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Multilevel factor models for ordinal variables

The paper tackles several issues involved in specifying, fitting and interpreting the results

of multilevel factor models for ordinal variables. First, the problem of model specification

and identification is addressed, outlining the parameter interpretation. Special attention is

devoted to the consequences on interpretation stemming from the usual choice of not decom-

posing the specificities into hierarchical components. Then a general strategy of analysis

is outlined, highlighting the role of the exploratory steps. The theoretical topics are illus-

trated through an application to graduates’ job satisfaction, where estimation is based on

maximum likelihood via an EM algorithm with adaptive quadrature.
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The factor model is a popular and effective tool of analysis in the social sciences. In its classical

formulation (e.g. Anderson, 2003), it concerns a set of continuous variables measured on a set of

independent units. However such features may be inadequate in many cases, for example when the

response variables are measured on ordinal scales (e.g. Likert scales) or the statistical units are nested

in multilevel structures.

In principle, the specification of a factor model when the variables are ordinal (Jöreskog and

Moustaki, 2001; Moustaki et al., 2004) does not entail relevant theoretical problems, but estimation

is quite complex, so many approximate solutions have been proposed (Bartholomew and Knott, 1999,

§5.15): (a) transform the ordinal scale in a continuous scale by assigning a score to each grade,

and use methods for continuous data; this procedure works well when there are enough categories,

and the frequency distribution is unimodal with an internal mode (Muthén and Kaplan, 1985); (b)

estimate the polychoric correlations among the ordinal variables and use these correlations as the

input in algorithms for continuous data (Muthén, 1989); this approach, currently used by the LISREL

program (Jöreskog, 2004), gives good point estimates, but it does not rely on a complete statistical

model for the observed data, so it is not fully efficient; (c) collapse the grades of the scale in two

categories, and use methods for binary data; this method may work well in some cases, but it implies

arbitrariness in the dichotomization and a loss of information.

Anyway, recent developments in computational statistics have greatly enhanced the feasibility of

a maximum likelihood or Bayesian analysis based on the proper model.

In many fields the statistical units are quite often nested in hierarchical, or multilevel, structures.

Even if multilevel models are now well developed (Goldstein, 2003), the subclass of multilevel factor

models has received relatively few attention, especially in applied work. For the case of continuous

variables, two classical references are Goldstein and McDonald (1988) and Longford and Muthén

(1992), while the case of binary variables has been treated only recently by Ansari and Jedidi (2000)

and Goldstein and Browne (2004).

The present paper will focus on multilevel factor models for ordinal variables, a case where the

problems associated with a proper treatment of ordinal variables adds to the difficulties of a multilevel

analysis. From a theoretical standpoint such a model is a member of some broad frameworks, such as
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the non-linear mixed model framework for IRT analysis of Rijmen et al. (2003), and the class of Gen-

eralized Linear Latent And Mixed Models (GLLAMM) of Rabe-Hesketh et al. (2004a) and Skrondal

and Rabe-Hesketh (2004). However, the multilevel factor model for ordinal variables raises several

identification and interpretation issues, as well as computational problems, so its implementation is

not straightforward and, in fact, its use in applied work is rare.

The paper will discuss how to specify and fit multilevel factor models for ordinal variables, illus-

trating the theory by means of an application on the job satisfaction of the 1998’s graduates of the

University of Florence. The graduates responded to a series of items on job satisfaction using a five-

point ordinal scale, so the model should treat the responses as ordinal variables. The main aim of the

analysis is to describe and summarize the aspects of job satisfaction measured by the considered items,

separately for the graduate and degree programme levels, in order to shed light on the effectiveness of

the degree programmes. Therefore, the hierarchical nature of the phenomenon, with graduates nested

in degree programmes, has a primary role and the use of a multilevel factor model is essential, as it

allows to define separate factor structures at the two levels.

All the computations needed in the application are performed using standard software. In particu-

lar, the model is fitted with the program Mplus (Muthén and Muthén, 2004). The program performs

maximum likelihood via an EM algorithm with adaptive Gaussian numerical quadrature.

The paper will be referred to the case where all the response variables are ordinal. The case of

binary variables is simply a special instance, while the extension to mixed continuous-ordinal-binary

responses is straightforward.

The structure of the paper is as follows. In the second Section the model is defined, writing down

the likelihood and outlining the problem of identification; then the interpretation of model parameters

is discussed, stressing the implications of not decomposing the specificities in the between and within

components. The third Section presents a general strategy of analysis with several exploratory steps,

which is made necessary by the computational effort usually needed to fit the model. In the fourth

Section an application to the analysis of job satisfaction of the 1998’s graduates of the University

of Florence illustrates the steps of analysis and the interpretation of the results. The final Section

concludes with some remarks.
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The two-level factor model for ordinal variables

Description of the model

The analysis of ordinal data requires to choose a set of probabilities to be modelled and a suitable

link function (Agresti, 2002). The set of probabilities may be of four main types: reference category,

adjacent categories, continuation ratio, and cumulative probabilities. Here we choose the cumulative

probabilities because this allows to represent each observed ordinal variable in terms of a continuous

latent response endowed with a set of thresholds, a representation which helps the presentation of

the model and the interpretation of the results. Note, however, that the latent response approach is

only a convenient way to represent an ordinal variable: it does not require that the data have been

generated by categorizing latent response variables.

The model can be formulated with any link function. In the following we implicitly adopt the

probit link since the latent response is assumed to be Gaussian, a quite natural choice to create a

connection with the classical factor model. However, the use of other links entails little modifications

and usually leads to negligible differences in the results. In the application, due to software constraints,

the fitted model is a logit one.

Let Yhij be the h-th observed ordinal variable (item) (h = 1, 2, . . . , H) for the i-th subject (i =

1, 2, . . . , nj) of the j-th cluster (j = 1, 2, . . . , J). Even if the items could be seen as lowest-level units,

here the hierarchical levels are numbered starting from the subjects, so the subjects will be referred

to as ‘level one’ or ‘within’ units, while the clusters will be referred to as ‘level two’ or ‘between’

units. Attention is limited to two hierarchical levels, since the extension to more then two levels is

conceptually straightforward. The model allows for item non-response: in such a case some value of

the index h is missing. In the application the clusters are the degree programmes, the subjects are

the graduates and the ordinal variables are the ratings on 5 items of the questionnaire (i.e. H = 5).

