance and the correlation between
the responses of two units of the same cluster, namely ρ = Cor(Y ∗

ij , Y
∗
i′j |xij ,xi′j). Such

a correlation does not depend on the covariates (it is homogeneous), so the ICC is an
exhaustive indicator of the degree of correlation. Unfortunately, this property does not hold
in models for categorical responses such as the random intercept cumulative model (19.4)
since Cor(Yij , Yi′j |xij ,xi′j) actually depends on the covariates. An appealing solution is to
summarize the degree of within-cluster correlation using the ICC for the underlying linear
model, which can be easily computed using the cluster variance σ2

u of the cumulative model:
in fact, from the relationship σu = σu∗σg/σe∗ of subsection 19.3.1, it follows that ρ =
σ2
u/(σ

2
u + σ2

g), where σ2
g is the variance of the distribution associated to the link function.

For example, ρ = σ2
u/(σ

2
u + 1) for probit and ρ = σ2

u/(σ
2
u + π2/3) for logit. However, the

ICC for the underlying linear model is misleading if one attempts to compare it with the
values usually obtained in linear models for observed continuous responses: in fact, the
ICC for the underlying linear model is much lower and it often gives the impression of
a negligible within-cluster correlation. For example, a value ρ = 0.01 is negligible for an
observed response but not for an underlying response.

A simple and effective way of summarizing the within-cluster correlation in models for
categorical responses is to compute the probabilities under several scenarios defined by
fixing the random effect uj to a set of percentiles of its estimated distribution. Denoting
with u[p] the percentile p, if the random intercept cumulative model (19.4) has a normally
distributed uj with estimated standard deviation σ̂u, then three scenarios could be defined
by fixing the random effect to the estimated percentiles û[2.5] = −1.96σ̂u, û[50] = 0 and
û[97.5] = +1.96σ̂u. Once the covariates have been fixed to a set of values x0, the cumulative
probability up to category c in the scenario corresponding to percentile p is defined as
Pr(Y ≤ yc|x0, û[p]) and it is computed by replacing the model parameters with their
estimates.

19.3.4 Consequences of adding a covariate

The representation of a cumulative model for ordinal responses as an underlying linear model
with thresholds (subsection 19.3.1) shows that the estimable parameters are scaled by the
underlying level 1 standard deviation σe∗ , for example βm = β∗

mσg/σe∗ . If it were possible
to observe Y ∗

ij and fit the underlying linear model (19.5), the addition of a covariate would
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reduce σe∗ . However, in a cumulative model for the observable ordinal response Yij the
level 1 standard deviation σe∗ cannot change, so the effect on σe∗ is dumped on the other
parameters. This phenomenon can be easily seen in the hypothetical case of a new covariate
wij with the following features: (i) wij is independent of the other covariates, so its inclusion
does not alter the slopes β∗ of the other covariates; (ii) wij has no between-cluster variation,
so its inclusion does not alter the level 2 standard deviation σu∗ ; (iii) wij has some within-
cluster variation, so its inclusion reduces the level 1 standard deviation to kσe∗ with k < 1. It
follows that the addition of the new covariate wij in the cumulative model (19.4) inflates all
the parameters by 1/k, for example βm,new =

β∗
mσg

kσe∗
= 1

kβm,old. Note that also the cluster
variance increases, a phenomenon that may appear surprising since the added covariate has
no between-cluster variation.

The simple pattern outlined for the hypothetical covariate wij does not hold in general, but
it is clear that the change of scale induced by the new covariate hinders a direct comparison
of the parameters before and after its inclusion. This issue (which concerns also the models
for binary responses) is considered by Winship and Mare (1984) in the case of single-level
models and by Fielding (2004) and Bauer (2009) in the case of multilevel models.

19.3.5 Predicted probabilities

In multilevel models for categorical responses there are three types of predicted probability
(Skrondal and Rabe-Hesketh 2009): (i) conditional probability (a unit in a hypothetical
cluster); (ii) population-averaged probability (a unit in a new, randomly sampled cluster);
(iii) cluster-averaged probability (a unit in a specific cluster of the sample). All these
types of predicted probability require to replace the parameters with their estimates and
the covariates with arbitrary values. The three types of probability differ in the way the
random effect uj is handled: in the conditional probability, the random effect uj is fixed to an
arbitrary value (usually chosen as a percentile of its estimated distribution in the population,
see subsection 19.3.3); in the other instances, the random effect uj is averaged out using
its estimated distribution in the whole population (population-averaged type) or using its
estimated distribution for the j-th cluster of the sample (cluster-average type). Skrondal and
Rabe-Hesketh (2009) give guidelines on computation and interpretation.

