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Some history

 EFRON & FELDMAN (1991): analysis of a 
randomized trial with partial non-compliance

 FRANGAKIS & RUBIN (2002): principal stratification 

 general framework to deal with non-compliance

 but earliest applications are for all-or-none compliance 
( discrete strata)

 JIN & RUBIN (2008): new analysis of Efron & 
Feldman data using continuous principal strata

 BARTOLUCCI & GRILLI (2011): new analysis of 
Efron & Feldman data following the approach of 
Jin & Rubin but with a different modeling strategy
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Efron-Feldman data /1

 EF: Efron B. & Feldman D. (1991) Compliance as an 
Explanatory Variable in Clinical Trials, JASA 86, 9-17.

 Subset of data from LRC-CPPT, a placebo-controlled 
double-blinded randomized clinical trial designed to study 
the effectiveness of cholestyramine for lowering cholesterol 
levels 

 data on 335 men: 164  active pills of the drug 
171  placebo pills

 Visits at two-month intervals (average length of 7.3 years)

 Variables: 

 binary indicator for treatment assignment (1 = active pills)
 compliance (proportion of assigned packets not returned, 

averaged over all visits – rounded to the second decimal)
 continuous outcome variable: average decrease in the 

cholesterol level during the study
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Efron-Feldman data /2

Drug group                                 Placebo group

The effect of the observed compliance to drug is likely the combination of a 
“genuine” effect (chemical action of the drug) and a “collateral” effect
(correlation between the degree of compliance and some unobserved 
characteristics of the patients which affect the cholesterol level, such as the 
propensity to eat healthy food or to exercise)
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Efron-Feldman data /3

Q-Q plotobserved compliance to placebo
larger than

observed compliance to drug
(adverse side-effects of the drug)  Compliance 

to placebo 
Compliance 
to drug 

Placebo 
group observed ? 

Drug 
group ? observed 

 

EF imputed the missing 
compliances using the 

percentiles (equipercentile 
equating assumption)

Maybe a restrictive 
assumption: how to 
relax it?
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Preliminary analysis

 Treatment indicator Zi (1=drug, 0=placebo)
 Potential outcomes

 Compliance: di placebo, Di drug
 Outcome: Yi

(0) placebo, Yi
(1) drug

 Preliminary analysis: separate regressions for the 
two treatment arms

SELECTED 
MODELS: 
no quadratic 
terms, but 
hetero-
schedasticity for 
Zi=1
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Modelling strategy

 Principal stratification approach of JR: Jin and Rubin 
(2008) Principal Stratification for Causal Inference With 
Extended Partial Compliance, JASA 103, 101-111.

 Principal stratification
 (di,Di) principal strata (continuous)

 E(Yi
(1) - Yi

(0) | di,Di) principal causal effect (PCE)

 Regression models for the outcomes
 Yi

(0) on di and Di

 Yi
(1) on di and Di

• Like JR we adopt principal stratification and focus on PCE

• In the regressions we allow for nonlinearities (like JR) 
but also for interactions and heteroschedasticity

• Key point: we relax one of the assumptions of JR

Assumptions /1

1. SUTVA
2. Ignorable treatment assignment
3. Strong access monotonicity (drug compliance is 

null for patients assigned to placebo and 
viceversa)
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• We rely on assumptions 1 to 3 like JR and EF

• These assumptions are untestable but reasonable in 
carefully designed randomized trials such as the 
cholestyramine study



5

Assumptions /2

 An advantage of our approach is that we do not 
invoke assumptions about the relationship 
between drug and placebo compliances

 In contrast
 EF assumed equipercentile equating of the 

compliances (a deterministic relationship)
 JR assumed negative side-effect monotonicity, i.e. 

the drug compliance is no larger than the placebo 
compliance (a stochastic relationship with Di  di)
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• Negative side-effect monotonicity seems plausible in 
placebo-controlled experiments where the drug has 
some negative side effects

• However, it is violated if there exists a subset of patients 
having positive side effects from reported cholesterol 
reductions after periodic blood tests
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Joint distribution of compliances