A two-level factor model for ordinal variables can be set up by defining two components, namely:

(1) a threshold model which relates a set of continuous latent variables Ỹhij to the observed ordinal

counterparts Yhij ; and (2) a two-level factor model for the set of continuous latent variables Ỹhij .

As for the threshold model, let assume that each of the observed responses Yhij , which takes values
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in {1, 2, . . . , Ch}, is generated by a latent continuous variable Ỹhij through the following relationship:

{Yhij = ch} ⇔
{
γch−1,h < Ỹhij ≤ γch,h

}
, (1)

where the thresholds satisfy −∞ = γ0,h ≤ γ1,h ≤ . . . ≤ γCh−1,h ≤ γCh,h = +∞.

The factor model can now be defined on the set of latent variables. Ignoring for the moment the

hierarchical structure, the standard factor model can be written as

Ỹhij = µh +
M∑

m=1

λmhumij + ehij , h = 1, · · · ,H (2)

where the umij ’s are the factors, while, for each h, µh is the item mean, the λmh’s are the factor

loadings and the ehij ’s are the uncorrelated item-specific errors.

A two-level extension of the factor model can be obtained in two different ways (see, for example,

Muthén, 1994). The simplest way is to decompose the factors and the item-specific errors in two

components, one for each hierarchical level:

umij = u
(2)
mj + u

(1)
mij , m = 1, · · · ,M,

ehij = e
(2)
hj + e

(1)
hij , h = 1, · · · ,H.

Here we use the superscript (l) to denote random variables defined at level l, along with their param-

eters and loadings. Therefore, model (2) becomes

Ỹhij = µh +
M∑

m=1

λmh

(
u

(2)
mj + u

(1)
mij

)
+

(
e
(2)
hj + e

(1)
hij

)
(3)

= µh +

[
M∑

m=1

λmhu
(2)
mj + e

(2)
hj

]
+

[
M∑

m=1

λmhu
(1)
mij + e

(1)
hij

]
.

This formulation is useful if one assumes the existence of certain factors and wishes to study how they

vary between and within the clusters. However, in applied work it is common to found completely

different factor structures at the two hierarchical levels, so a more general formulation is (Goldstein

and McDonald, 1988; Longford and Muthén, 1992):

Ỹhij = µh +




M2∑

m=1

λ
(2)
mhu

(2)
mj + e

(2)
hj


 +




M1∑

m=1

λ
(1)
mhu

(1)
mij + e

(1)
hij


 . (4)



Multilevel factor models for ordinal variables 5

In this model the cluster level has M2 factors with corresponding loadings λ
(2)
mh, while the subject

level has M1 factors with corresponding loadings λ
(1)
mh. Note that even if M2 = M1 the factor loadings

in general are different, so the factors may have different interpretations. Obviously, model (3) is a

special case of model (4) with M2 = M1 and λ
(2)
mh = λ

(1)
mh.

Now it is convenient to express the general two-level model (4) for the latent responses in matrix

notation:

Ỹij = µ +
[
Λ(2)u(2)

j + e(2)
j

]
+

[
Λ(1)u(1)

ij + e(1)
ij

]
, (5)

where Ỹij = (Ỹ1ij , · · · , ỸHij)′, µ = (µ1, · · · , µH)′, e(2)
j = (e(2)

1j , · · · , e(2)
Hj)

′, u(2)
j = (u(2)

1j , · · · , u(2)
M2j)

′, e(1)
ij =

(e(1)
1ij , · · · , e(1)

Hij)
′, u(1)

ij = (u(1)
1ij , · · · , u(1)

M1ij)
′, while Λ(2) is a matrix whose h-th row is (λ(2)

1h , · · · , λ(2)
M2h) and

Λ(1) is a matrix whose h-th row is (λ(1)
1h , · · · , λ(1)

M1h).

The standard assumptions on the item-specific errors of model (5) are

e(2)
j

iid∼ N(0,Ψ(2)), where Ψ(2) = diag{(ψ(2)
h )2},

and

e(1)
ij

iid∼ N(0,Ψ(1)), where Ψ(1) = diag{(ψ(1)
h )2},

while for the factors it is assumed that

u(2)
j

iid∼ N(0,Σ(2)),

and

u(1)
ij

iid∼ N(0,Σ(1)),

where the covariance matrices Σ(2) and Σ(1) are, in principle, unconstrained. Moreover, all the errors

and factors are assumed to be mutually independent, except for the factors at the same level, so model

(5) is equivalent to the following variance decomposition

V ar(Ỹij) =
[
Λ(2)Σ(2)Λ(2)′ + Ψ(2)

]
+

[
Λ(1)Σ(1)Λ(1)′ + Ψ(1)

]
. (6)

This amounts to a couple of factor models, one for the between covariance matrix and the other for

the within covariance matrix (Muthén, 1994).
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Finally note that the model can be extended by adding a regression component x′hijβ in (4).

Although it does not alter the essence of the paper, the introduction of a regression component, gives

rise to a wide range of models, depending on the nature of the covariates. The covariates can be

of various types (Rijmen et al., 2003): item covariates, unit covariates and item by unit covariates,

where the unit covariates can be further distinguished into subject-level and cluster-level covariates.

Model likelihood and identification

The full likelihood for the two-level factor model (4) can be derived in the following steps. Denoting

with θ the set of estimable parameters, the conditional likelihood for subject i of cluster j is

Lij(θ |u(2)
j , e(2)

j ) = Eu(1)


∏

c∈C

(
P

(
H⋂

h=1

{Yhij = ch} | u(1)
ij ,u(2)

j , e(2)
j

))dijc

 , (7)

where C is the set of all admissible values of the vector c = (c1, · · · , ch)′ and dijc is the indicator of

the observed response pattern
{⋂H

h=1{Yhij = yhij}
}
.