Predicted probabilities are essential for an effective and intelligible report of the model
results. In the random intercept cumulative model (19.4) the effects of the covariates
are summarized by the vector of the slopes β. Unfortunately, the interpretation of β is
not straightforward as it refers to a transformation g of the cumulative probabilities. A
consequence is that, like in any model for categorical responses, the change in a certain
probability due to a unit increase in a covariate depends on the value of such a probability
(the closer the probability to 0 or 1, the smaller the change). It is therefore important to
express the effects of the covariates in terms of changes in the predicted probabilities with
reference to some relevant scenarios. A popular strategy in a model with M covariates is
to compute M + 1 sets of predicted probabilities of the categories π̂

(m)
1 , π̂

(m)
2 , . . . , π̂

(m)
C

(m = 0, 1, . . . ,M ), where the set m = 0 refers to a hypothetical baseline subject and the
other sets consider a unit increase in the m-th covariate.
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19.3.6 Cluster-level covariates and contextual effects

As in any multilevel model, the covariates xij of the random intercept cumulative model
(19.4) can include cluster-level covariates and cross-level interactions. The multilevel
analysis with an ordinal response follows the basic principles explained in the textbooks with
reference to linear models for continuous responses (e.g. Raudenbush and Bryk 2002), even
if there are some complications. For example, we noted in subsection 19.3.1 that the level 1
and level 2 variances cannot be estimated separately since only their ratio is identified. As a
consequence, the level 2 variance of the cumulative model may increase after the inclusion
of a covariate with no cluster-level variation (see subsection 19.3.4).

Another complication with categorical responses is related to the assessment of a
contextual effect, which is a key quantity in education and sociology (Raudenbush and Bryk
2002). In a linear model for a continuous response, the contextual effect of a covariate zij
is the coefficient δ of its cluster mean zj when both zij and zj enter as covariates. Thus
δ is the change in the expectation of the response following a unit increase in the cluster
mean zj while keeping constant the individual-level covariate zij . In a linear model, the
change in the expectation of the response does not depend on the values of zj and zij , so
the contextual effect is a unique value denoted by the parameter δ. However, in a model
for categorical responses, δ is just the contextual effect on the scale of the linear predictor:
in order to assess the contextual effect on the probabilities, it is necessary to compute the
predicted probabilities under several scenarios and make plots. This approach is illustrated in
Skrondal and Rabe-Hesketh (2009).

19.3.7 Estimation of model parameters

The estimation of the parameters of the random intercept cumulative model (19.4) is
usually based on maximum-likelihood, yielding unbiased estimates under the missing at
random assumption (MAR, Rubin 1976); that is, the missingness mechanism may depend
on both model covariates and observed responses. Under mild regularity conditions, ML
estimators have good asymptotic properties, e.g. consistency, normality and efficiency. In this
framework the asymptotic theory requires increasing the number of clusters (increasing the
cluster sizes is not enough), so the number of clusters J is the key quantity for asymptotics.

Let Yj be the vector of the nj ordinal responses of the j-th cluster and let Xj be the
covariate matrix of cluster j with rows x′

ij . Moreover, let θ = (α,β, σu)
′ be the vector of

the model parameters, where α′ = (α1, . . . , αC−1). The likelihood of Yj conditional on uj

is equal to the product of the conditional probabilities of the responses

Lj(Yj | uj ,Xj ;α,β) =

nj∏
i=1

C∏
c=1

π
dcij

cij =

nj∏
i=1

C∏
c=1

(γcij − γc−1,ij)
dcij

where dcij is the indicator of {Yij = yc}, whereas γ0,ij = 0 and γC,ij = 1.
The likelihood of Yj is obtained integrating out the (unobservable) random effect uj , i.e.