 The compliances di and Di are never jointly 
observed … 

 … but empirical evidence on their correlation is 
induced by the equations for the outcomes where 
both compliances enter as regressors

 For the joint distribution of the compliances, JR assumed 
that di has distribution Beta() and (conditional on di) 
the ratio Di /di has distribution Beta(), which implies Di
 di (Negative side-effect monotonicity)

• The specification of JR allows the compliances to be 
correlated, although in a particular way that should not 
be viewed as the only possible way

• How sensitive is the inference on the causal effect to the 
model on the compliances?
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Copulas

 To model the joint distribution of the compliances 
(di,Di) we use a copula, which is a flexible way to 
define a joint distribution from the marginals

 Definition: let X and Y be two random variables 
with distribution functions FX(x) and FY(y), then a 
single-parameter copula (with parameter ) is a 
function C( , ) such that C(FX(x),FY(y)) is a 
joint distribution function

 The copula has the merit of allowing us to study 
the association between the compliances without 
specifying a model for their marginal 
distributions, which are estimated by their 
empirical distribution functions
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Plackett copula

 We use a Plackett copula which has a single 
association parameter 
    negative association

    independence

    positive association

 Advantages of using a copula instead of a 
parametric density:
 no constraints on the marginal distributions

 association captured by a single parameter (to be 
estimated or used in a sensitivity analysis)
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ML estimation via EM

1. Compute the univariate empirical distribution 
functions of di and Di

2. For a set of values of the association param. 
i. Compute the joint distribution function of (di,Di) using 

the copula 

ii. Compute the likelihood 

iii. Maximize the likelihood via EM

3. Plot the profile likelihood for 

This allows us to

• see how the different values of  are supported by the data

• check for local maxima

we wrote a
MATLAB 
routine
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Model selection /1

 We begin with a general form with quadratic 
terms, interactions and heteroschedasticity
INITIAL SPECIFICATION:

1. Regression models for the means
 E(Yi

(0) | di,Di) =  …
 E(Yi

(1) | di,Di) =  …

2. Regression models for the log-variances
 logVar(Yi

(0) | di,Di) =  …
 logVar(Yi

(1) | di,Di) =  …

3. Plackett copula for the joint distribution of
(di,Di) with association parameter

9 parameters

6 parameters

1 parameter

We test several restrictions using the LR test
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Model selection /2

FINAL SPECIFICATION:
1. Regression models for the means

 E(Yi
(0) | di,Di) =    di

 E(Yi
(1) | di,Di)    di   Di   (diDi)

2. Regression models for the log-variances

 logVar(Yi
(0) | di,Di)  

 logVar(Yi
(1) | di,Di)   Di

3. Plackett copula for the joint distribution of
(di,Di) with association parameter

4 parameters

2 parameters

1 parameter
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Profile log-likelihood of log

Point estimate 
of  is 17.727 

Independence 
between di
and Di (i.e. 
=1) is 
rejected (p-
value<0.001)

Pearson 
correlation 
between di
and Di is 
0.689

a rather flat
profile
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Type of inference

 The PCE depends on the regression coefficients, which 
depend on the value of the Plackett association parameter
 which is
 estimated with low precision because of scarce empirical 

support  (flat profile log-likelihood) 
 identified thanks to the regression equations (which 

cannot be tested separately since they depend on both 
compliances)

 Thus it is not advisable to base the inference exclusively on 
the model with  at its point estimate

 First, I will illustrate the inference drawn with  at its ML 
estimate 

 Next, I will show the results of a sensitivity analysis on the 
estimated PCE by letting  vary on a suitable interval
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Association of compliances [ at MLE]

We relax the negative side-effect monotonicity (i.e. Di  di)

 21.6% of the points go beyond the bisectrix, corresponding to 
individuals with Di > di (they would take more drug than placebo)

Random draws from the bivariate distribution of the compliances

Jin and Rubin (2008) Bartolucci and Grilli (2011)
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Models for the means and PCE [ at MLE]