The overall marginal likelihood is then

L(θ) =
J∏

j=1

Eu(2),e(2)

[ nj∏

i=1

Lij(θ |u(2)
j , e(2)

j )

]
. (8)

The probabilities that appear in (7), given the relationship (1) between the observed and latent

responses and the assumptions on the latent model (4), can be written as

P

(
H⋂

h=1

{Yhij = ch} | u(1)
ij ,u(2)

j , e(2)
j

)
(9)

= P

(
H⋂

h=1

{
γch−1,h < Ỹhij ≤ γch,h

}
| u(1)

ij ,u(2)
j , e(2)

j

)

=
H∏

h=1

P
(
γch−1,h − µh − ζhij < e(1)hij ≤ γch,h − µh − ζhij | u(1)

ij ,u(2)
j , e(2)

j

)

=
H∏

h=1

[
Φ

(
γch,h − µh

ψ
(1)
h

− ζhij

ψ
(1)
h

)
− Φ

(
γch−1,h − µh

ψ
(1)
h

− ζhij

ψ
(1)
h

)]
,

where ζhij =
∑M2

m=1 λ
(2)
mhu

(2)
mj + e

(2)
hj +

∑M1
m=1 λ

(1)
mhu

(1)
mij and Φ is the standard Gaussian distribution

function. Note that Φ is the inverse of the link function and stems from the normality assumption

on the subject-level item-specific errors e
(1)
hij . Other distributional assumptions lead to different link

functions, e.g. the logistic distribution leads to the logit link.
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In the light of (7) and (9), the likelihood (8) is equivalent to the likelihood of a three-level model,

where the items are the first-level units, the subjects the second-level units and the clusters the third

level-units. This correspondence is useful for estimation purposes.

To discuss identification issues it is useful to note that from (9) the model likelihood is based on

the quantities

Φ

(
γch,h − µh

ψ
(1)
h

− ζhij

ψ
(1)
h

)
(10)

= Φ


γch,h − µh

ψ
(1)
h

−
M2∑

m=1

λ
(2)
mhu

(2)
mj

ψ
(1)
h

− e
(2)
hj

ψ
(1)
h

−
M1∑

m=1

λ
(1)
mhu

(1)
mij

ψ
(1)
h




= Φ


γch,h − µh

ψ
(1)
h

−
M2∑

m=1

λ
(2)
mhσ

(2)
m

ψ
(1)
h

u
(2)∗
mj − ψ

(2)
h

ψ
(1)
h

e
(2)∗
hj −

M1∑

m=1

λ
(1)
mhσ

(1)
m

ψ
(1)
h

u
(1)∗
mij




for h = 1, . . . , H and c = 1, . . . , Ch − 1, where the asterisk denotes standardized variables. Assuming

for simplicity that all the factors are uncorrelated, from (10) the estimable quantities are:

• γch,h−µh

ψ
(1)
h

in number of
∑H

h=1 (Ch − 1);

• λ
(2)
mh

σ
(2)
m

ψ
(1)
h

in number of HM2;

• ψ
(2)
h

ψ
(1)
h

in number of H;

• λ
(1)
mh

σ
(1)
m

ψ
(1)
h

in number of HM1.

Note that all the estimable quantities are expressed in terms of the item-specific subject-level

standard deviations ψ
(1)
h , but this is not a problem for model interpretation, as will be clear from the

following subsection.

The constraints needed for model identification are of two kinds: some are needed for the identi-

fication of the distribution of the latent responses determining the ordinal measures (1), and others

are needed for the identification of the covariance matrix decomposition (6) associated with the factor

model.

The identification of the distribution of the latent responses Ỹhij yielding the observed responses

Yhij does not depend on the hierarchical nature of the model, so the considerations are the same

as for single-level factor models for ordinal variables. First recall that in a univariate ordinal model

the mean and the standard deviation of the latent response are not identifiable, so it is necessary

to put two constraints, for example µh = 0 and ψ
(1)
h = 1. In a multivariate ordinal model (Grilli
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and Rampichini, 2003), a possibility is to impose similar constraints on each of the items and freely

estimate all the thresholds of all the items. In such a case the threshold model uses all the available

degrees of freedom, so the factorial part is not threatened by potentially invalid restrictions on the

threshold part. A useful feature of unconstrained thresholds is that all the specificities are equal, so

the factor loadings of two items are directly comparable.

However, the number of freely estimable thresholds,
∑H

h=1 (Ch − 1), is usually quite large, so the

parsimony principle suggests to look for a constrained structure entailing a negligible loss of fit. In

general, structuring the thresholds in a sensible way is not straightforward, but when all the items

have the same categories (Ch = C ≥ 3) an appealing option (later called equal latent thresholds) is

to assume that at every cutpoint c the latent thresholds γc,h are equal, i.e. γc,h′ = γc,h′′ = γc for

each h′, h′′ and left µh and ψ
(1)
h free (except for a reference item): in this way the actual thresholds

are τc,h = (γc − µh)/ψ
(1)
h , as it is clear from the likelihood contribution (9). Obviously, this kind

of restriction makes the threshold structure more interpretable, though it requires some care in the

interpretation of the loadings, as each item has its own scale ψ
(1)
h .

As for the identification of the two-level factor model on the continuous latent variables Ỹhij ’s, the

variance-covariance decomposition (6) entails M2
2 and M2

1 indeterminacies in Λ(2)Σ(2)Λ(2)′+Ψ(2) and

Λ(1)Σ(1)Λ(1)′+Ψ(1), respectively. In exploratory factor analysis it is customary to assume uncorrelated

(orthogonal) factors with unit variance, putting the remaining constraints on the factor loadings

in various forms (see e.g. Anderson, 2003). However, in confirmatory factor analysis it may be

useful to relax either or both the assumptions on the factor covariance matrix, i.e. unit variance and

uncorrelatedness. Relaxing the unit variance assumption causes a scale indeterminacy which can be

solved by fixing to one a loading for each factor, while the uncorrelatedness is usually compensated

by an adequate number of zeroes in the matrix of loadings. The main advantage of an unconstrained

factor covariance matrix is that the loadings are invariant with regard to certain changes, as in the

cases of factor-based unit selection and comparisons among populations (Anderson, 2003). However,

it will be clear from the following that correlated factors complicate the interpretation of the results,

while unconstrained variances are harmless in this regard.

The analytical approach to identification sketched above can be formalized, in the structural equa-
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tion framework, through the definition of identification mappings between the structural parameters

and identified reduced form parameters, as in Skrondal and Rabe-Hesketh (2004). Finally, local iden-

tification can be empirically checked in the estimation phase by inspection of the rank of the ML

information matrix (e.g. computing the condition number), since non-singularity of the information

matrix is a sufficient, though not necessary in the case of non-linear models, condition for local iden-

tification (Skrondal and Rabe-Hesketh, 2004).