Lj(Yj | Xj ;θ) =

∫
uj

Lj(Yj | uj ,Xj ;α,β)f(uj ;σu)duj (19.6)

where f(uj ;σu) is the density of uj , usually assumed to be a normal density with zero mean
and standard deviation σu.
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Given independence across clusters, the log-likelihood for the J clusters is

logL =
J∑

j=1

logLj(Yj | Xj ;θ)

which is maximized to obtain ML estimates of the model parameters.
In general, the integral in the likelihood (19.6) is not in closed form, thus some type of

approximation is needed. Various approaches have been proposed in the literature, including
Gaussian quadrature, Laplace approximation and Monte Carlo integration. Reviews are given
by Skrondal and Rabe-Hesketh (2004) and Hedeker (2008). Each technique has advantages
and drawbacks in terms of precision and computational burden. Different techniques usually
yield slightly different parameter estimates, especially for the variance-covariance parameters
of the random effects.

The most widely used technique for numerical integration is Gaussian quadrature, which
can be ordinary, adaptive or spherical. The precision of the estimates and the computational
burden depend heavily on the number of quadrature points: more quadrature points imply
higher accuracy and longer computational time. The computational burden, which may be
prohibitive in some cases, also depends on factors such as the number of observations and
the number of random effects (dimensionality of the integral). Simulations show that the
adaptive version of Gaussian quadrature performs well in a wide variety of situations as long
as the dimensionality of the integral does not exceed 5 or 6 (Rabe-Hesketh et al. 2005).

The 6th order Laplace approximation by Raudenbush et al. (2000) appears to be
very efficient and sufficiently accurate in many situations (Joe 2008). Muthén’s limited
information approach is an excellent alternative for models with multivariate normal random
effects when the cluster sizes are nearly constant and there are few missing data (Muthén and
Satorra 1995).

Quasi-likelihood methods, such as MQL and PQL, are based on first- or second-order
Taylor approximation of the likelihood. They are computationally efficient but, in some
situations, they underestimate the cluster variance and thus they yield attenuated slopes
(Mealli and Rampichini 1999; Rodriguez and Goldman 1995). MQL is faster but more biased
than PQL. Both methods have the drawback of preventing likelihood-based inference since
the likelihood function is not evaluated.

Standard likelihood-based methods require to specify a parametric continuous distribution
for the random effects, typically the Normal distribution. Alternatively, it is possible to
specify an arbitrary discrete distribution and estimate both the locations and the masses
(Aitkin 1999). The model with discrete random effects is also called ‘finite mixture’ or
‘latent class’. The latent class is a set of clusters, which is latent because the membership
of clusters to classes is unobservable. Each class is characterized by a (prior) probability
and a location for the random effect. For a fixed number of mass points, the estimation
is straightforward since the likelihood is a finite mixture and no integration is involved.
However, choosing the number of mass points is a difficult task, since the comparison of
models with different numbers of mass points cannot be done with standard likelihood-based
tests. A practical solution is to compare the models using fit indexes such as AIC and BIC
(with many variations) or the Gateaux derivative method (Rabe-Hesketh et al. 2003). The
resulting estimator is known as Non-Parametric Maximum Likelihood (NPML, Lindsay et
al. 1991).
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In the Bayesian approach to multilevel models, both fixed and random effects are
considered to be random variables with a given prior distribution and inference is based
on their joint posterior distribution. This approach is more demanding than ML since it
requires to specify the prior distribution of the model parameters and to use computationally
intensive MCMC algorithms. The effort may be worthwhile in highly complex models since
the Bayesian approach is better than ML in assessing the uncertainty of the estimates, a
feature that may have considerable consequences on the coverage of confidence intervals
(Browne and Draper 2006). Moreover, Bayesian methods do not rely on asymptotics, thus
outperforming ML in small samples (Austin 2010).

19.3.8 Inference on model parameters

Standard large-sample inference procedures are applicable when the model is estimated via
ML methods. Hypothesis testing for the fixed-effects parameters (i.e., α and β) can be
conducted in the usual way, using the Wald test or the likelihood ratio test (LRT).

Inference about the cluster variance requires some care. In fact, unless the number of
clusters is very large, the Wald test should not be used since the sampling distribution of
the estimator of the cluster variance is highly asymmetric. The LRT is preferable. However,
the null hypothesis of main interest, namely σ2

u = 0, is on the boundary of the parameter
space and thus standard asymptotic results do not hold for the test statistics, including LRT.
Indeed, the asymptotic distribution of the LRT statistic for σ2

u = 0 is not a chi-square with 1
d.f., but rather it is a 50:50 mixture of a mass point at 0 and a chi-square with 1 d.f. (Berkhof
and Snijders 2001; Stram and Lee 1994). A practical solution is to perform the usual LRT
and then halve the p-value (otherwise the test is conservative, i.e. the actual probability of
type I error is lower than the nominal level). Alternatively, Verbeke and Molenberghs (2003)
derived general one-sided score tests for variance components in models with several random
effects.