 E(Yi
(0)|di,Di) di

 E(Yi
(1)|di,Di) di Di  (diDi)

The estimated Principal Causal Effect is
PCE(di,Di) diDi

 The PCE depends on the dose of the drug Di and 
the slope is
 positive, except when di <0.298 (but this is rare: 12.3% of 

the subjects in the placebo arm)
 steeper at higher levels of the placebo compliance di
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Estimated PCE surface [ at MLE]

Good 
agreement 
with the 
estimates of 
Jin and 
Rubin

At the 
median 
point 
(di=0.89, 
Di=0.70) 
our ML 
estimate of 
PCE is 30, 
compared 
with 24 of 
JR (Bayesian 
posterior 
median)
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Confidence intervals for PCE [ at MLE]

 Confidence intervals for the PCE are easily 
obtained via the nonparametric bootstrap (1000 
samples)

 There is a confidence interval for each couple of 
values of the compliances, for example:
 at the medians (di=0.89, Di=0.70)  interval (22.5, 

39.2)  significant effect
 at first quartiles (di=0.59, Di=0.27)  interval (−3.1, 

9.9)  non-significant effect
 at first quartile for placebo compliance and at third 

quartile for drug compliance (di=0.59, Di=0.95) 
interval (−10.8, 34.7)  non-significant effect
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Remark: the third case refers to an unlikely couple of compliance 
levels (rarely Di is much larger than di)   very large interval

22

Sensitivity analysis

 We perform a sensitivity analysis to assess 
how the PCE depends on  (we let it vary in its 
profile likelihood interval):
 at the median point (di=0.89, Di=0.70): PCE (27.4, 

34.8) 
 at the Q1-Q3 point (di=0.59, Di=0.95):  PCE (14.0, 

29.5)

 Principal Causal Effects are reliably estimated at drug and 
placebo compliance levels near the sample medians, while 
inference at unlikely compliance levels appears to be 
unduly affected by model assumptions

Remark: this case (corresponding to an unlikely couple of 
compliance levels, i.e. far from the bulk of the data) has an high 
sensitivity (in addition to a large sampling variance – recall the 
bootstrap CI)
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Model checks

 The estimates of the PCE may critically depend on some 
modelling choices such as
 the normality of the conditional distributions of the 

potential outcomes
 the type of copula

 We check the normality assumption using a Box-Cox 
transformation of the outcomes
 the LR test does not reject the hypothesis of an identity 

transformation (i.e. no evidence against normality)
 the estimates of the PCE are quite stable (except for 

unlikely couples of compliance levels – again!)
 We check the role of the copula by replacing the Plackett 

copula with a Gaussian copula: 
 the estimates of the PCE are very stable (even for 

unlikely couples of compliance levels ) 23

Warnings

 Be aware of hidden extrapolation: the model yields 
estimates of the PCE at any couple of compliance levels, 
but for unlikely couples (i.e. far from the bulk of the data) 
the estimates are highly sensitive to model assumptions 
(beyond having a large sampling variance)

 We are not estimating a dose-response function: for a fixed 
value of di, we can draw PCE(di,Di) as a function of Di: 
however, this is not interpretable as a dose-response 
function since  the dose of the drug is not randomly 
assigned but chosen by the patients  the effect of the 
dose of the drug is mixed with the effect of the unobserved 
features associated with the degree of compliance (the 
interpretation in terms of a dose–response function would 
require further problematic assumptions – see JR’s section 
4)

24
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Final remarks

 Our ML estimates of the causal effects for the Efron-
Feldman data are similar to the Bayesian estimates of Jin 
and Rubin (2008) …

 … but we offer an alternative modelling strategy yielding a 
different interpretation due to
 interaction between the compliances in the principal 

causal effect 
 flexible specification of the joint distribution of the 

compliances through a copula ( doubts on the negative 
side-effect assumption)

 Merits of our approach:
 The joint distribution of the compliances is modelled in a 

flexible way (relaxing assumptions)
 Sensitivity analysis is straightforward
 ML estimation via EM is computationally simple

Thanks for your attention!

grilli@ds.unifi.it