Interpretation of model parameters

The formerly outlined two-level factor model for ordinal variables is based on two components which

can be interpreted separately: (1) a threshold model which relates the continuous latent responses Ỹhij

to the observed ordinal counterparts Yhij ; and (2) a two-level factor model for the continuous latent

responses Ỹhij . The following discussion will focus on some issues concerning the second component,

which conveys the most important information.

Although the interpretation of the two-level factor model relies on the classical ideas of factor

analysis, some clarification may be useful. Note that the following formulae are based on the uncor-

relatedness of the factors at both levels, while the factor variances may be fixed or free (in any case

it is assumed that the model is identified through adequate constraints on the loadings). It should be

noted that the factor variances are not directly interpretable, even when left free, since they simply

represent contributions with respect to the arbitrary item which has the loading fixed to one: in gen-

eral the only interpretable quantity is the variance contribution expressed by the product
(
λ

(1)
mhσ

(1)
m

)2

or
(
λ

(2)
mhσ

(2)
m

)2
.

From (6) the total variance of the h-th item is decomposed in

V arT

(
Ỹhij

)
= V arB

(
Ỹhij

)
+ V arW

(
Ỹhij

)
, (11)

where

V arB

(
Ỹhij

)
=

∑M2
m=1

(
λ

(2)
mhσ

(2)
m

)2
+

(
ψ

(2)
h

)2

Cluster-level communality + Cluster-level specificity,
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and

V arW

(
Ỹhij

)
=

∑M1
m=1

(
λ

(1)
mhσ

(1)
m

)2
+

(
ψ

(1)
h

)2

Subject-level communality + Subject-level specificity.

The ratio

ICCh =
V arB

(
Ỹhij

)

V arT

(
Ỹhij

) (12)

is the so-called intraclass correlation coefficient, which represents the proportion of variance explained

by the clusters.

However, in most applications, in order to save computational resources the cluster-level item-

specific errors e
(2)
hj in equation (4) are omitted, so the variance of the remaining subject-level item-

specific errors e
(1)
hij represents the total specificity: in such a case, the variance decomposition (11) is

not feasible, so it is important to see the role of such decomposition for interpretation.

Let us first consider the case where the specificities are not disentangled. In general, the inter-

pretation of the factor structures at the two levels does not depend on the decomposition of the

specificities and the (relative) communalities can be computed as well. As in standard factor models,

the communality is the proportion of the variance of a given response explained by the factors. As

usual in the ordinal case, the communalities are referred to the latent responses. For example, the

total communality of the h-th item is

∑M1
m=1

(
λ

(1)
mhσ

(1)
m

)2
+

∑M2
m=1

(
λ

(2)
mhσ

(2)
m

)2

V arT

(
Ỹhij

) , (13)

while the communality of the h-th item due to the m-th subject-level factor is
(
λ

(1)
mhσ

(1)
m

)2

V arT

(
Ỹhij

) . (14)

Moreover, the decomposition of the specificities is not required for the correlation between two

latent responses of the same subject, Ỹh′ij and Ỹh′′ij :

∑M1
m=1 λ

(1)
mh′λ

(1)
mh′′

(
σ

(1)
m

)2
+

∑M2
m=1 λ

(2)
mh′λ

(2)
mh′′

(
σ

(2)
m

)2

√
V arT

(
Ỹh′ij

)
· V arT

(
Ỹh′′ij

) .

However, there are other interesting quantities which can be computed only if the specificities are

disentangled, such as the ICCh (12) and the communalities at a given level. For example, the total
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communality at subject level of the h-th item is
∑M1

m=1

(
λ

(1)
mhσ

(1)
m

)2

V arW

(
Ỹhij

) ,

while the communality at subject level of the h-th item due to the m-th subject-level factor is
(
λ

(1)
mhσ

(1)
m

)2

V arW

(
Ỹhij

) .

Moreover, for a given item, the correlation between two distinct subjects belonging to the same

cluster is just the ICCh (12), so it is computable only if the specificities are decomposed.

Finally it is to be stressed that, even if from (10) all the estimable quantities are expressed in terms

of the subject-level item-specific standard deviations ψ
(1)
h , the interpretable quantities just described

are unaffected by the item scale, since they are correlations or ratios of parameters within the same

item.

Phases of the analysis

The accomplishment of careful exploratory analyses is extremely important in order to achieve

a suitable model specification, helping to avoid some of the traps which inevitably characterize the

development of a complex model. Moreover, fitting the two-level factor model for ordinal variables,

outlined in the previous Section, is computationally intensive. In fact, the marginal likelihood (8)

involves multiple integrals with respect to Gaussian densities which cannot be solved analytically.

Several estimation methods have been proposed, such as maximum likelihood with adaptive Gaussian

quadrature (Rabe-Hesketh et al., 2005) and Bayesian MCMC algorithms (Ansari and Jedidi, 2000;

Goldstein and Browne, 2002); other methods can be successfully applied, as discussed in the final

Section. Anyway, the computational burden is necessarily heavy, so it is crucial to base model selection

on suitable exploratory analyses, which allows to limit the number of fitted models and to supply the

algorithms with good starting values.

For the analysis we suggest to adapt to the ordinal case Muthén’s strategy for continuous items

(Muthén, 1994).

1. Univariate two-level models. As a first step, it is advisable to fit a set of univariate ordinal

variance component models, one for each item, with the following specification in terms of latent
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responses:

Ỹhij = µh + e
(2)
hj + e

(1)
hij , h = 1, · · · , H , (15)

where e
(2)
hj are cluster-level errors with standard deviation ψ

(2)
h and e

(1)
hij are subject-level er-

rors with standard deviation ψ
(1)
h , implying V ar(Ỹhij) =

(
ψ

(2)
h

)2
+

(
ψ

(1)
h

)2
. To overcome the

usual latent response identification problem, let fix µh = 0 and ψ
(1)
h = s for each item h,

where the constant value s depends on the link, e.g. s = 1 for the probit and s = π/
√

3

for the logit. The estimable parameters are then the thresholds and
(
ψ

(2)
h

)2
, with the related

ICCh=
(
ψ

(2)
h

)2
/

[(
ψ

(2)
h

)2
+ s2

]
. The point estimates and significance of the ICCh allow to eval-

uate if a two-level analysis is worthwhile, while a comparison of the thresholds among the items

should give some hints about possible restrictions to be imposed in the multivariate model.