19.3.9 Prediction of random effects

In many cases, it is useful to assign values to the random effects. Predicted random effects
can be used for inference regarding clusters, for example to assess effectiveness of schools,
universities, hospitals or firms (Grilli and Rampichini 2009). Moreover, predicted random
effects are useful quantities in model diagnostics, e.g. to check for violations of the normality
assumption for random effects or to find outliers (Snijders and Berkhof 2008).

The uj are usually predicted using Empirical Bayes (EB) methods (Skrondal and Rabe-
Hesketh 2009). In this setting the population distribution of the random effects is called prior,
whereas the distribution of the random effects conditional on the data of a given cluster is
called posterior. The EB prediction is the mean of the posterior distribution with parameter
estimates plugged in, combining data information (likelihood) with population information
(prior),

ûEB
j = E(uj | Yj ,Xj ; θ̂) =

∫
ujh(uj | Yj ,Xj ; θ̂)duj , (19.7)

where h(·) is the empirical posterior distribution of uj . The mean of the posterior distribution
is a value between 0 (the mean of the prior) and the mode of the likelihood of the j-th
cluster: the prediction that would be obtained using only the cluster-specific likelihood is
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thus shrunken, with a stronger shrinkage for small clusters. The EB predictor is conditionally
biased towards zero and unconditionally unbiased (Skrondal and Rabe-Hesketh 2009).

In the multilevel ordinal model (19.4) the EB predictions (19.7) do not have closed form,
thus numerical or simulation-based integration methods must be used.

An alternative way to assign values to the random effects uses the posterior mode of the
random effects. EB modal predictions do not require numerical integration.

Note that EB predictions are a by-product of the MLE algorithms relying on adaptive
quadrature. For example, the gllamm procedure of Stata yields posterior means (Rabe-
Hesketh et al. 2005), while the routines implemented in R yield posterior modes (Pinheiro
and Bates 1995).

There are two kinds of standard errors of the EB predictions (19.7), depending on their
use. Comparative standard errors are used for inference regarding the true values of uj for
specific clusters (e.g. for making comparisons between clusters, see Snijders and Bosker
1999); on the other hand, the diagnostic standard errors are useful for model diagnostics
(e.g. for finding outliers, see Snijders and Berkhof 2008).

The comparative standard error is the square root of the posterior variance,

var(uj | Yj ,Xj ; θ̂) =

∫
(uj − ûEB

j )2h(uj | Yj ,Xj ; θ̂)duj , (19.8)

which has no closed form and thus the integral in (19.8) must be approximated.
For model diagnostics it is useful to consider the marginal sampling variance of the EB

predictor, i.e. the variance of the prediction under repeated sampling of the responses from
their marginal distribution, keeping the covariates fixed and plugging in parameter estimates.
There is no closed form expression of the marginal sampling variance in the ordinal multilevel
model. Skrondal and Rabe-Hesketh (2009) suggest the following approximation

var(ûEB
j | Xj ; θ̂) ≈ σ̂2

u − var(uj | Yj ,Xj ; θ̂).

Both the posterior standard deviation (comparative standard error) and the sampling
standard deviation (diagnostic standard error) of the EB prediction are lower than the
estimated prior standard deviation σ̂u. The posterior standard deviation tends to decrease
as the cluster size nj becomes larger, reflecting the increasing accuracy in the prediction
of uj . On the contrary, the sampling standard deviation increases with nj because the EB
prediction is less shrunken.

On the basis of a simulation study, Skrondal and Rabe-Hesketh (2009) recommend using
the posterior standard deviation as comparative standard error, while they find that the
sampling distribution of the empirical Bayes predictions is often too discrete and non-normal
for the diagnostic standard error to be used in the usual way for identifying outliers.