2. Exploratory non-hierarchical factor analysis. In order to shade some light upon the covariance

structure of the data, it is useful to estimate the matrix of product-moment correlations among

the latent responses, i.e. the polychoric correlation matrix of the items, and to use this matrix to

perform an exploratory non-hierarchical (i.e. single-level) factor analysis by means of standard

software.

3. Exploratory between and within factor analyses. More specific suggestions for the two-level model

specification can be obtained from separate exploratory factor analyses on the estimated between

and within correlation matrices of the latent responses. The results of this two-stage procedure

are expected to be similar to that obtained from the full two-level analysis, as in the continuous

case (Longford and Muthén, 1992).

The decomposition of the latent response correlation matrix into the between and within com-

ponents, can be obtained by means of a multivariate two-level ordinal model with unconstrained

covariance structure. For each item the equation for the latent response is just (15), but now the

items are jointly modelled with an unconstrained between covariance matrix V ar{(e(2)
1j , · · · , e(2)

Hj)
′}

and an unconstrained within covariance matrix V ar{(e(1)
1ij , · · · , e(1)

Hij)
′}. Despite the latent nature

of the involved variables, the correlation matrices are identified. Note that the number of ran-

dom effects in this multivariate model is equal to twice the number of considered items, so the
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estimation process is computationally demanding. If the computation takes too long, it may be

advisable to consider an approximate solution, assigning a score to the item categories and fitting

a multivariate two-level model for continuous responses: the resulting correlation matrices will

have slightly attenuated values, unless the distributions of the transformed variables are very far

from the Gaussian distribution (Muthén and Kaplan, 1985).

4. Confirmatory two-level factor analysis. The results of the exploratory two-stage factor analysis

outlined in step 3 are used to specify one or more confirmatory two-level ordinal factor models

as defined by expression (4). These models can be fitted by means of likelihood or Bayesian

methods and compared on the basis of appropriate indicators. The exploratory two-stage factor

analysis of point 3 provides fine initial values for the chosen estimation procedure, which may

allow a substantial gain in computational time. Note that a large amount of computational time

can be saved by omitting the cluster-level item-specific errors e
(2)
hj , so that the variances of the

subject errors e
(1)
hij are in fact the total specificities. As illustrated in Interpretation of model

parameters, this simplification prevents a full variance decomposition and the computation of

the related quantities, but it is expected to be of minor importance as far as the interest of the

researcher centers on the factor structure.

Application

The ordinal multilevel factor model has been used to analyze five items on job satisfaction taken

from a telephone survey conducted, from one to two years after the degree, on the 1998’s graduates

of the University of Florence.

The question on job satisfaction was asked to the employed graduates. Altogether the considered

data set includes 2432 graduates from 36 degree programmes, with a highly unbalanced structure: the

minimum, median and maximum number of employed graduates per degree programme are 3, 31.5

and 495, respectively.

The question: How much are you satisfied with the following aspects of your present job? required

a response on a five point scale: 1. very much satisfied, 2. very satisfied, 3. satisfied, 4. unsatisfied,

5. very unsatisfied. The five considered items are: 1. Earning, 2. Career (career’s opportunities), 3.
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Consistency (consistency with degree programme curriculum), 4. Professionalism (acquisition of pro-

fessionalism), 5. Interests (correspondence with own cultural interests). The univariate distributions

of the items are reported in Table 1. Note that the number of responses for each item is different,

due to item non-response. The multilevel factor model adopted here allows for missing item values:

maximum likelihood estimates are unbiased under the usual Missing At Random assumption (Little

and Rubin, 2002).

The main aim of the analysis is to describe and summarize the aspects of satisfaction measured

by the five considered items, separately for the graduate and degree programme levels. The two-level

factor model for ordinal variables, defined by (1) and (4), is a useful tool to achieve this goal. The

model is quite complex and, whichever algorithm is used, the fitting process is very time-consuming,

so it is useful to follow the exploratory steps outlined in Phases of the analysis.

Univariate two-level models

The analysis begins by fitting the univariate ordinal variance component models (15), using the

logit link for consistency with the confirmatory factor model. The maximum likelihood estimates, via

adaptive quadrature, are reported in Table 2.

The between proportion of variance of the latent responses, ICCh, is significantly different from

zero for all items, as shown by the LRT comparing the models with and without random intercept.

Note that when the LRT is testing on the boundary of the parameter space, like in this case, the

limiting distribution of the LRT statistic is not the usual χ2
1, but instead a 50:50 mixture of a χ2

0 (i.e.

a point mass at zero) and a χ2
1. Therefore the p-values reported in Table 2 are halved (Snijders and

Bosker, 1999).

Note that the ICC for the first three items is over 5%, which is valuable in a framework with

categorical variables.

A comparison among the thresholds gives some ideas on possible constraints on the thresholds in

the multivariate model. In particular, the differences between adjacent thresholds among the items

should be compared to informally evaluate the plausibility of the equal latent thresholds structure

outlined in Model likelihood and identification. In the present case, these differences are similar for all
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the items, except for the third one, which has smaller differences. This suggests that the third item

has a higher variability, as also confirmed by the variances calculated after item scoring (see Table

5). In the confirmatory factor analysis we will perform a test comparing the equal latent thresholds

structure with the unconstrained one.

Exploratory non-hierarchical factor analysis

The second step requires the estimation of the matrix of product-moment correlations among the

latent responses, i.e. the polychoric correlation matrix (see Table 3), whose entries are all significantly

different from zero. This matrix is used to perform an exploratory maximum likelihood factor analysis

via standard software. The results of this analysis (Table 4) suggest the presence of two factors: a

cultural factor (labelled Factor 1), that explains primarily the Consistency-Professionalism-Interests

correlations, and a status factor (labelled Factor 2), explaining mainly the Earning-Career correlation.

Given the low proportions of between variance (ICC’s of Table 2), this structure is expected to be

quite similar to the within structure, though it may be very different from the between structure.