19.3.10 Software

Multilevel models for ordinal data can be fitted with ML or Bayesian methods using
procedures in general purpose statistical packages (e.g. R, SAS and Stata), specialized
software for multilevel analysis (e.g. MLwiN and HLM) or specialized software for latent
variable models (e.g. Mplus and Latent GOLD). The programs are different in many respects.
In particular, it is important to bear in mind that the parameter estimates may change with the
method used to numerically evaluate the likelihood.
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Multilevel modelling software reviews are available at the web site of the Centre for
Multilevel Modelling in Bristol.

In the following we list the programs with special emphasis on those implementing ML
via numerical integration, giving references for more details. The list is not complete and rely
mainly on our personal experience.

Software for ML estimation

Multilevel ordinal models can be fitted with ML by several programs. Most programs perform
ML estimation via numerical integration, often using some form of quadrature.

The ordinal package of R (Christensen 2010) fits cumulative link mixed models for
ordinal data, though it is limited to random intercept models. The package includes the
proportional odds model but it also allows for general regression structures for the location
and the scale of the latent distribution (additive and multiplicative structures, structured
thresholds and flexible link functions). Furthermore, several estimation procedures and
auxiliary functions are implemented.

PROC NLMIXED of SAS (SAS 2009) is a general routine for non-linear mixed models.
Multilevel ordinal models can be estimated by writing down the model likelihood using SAS
statements. The procedure offers a wide choice of integral approximations and optimization
techniques.

The gllamm command (Rabe-Hesketh et al. 2008) of Stata provides tools for analyzing
multilevel ordinal data. This procedure fits models of the GLLAMM class (Generalized
Linear Latent And Mixed Models) by ML with several kinds of quadrature. Moreover, it
allows to relax the parallel regression assumption (see section 19.2.1) by specifying a model
for the thresholds or by using a scaled probit link.

The freeware program MIXOR provides ML estimates for mixed effects ordinal regression
models (Hedeker and Gibbons 1996). The commercial version is implemented in the program
SUPERMIX (Hedeker and Gibbons 2008).

Another freeware software for mixed effects ordinal models is aML, which is a general
software for multilevel, multiprocess models (Lillard and Panis 2003).

ML estimates of multilevel ordinal models via numerical integration are also provided by
programs for latent variable models, such as Latent GOLD (Vermunt and Magidson 2005)
and Mplus (Muthén and Muthén 2010).

Peculiar estimation techniques are available in the specialized multilevel software HLM
(Raudenbush et al. 2004), which uses a combination of a fully multivariate Taylor expansion
and a Laplace approximation, and MLwiN (Rasbash et al. 2005), which implements quasi-
likelihood algorithms (MQL and PQL). Finally, the econometric program LIMDEP (Greene
2007) uses simulated maximum likelihood.

Software for Bayesian estimation

Bayesian Markov Chain Monte Carlo (MCMC) algorithms are available in Mplus (Muthén
and Muthén 2010) and MLwiN (Rasbash et al. 2005).

MCMC algorithms can be also implemented using the freeware BUGS (Spiegelhalter et
al. 1997) and its Windows version WinBUGS (Lunn et al. 2000). Marshall and Spiegelhalter
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(2001) provide an example of multilevel modelling using BUGS, including some syntax and
discussion of the program.

19.4 Multilevel models for ordinal data in practice: an application to
student ratings

In this section we present an application of multilevel models for ordinal responses to data
on student satisfaction about university courses. We give guidelines on model specification,
estimation and interpretation. The analysis is carried out with the R package ordinalwhich
yields ML estimates using adaptive Gaussian quadrature (Christensen 2010). The dataset and
the R script can be downloaded from the book web site.

Student ratings are an old and widely recognized instrument to evaluate university courses.
The statistical analysis of student ratings calls for special techniques which take into account
the ordinal nature of the response and the hierarchical structure of the phenomenon (ratings
are nested in courses which are nested in schools). Moreover, in order to use the student
ratings to measure the course quality, it should be recognized that the student satisfaction
depends not only on the characteristics of the course (lecture hall, clarity of the teacher,
textbook, and so on), but also on the traits and expectations of the student. Therefore,
a fair comparison among courses requires the calculation of net measures adjusting for
individual characteristics. To this end, multilevel modelling is a well suited technique (Grilli
and Rampichini 2009).

For this application we use the data of Rampichini et al. (2004), which are gathered from a
survey carried out by the University of Florence in the second semester of the academic year
1999/2000. The dataset is restricted to the courses with at least five respondents taken during
the first year in the School of Engineering. The number of courses evaluated is 30 and the
number of questionnaires is 767, while the number of questionnaires per course varies from
5 to 60. The items of the questionnaire require a response on the following 4-point ordinal
scale: 1. decidedly no; 2. more no than yes; 3. more yes than no; 4. decidedly yes.

The main goal of the analysis is to identify ‘good’ and ‘bad’ courses on the basis of
the student overall satisfaction about the course (satisfaction) while adjusting for
student characteristics. In particular, we consider a binary variable for the full-time status
(fulltime) and three self-assessed individual characteristics measured on the ordinal 4-
point scale mentioned above: attendance with the intention of taking the exam in the first
examination session (exam), previous knowledge of the subject (knowledge), and interest
in the subject (interest).

The ordinal response satisfaction is studied via the random intercept cumulative
model (19.4) using the logit link and C=4 categories:

logit(γcij) = αc − (x′
ijβ + uj) c = 1, 2, 3,

where j = 1, 2, . . . , 30 is the course index and i is the student index, while γcij is the
cumulative probability up to the c-th category for student i in course j. The covariate vector
xij includes the student characteristics, whereas the term uj is a random effect representing
unobserved factors at the course level interpretable as ‘perceived quality’.

The analysis begins with the random intercept model without covariates (null model). This
model is a benchmark for subsequent models and provides a cluster variance σ̂2

u = 0.8800
(the standard deviation is σ̂u = 0.9381). To test whether the cluster variance is statistically
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significant, we compare the models with and without random effects. The LRT statistic is
98.12 with 1 df and a tiny p-value so that the null hypothesis is rejected (as noted in section
19.3.8, the p-value must be halved, even if in this case the result of the test is unchanged).
Therefore, there is evidence of unobserved heterogeneity at course level: as expected, the
courses have different levels of satisfaction.

The sample frequencies of the response (0.12, 0.27, 0.41, 0.20) are equal to the estimated
probabilities from the single-level model (19.1) without covariates, which can be computed
using the estimated thresholds (α̂◦

1 = −1.9685, α̂◦
2 = −0.4480, α̂◦

3 = 1.3572). For example,
the marginal probability that a student responds more yes than no (Yij = 3) is

π̂◦
3 = γ̂◦

3 − γ̂◦
2 =

1

1 + e−α̂◦
3
− 1

1 + e−α̂◦
2
=

1

1 + e−1.3572
− 1

1 + e0.4480
= 0.41.

A similar computation with the random intercept null model gives the conditional
probabilities, i.e. the probabilities for a course with a hypothetical value of the random effect
(see section 19.3.5). For example, given the estimated thresholds (α̂1 = −2.2397, α̂2 =
−0.5379, α̂3 = 1.5624), the probability that a student responds more yes than no (Yij = 3)
for a course with a mean level of satisfaction (uj = 0) is

π̂3 = γ̂3 − γ̂2 =
1

1 + e−α̂3+uj
− 1

1 + e−α̂2+uj
=

1

1 + e−1.5624
− 1

1 + e0.5379
= 0.46.

The amount of course-level unobserved heterogeneity is summarized by the ICC ρ̂ =
0.8800/(0.8800 + π2/3) = 0.21 (see section 19.3.3): this means that about one fifth of
the total variability in the underlying satisfaction is at the course level. This is best
appreciated by comparing some conditional probabilities as explained in section 19.3.3,
for example Pr(Yij ≥ 3 | uj = −1.96× 0.9381) = 0.21 and Pr(Yij ≥ 3 | uj = +1.96×
0.9381) = 0.92: thus, the probability that a student rates a course positively (more yes than
no or decidedly yes) ranges from 0.21 for a ‘bad’ course (at the 2.5th percentile) to 0.92 for a
‘good’ course (at the 97.5th percentile).

The analysis goes on by adding the covariates representing the characteristics of the
students. Each of the variables measured on a 4-point ordinal scale (exam, knowledge,
interest) is tried in two alternative codings: a set of 3 binary indicators, and a single
numerical covariate with values -2, -1, 0 and 1 (the third category is thus taken as the
baseline). The second coding, which is more parsimonious and easier to interpret, is chosen
on the basis of the LRT.