Exploratory between and within factor analyses

The third step of analysis calls for the decomposition of the overall correlation matrix of the

latent responses into the between and within components. This task would require to fit a two-level

multivariate ordinal model with five random effects for each level, which takes too long to be fitted

with numerical integration. Therefore an approximate procedure is adopted, assigning a score to each

item category. Various sophisticated scoring systems could be applied (Fielding, 1999), but given the

preliminary nature of this step, the simplest scoring system is applied, assigning the rank value to

each category. After scoring, the within and between covariance matrices can be estimated by fitting

a multivariate two-level model for continuous responses. To this end the MLwiN software with RIGLS

algorithm (Rasbash et al., 2004) is used. RIGLS yields restricted ML estimates, which are less biased

for variance-covariance parameters than full ML (Goldstein, 2003).

The results are shown in Tables 5 and 6. As for Table 5, note the following points: (i) it is

clear from the last row of Table 5 that the third item (Consistency) has the higher variability, as yet
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noted in the univariate analysis (Table 2); (ii) the between percentages of variance (i.e. the values on

the diagonal) are in line with ICC’s of Table 2; (iii) the between percentages tend to be higher for

covariances than for variances.

As for Table 6 note the following points: (i) the total correlation matrix, which is obtained from

the between and within components, is similar to the polychoric correlation matrix (Table 3), with

a moderate attenuation; (ii) the structures of the between and within correlation matrices are quite

different: for example, the between correlations are always higher than the within correlations; (iii)

the within correlation matrix is similar to the total correlation matrix, due to the low proportion of

between variances and covariances.

The results of the exploratory maximum likelihood factor analyses performed on the within and

between correlation matrices of Table 6 are reported in Table 7.

As for the within structure, Bartlett’s test indicates that two factors are sufficient (p-value=

0.5082). The factor loadings are similar to those found in the non-hierarchical analysis (Table 4).

As for the between structure, while one factor is not enough, the estimation with two or more

factors encounters an Heywood case. We decided to retain two factors, forcing the specificities to be

non-negative. The second factor is measured by all items, while the first factor has relevant loadings

only for the last three items.

Confirmatory two-level factor analysis with unconstrained thresholds

Finally, in the light of the results of the exploratory analysis, a two-level confirmatory factor

analysis is performed using the model defined by equations (1) and (5). Maximum likelihood estimates

are obtained with Mplus version 3 (Muthén and Muthén, 2004). Mplus performs ML estimation via an

EM algorithm, solving the integrals with adaptive numerical integration. When the response variables

are ordinal, ML estimation can be carried out with the logit link, while the probit link is not available.

This implies a little change with respect to the model discussed in Description of the model, namely

the distribution of the e
(1)
hij is logistic instead of Gaussian. Note that the logit implies that ψ

(1)
h is equal

to π/
√

3, instead of 1 for the probit, while µh = 0 as for the probit.

The within and between structures emerging from the exploratory analyses are not equally reliable:
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the within part is estimated on a large number of observations and Bartlett’s test clearly indicates the

presence of two factors, while the between part is estimated on only 36 degree programmes and the

estimation is complicated by the presence of an Heywood case.

Therefore, for the within part of the model the two-factor structure suggested by the exploratory

within factor analysis (see Table 7) is retained, constraining to zero the loadings that were close to

zero, that is the loading of Earning in the first factor and the loadings of Consistency and Interests in

the second factor. As for the between structure, since the hints from the exploratory analysis are less

clear, two configurations at this level have been tried: (i) a one-factor unconstrained structure (model

M1); and (ii) a two-factor structure (model M2), with unconstrained loadings in the first factor and

two loadings equal to zero in the second factor (Earning and Career, see Table 7).

Models M1 and M2 are fitted without imposing any restriction on the thresholds, in order to

preserve the covariance structure from possible misspecifications of the thresholds. Since we are not

particularly interested in decomposing the item specificities, in order to reduce the computational effort

the cluster-level item-specific errors e
(2)
hj are omitted, so the specificities are in fact total specificities.

The models are fitted using five quadrature points for each factor, for a total of 625 quadrature points.

Some limited trials suggest that larger numbers of quadrature points do not improve the estimates in

a significant manner.

The likelihood ratio test comparing the models M1 and M2 clearly indicates that the second model

is better. The preferred model M2 has 35 estimable parameters: 20 thresholds γc,h, 5 factor loadings

λ
(1)
mh and 2 factor standard deviations σ

(1)
m at the graduate level (m = 1, 2), 6 factor loadings λ

(2)
mh and

2 factor standard deviations σ
(2)
m at the degree programme level (m = 1, 2). The parameter estimates

for model M2 are reported in Table 8. The interesting part of the model is the covariance structure

at both levels, which does not depend on the item means and thresholds and can be summarized

by the communalities (see Table 9). These values are obtained as suitable transformations of model

parameters: the factor-specific communalities are computed from formulae such as (14), the total

communality is obtained by summing the row values FW1, FW2, FB1 and FB2 (see equation (13)),

while the last column of the Table is the percentage of total communality due to the between level.

The following points should be noted: (i) for the first three items the between component is greater
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for the communality (last column of Table 9) than for the total variance (ICC’s of Table 2); (ii)

the last two items, Professionalism and Interests, are very poorly explained by the factors at degree

programme level; (iii) the first factor at the degree programme level, FB1, is interpretable as a status

factor, while the second one, FB2, is essentially related to the item Consistency.

The factor scores at degree programme level are represented in Figure 1, where the labels are

attached to the degree programmes with extreme scores: the points on the right side of the diagram

indicate a high satisfaction on Earning and Career, while the points on the top denote a high sat-

isfaction on Consistency ; note that there are two degree programmes lying in the left-down corner

(Philosophy and Natural Sciences) with low satisfaction on both dimensions.

The analysis could be deepened by adding some covariates, but this is beyond the goal of the paper.

Anyway, this extension is straightforward even if it may require a substantial increase in computational

time.

Finally, a quick test to evaluate if the model selection is influenced by the omission of the cluster-

level specific errors e
(2)
hj consists in fitting the same models as before except for treating the responses as

continuous, i.e. using the item scores. In such a case Mplus avoids numerical integration, so estimation

takes a few seconds. Two models on item scores are fitted: M1∗ and M2∗, corresponding to M1 and

M2, i.e. without cluster-level item-specific errors e
(2)
hj . The likelihood ratio test comparing these two

models confirms that M2∗ is better than M1∗ (LR statistic= 51.7, df=3). Next, the same two models

on item scores with the addition of cluster-level item-specific errors e
(2)
hj are fitted: M1+ and M2+.