The estimates for the random intercept cumulative model are reported in Table 19.1,
along with the predicted conditional probabilities discussed in sections 19.3.3 and 19.3.5.
In particular, the baseline student is a student who is not fulltime and who responds more yes
than no to exam, knowledge and interest, while the baseline course has an average
level of satisfaction, i.e. uj = 0. The table shows how the baseline predicted probabilities
change for a unit increase of each covariate and for a ‘bad’ course (uj = −1.96σu) and a
‘good’ course (uj = 1.96σu).

The effects of the student characteristics on the level of satisfaction are in the expected
direction, i.e. the probability of being satisfied is higher for full-time students, for students
intending to take the exam in the first examination session, for students with good background
knowledge, and for students interested in the subject. The last feature has the largest effect,
even if its estimate may be biased by endogeneity due to reverse causality.
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Table 19.1 Estimates, standard errors and predicted probabilities π̂c for the
random intercept proportional odds model on the overall satisfaction for the course
(University of Florence, School of Engineering, academic year 1999/2000)

Estimate Std. Error π̂1 π̂2 π̂3 π̂4

Thresholds
First -3.2567 0.2851
Second -0.9063 0.2556
Third 1.9603 0.2664

Baseline 0.04 0.25 0.59 0.12
Slopes

Fulltime 0.3740 0.1808 0.03 0.19 0.61 0.17
Exam 0.4530 0.0901 0.02 0.18 0.61 0.18
Knowledge 0.5344 0.0882 0.02 0.17 0.61 0.19
Interest 1.2309 0.0966 0.01 0.09 0.57 0.33

Random effects
Course-level σu 0.9477

‘Bad’ course (−1.96σu) 0.20 0.53 0.26 0.02
‘Good’ course (+1.96σu) 0.01 0.05 0.47 0.47
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Figure 19.2 Probability of positive evaluation (more yes than no or decidedly yes) versus interest in
the subject, for a full-time student responding more yes than no to the questions on exam and previous
knowledge; the probabilities are conditional on three hypothetical values of the random effect (‘good’
course: uj = +1.96σu; ‘mean’ course: uj = 0; ‘bad’ course: uj = −1.96σu).

The random effects represent the course-level unobserved heterogeneity in the ratings after
controlling for the student characteristics: therefore, they may be interpreted as net measures
of satisfaction for the course. The last two lines of Table 19.1 make clear that the courses are
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quite different in terms of satisfaction and that the features of the course have an overall effect
on the ratings higher than any of the features of the students (e.g. the baseline probability 0.12
of being very satisfied becomes 0.19 for a student with fully adequate previous knowledge
and 0.47 for a student attending a ‘good’ course).

For an effective communication of the results, it is helpful to draw graphs of the predicted
probabilities such as the one in Figure 19.2, where the probability of positive evaluation
(more yes than no or decidedly yes) is plotted against the interest in the subject, for a full-
time student responding more yes than no to the questions on exam and previous knowledge.
The probabilities are computed for three hypothetical courses defined by fixing the random
effect to 0 and ±1.96σu. The graph highlights that the effect of the interest in the subject is
weak for good courses, which receive favorable evaluations anyway.
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Figure 19.3 EB predictions of random effects with 95% confidence intervals.

Compared with the null model, the course-level standard deviation is nearly unchanged:
this means that in the linear model for the underlying satisfaction (19.5), the reduction of
the level 2 variance due to the covariates is similar to the reduction of the level 1 variance
(see section 19.3.4). The course-level variance could be reduced by course-level covariates,
such as the subject of the course or some features of the teacher. However, the dataset does
not include course-level covariates, so the regression model can adjust the evaluations for the
student characteristics, but it cannot explain why the adjusted evaluations are different among
courses.

An effective way to report the course evaluations adjusted for the student characteristics is
the ‘caterpillar’ graph in Figure 19.3, where the EB predicted random effects are plotted in
ascending order along with 95% confidence intervals based on comparative standard errors
(see section 19.3.9). Each confidence interval has a length inversely related to the number
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of collected ratings for the course and it can be used to test whether the random effect of
the corresponding course is significantly different from zero, which is the population mean:
therefore, a course whose interval is entirely above (below) zero has an adjusted satisfaction
significantly higher (lower) than the mean. In this application, it turns out that 10 courses
have an adjusted satisfaction significantly different from the population mean (5 higher and
5 lower): such courses should be inspected to establish good and bad practices and to plan
interventions for increasing the overall quality.
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