The likelihood ratio test comparing these two models leads to a less clear result (LR statistic= 7.4,

df= 3, p-value= 0.06). Therefore the choice of not decomposing the specificities may have unexpected

consequences on the selection of the factor structure, suggesting to further investigate this point.

Confirmatory two-level factor analysis with constrained thresholds

At this point, it is interesting to compare model M2 with a model having the same factor structure,

but constrained thresholds. Specifically, we consider the equal latent thresholds structure described

in Model likelihood and identification. This structure cannot be easily imposed in Mplus because the

subject-level item-specific standard deviations ψ
(1)
h are assumed to be equal across items and cannot
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be defined as model parameters. This point can be overcome in two ways.

First, it is possible to add a set of fictitious factors each pointing to one item, except for the

reference item. This allows to define the item specific means µh and specificities ψ
(1)
h . However this

solution is computationally inefficient, as it increases by (H−1) the number of latent variables and thus

the dimension of the integration in the marginal likelihood. Second, it is possible to impose non-linear

constraints on the thresholds in order to obtain the desired threshold structure. As previously noted,

under the assumption that the thresholds γc,h are constant across items and hence written as γc, the

actual thresholds are τc,h = (γc − µh)/ψ
(1)
h , for a total of (C − 1) + 2 · (H − 1) free parameters. In the

Mplus parametrization µh and ψ
(1)
h are assumed to be constant across items, so the threshold model

for the ordinal variables is characterized by (C−1) ·H estimable thresholds: therefore (C−3) ·(H−1)

constraints must be imposed in order to get the correct number of free parameters. To this end note

that the relationship τc,h = (γc − µh)/ψ
(1)
h implies the following equalities for any c = 2, . . . , C − 1,

and any pairs of items h and h∗:
τc,h − τ1,h

τc,h∗ − τ1,h∗
=

ψ
(1)
h∗

ψ
(1)
h

.

Hence in the present case (C = 5 and H = 5) the required 2 · 4 = 8 constraints on the actual

thresholds could be:

τ3,h − τ1,h

τ3,h∗ − τ1,h∗
=

τ2,h − τ1,h

τ2,h∗ − τ1,h∗

τ4,h − τ1,h

τ4,h∗ − τ1,h∗
=

τ2,h − τ1,h

τ2,h∗ − τ1,h∗

for h∗ = 2 (the reference item) and h = 1, 3, 4, 5.

After estimation the item-specific standard deviations and means (with respect to the reference

item) can be recovered using appropriate formulae, e.g.

ψ
(1)
h

ψ
(1)
h∗

=
τ2,h∗ − τ1,h∗

τ2,h − τ1,h

and

µh − µh∗ = ψ
(1)
h∗ · τ1,h∗ − ψ

(1)
h · τ1,h

= ψ
(1)
h∗ · [τ1,h∗ − ψ

(1)
h

ψ
(1)
h∗

· τ1,h].
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The program Mplus is used to fit a model with the same covariance structure of model M2, but with

equal latent thresholds. This leads to a model with 35 parameters and 8 non-linear constraints on the

thresholds. The likelihood ratio test for the equal latent thresholds assumption is LRT = 17.19 with 8

df giving a p-value=0.028. Therefore, with the data at hand the use of such structure is questionable,

although the consequences on the communalities and factor scores are found to be modest.

An alternative software for fitting the models described in this paper is the gllamm command of

Stata (Rabe-Hesketh et al., 2004b), a highly flexible procedure which allows to fit the two-level factor

model for ordinal variables both with unconstrained thresholds and with equal latent thresholds. In

gllamm the equal latent thresholds structure is appealing, since it is implemented through a special link

function, the scaled ordered probit (option link(soprobit)), whose scale parameters are the standard

deviations of the specificities, ψ
(1)
h .

The gllamm command performs maximum likelihood, using a Newton-Raphson algorithm with

adaptive Gaussian quadrature. In our application, the results obtained with gllamm are similar to

those yielded by Mplus, though the computational times are substantially longer.

Concluding remarks

Multilevel factor models for ordinal variables are useful but complex tools, giving rise to problems

of specification, identification, estimation and interpretation. At present the major obstacle to a wide

use of such models is due to software limitations. To our knowledge the only widespread packages able

to yield ML estimates for the models here discussed are Mplus and the gllamm command of Stata.

The application presented in the paper relies on Mplus.

In the framework of full information maximum likelihood the maximization techniques can be

classified along two dimensions (Rijmen et al., 2003): the method of numerical integration of the

intractable integrals used to approximate the marginal likelihood and the type of algorithm used to

maximize the approximate marginal likelihood. Numerical integration can be deterministic, such as

Gaussian quadrature (adaptive or not), or stochastic, such as Monte Carlo integration. The max-

imizing algorithm can perform the maximization directly on the marginal likelihood, such as the

Newton-Raphson, or indirectly on some variant of the likelihood, such as the EM. In general the
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computational time of Gaussian quadrature depends mainly on the number of factors, so models with

three or more factors per level may take too much time for being of practical use. In such cases Monte

Carlo integration may be more convenient. Anyway, there are promising attempts to improve the

efficiency of numerical integration techniques (e.g. spherical quadrature: Rabe-Hesketh et al., 2005;

quasi-Monte Carlo: Pan, 2004).

As for the maximizing algorithm, further research is needed to assess the relative merits of Newton-

Raphson, EM and their numerous variants, and to assess the interactions with the numerical integra-

tion techniques. A promising route is the adaptation of simulation-based methods (Gouriéroux and

Monfort, 1996) to the class of multilevel factor models: an interesting example in this respect is the

application of Mazzolli (2001) concerning a multilevel SEM with ordinal variables. In the search for

approximate but computationally efficient methods, the development of limited information maximum

likelihood (Muthén and Satorra, 1996) may be worthwhile.

In the Bayesian paradigm there is a growing research activity aimed at developing efficient MCMC

algorithms for models with latent variables: in particular, Ansari and Jedidi (2000) and Goldstein

and Browne (2004) treated multilevel factor models with binary responses, while Fox and Glas (2002)

considered more general multilevel structural models. Although faster estimation algorithms can be

developed, the supplementary computational effort needed to treat the response variables as ordinal,

instead of continuous, is inevitably not negligible, so one can legitimately wonder whether the effort

is adequately repaid in terms of the quality of statistical inference. A general answer is obviously

not possible. The results of Muthén and Kaplan (1985) suggest that in factor models treating the

ordinal variables as continuous is not severely harmful on condition that the frequency distributions

are unimodal with an internal mode. Anyway, the use of a proper model is always a desirable feature

of the analysis and the resulting inferences are generally more reliable.

As a final note, we stress that multilevel factor models should be handled with care. Hence, even

if very efficient estimation algorithms were available, it is a good practice, especially in the case of

ordinal response variables, to fit a multilevel factor model as the final step of the analysis, after having

explored the data with simpler techniques.
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Table 1: Univariate distributions of job satisfaction items. 1998’s graduates from the University of
Florence.
ITEM LEVEL OF SATISFACTION TOTAL

1 2 3 4 5 % N
1. Earning 7.8 23.9 38.1 20.5 9.7 100.0 2421
2. Career 11.0 28.2 32.6 18.0 10.2 100.0 2393
3. Consistency 24.5 27.5 24.2 12.5 11.3 100.0 2427
4. Professionalism 26.0 40.3 22.8 7.7 3.2 100.0 2420
5. Interests 21.5 32.7 28.2 10.8 6.8 100.0 2419
TOTAL 18.2 30.5 29.2 13.9 8.2 100.0 12080

Table 2: Univariate ordinal logit variance component models: ICCh, thresholds and p-value of
LRT comparing models with and without random intercept. 1998’s graduates from the University of
Florence.
ITEM ICCh Thresholds LRT

(%) γ1 γ2 γ3 γ4 statistic p-value
1. Earning 5.5 -2.56 -0.81 0.86 2.29 88.40 0.000
2. Career 8.7 -2.35 -0.63 0.84 2.14 145.68 0.000
3. Consistency 6.6 -1.14 0.11 1.25 2.19 98.80 0.000
4. Professionalism 1.8 -1.03 0.71 2.15 3.46 6.18 0.006
5. Interests 2.1 -1.24 0.24 1.63 2.71 17.79 0.000

Table 3: Polychoric correlation matrix of the items. 1998’s graduates from the University of Florence.
ITEM 1 2 3 4 5
1. Earning 1.00
2. Career 0.54 1.00
3. Consistency 0.11 0.25 1.00
4. Professionalism 0.28 0.45 0.54 1.00
5. Interests 0.16 0.33 0.61 0.58 1.00
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Table 4: Exploratory factor analysis on the polychoric correlation matrix of the items: varimax
rotated factors and communalities. 1998’s graduates from the University of Florence.
ITEM Factor loadings Communality

Factor 1 Factor 2
1. Earning 0.08 0.65 0.43
2. Career 0.26 0.80 0.70
3. Consistency 0.77 0.07 0.60
4. Professionalism 0.68 0.34 0.58
5. Interests 0.78 0.16 0.63

Table 5: Two-level multivariate model on item scores: between percentage of variance (in italics)
and covariance, and total variance of items. 1998’s graduates from the University of Florence.
ITEM 1 2 3 4 5
1. Earning 5.90
2. Career 12.96 8.63
3. Consistency 21.02 13.09 7.37
4. Professionalism 10.55 7.63 6.62 2.30
5. Interests 9.57 4.75 6.07 2.76 2.36
Total variance 1.15 1.31 1.68 1.04 1.31

Table 6: Two-level multivariate model on item scores: correlation matrix decomposition. 1998’s
graduates from the University of Florence.
ITEM 1 2 3 4 5
Between
1. Earning 1.00
2. Career 0.89 1.00
3. Consistency 0.36 0.40 1.00
4. Professionalism 0.72 0.69 0.79 1.00
5. Interests 0.39 0.32 0.81 0.62 1.00
Within
1. Earning 1.00
2. Career 0.46 1.00
3. Consistency 0.10 0.23 1.00
4. Professionalism 0.23 0.39 0.48 1.00
5. Interests 0.14 0.31 0.55 0.52 1.00
Total
1. Earning 1.00
2. Career 0.49 1.00
3. Consistency 0.11 0.24 1.00
4. Professionalism 0.25 0.40 0.49 1.00
5. Interests 0.15 0.30 0.55 0.53 1.00
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Table 7: Exploratory ML factor analysis on the within and between correlation matrices estimated
from item scores: factor loadings and communalities (varimax rotation only for the within part).
1998’s graduates from the University of Florence.

Within Between
ITEM Loadings Comm. Loadings Comm.

F1 F2 F1 F2
1. Earning 0.07 0.59 0.35 0.00 1.00 1.00
2. Career 0.25 0.75 0.63 0.08 0.89 0.80
3. Consistency 0.72 0.07 0.53 0.93 0.36 1.00
4. Professionalism 0.64 0.32 0.50 0.57 0.72 0.84
5. Interests 0.74 0.16 0.58 0.71 0.39 0.66

Table 8: Confirmatory two-level factor analysis: model M2 parameter estimates. 1998’s graduates
from the University of Florence.

Loadings
ITEM Within Between Thresholds

λ
(1)
1h λ

(1)
2h λ

(2)
1h λ

(2)
2h γ1,h γ2,h γ3,h γ4,h

1. Earning - 1.09 0.75 - -3.96 -1.39 1.24 3.29
2. Career 1(∗) 1(∗) 1(∗) - -3.64 -0.92 1.46 3.37
3. Consistency 2.30 - 0.32 1(∗) -1.80 0.19 1.98 3.39
4. Professionalism 2.25 0.41 0.31 0.27 -1.79 1.07 3.36 5.27
5. Interests 2.85 - 0.09 0.47 -2.34 0.34 2.83 4.62
Factor variance 0.75 3.09 0.71 0.45

The symbol (∗) denotes a fixed value.

Table 9: Confirmatory two-level factor analysis: communalities. 1998’s graduates from the University
of Florence.

% Communality %
ITEM Within Between Total Between

FW1 FW2 FB1 FB2 on Total
1. Earning - 49.9 5.4 - 55.2 9.7
2. Career 9.6 39.4 9.0 - 58.0 15.6
3. Consistency 51.1 - 0.9 5.7 57.7 11.5
4. Professionalism 49.2 6.7 0.9 0.4 57.2 2.3
5. Interests 64.2 - 0.1 1.0 65.3 1.6
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Figure 1: Estimated factor scores for the degree programmes
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