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MODELLING THE IMPACT OF
OVERNIGHT SURPRISES

ON INTRA-DAILY VOLATILITY

GIAMPIERO M. GALLO∗

Università di Firenze

Abstract

In this paper we evaluate the impact that stock returns recorded
between market closing and opening the next business day have on
intra-daily volatility. A simple test shows that the estimated volatil-
ity clustering of the intra-daily returns may be affected by a market
opening surprise bias. An extension of the standard GARCH model is
suggested here to include the effect of this surprise and is applied on a
sample of largely traded US stocks. The performance of two specifica-
tions in which this effect is included is evaluated in an out-of-sample
forecasting exercise relative to their standard counterparts.

Keywords: Volatility forecasting, univariate GARCH, market opening sur-
prise bias.
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I INTRODUCTION

The empirical study of asset price dynamics is often carried out on daily
data and it is customary that returns are measured as the log-differences of
the closing prices. Amihud and Mendelson (1987) [1] and Stoll and Whaley
(1990) [11] offered a rationale for this practice, arguing that returns measured
as open-to-open are affected by specific trading mechanisms at work when
markets open, resulting in a number of unappealing statistical features in
the corresponding time series. Some authors attribute to trading the feature
of conveying a flow of information which is interrupted during closing times
(Romer, 1993 [10], Dow and Gorton, 1993 [4], ). Hence, opening prices
are reckoned to be of interest, since they convey the impact of information
accumulation during closing times. It is the claim of this paper that this
information can be relevant when evaluating the intra-daily volatility, even
without resorting to high frequency data. This is consistent with the findings
in the literature that there is a higher transitory volatility at opening time
and that this volatility declines during the day (e.g., Gerety and Mulherin,
1994 [8]). The results in this paper account for the transmission of the
variability measured at the market opening to the volatility measured during
that day.

Put differently, throughout this paper, we will consider (close-to-close) re-
turns as the sum of (close-to-open) overnight returns and of (open-to-close)
intra-daily returns, and examine the specific question as to whether the for-
mer can have a statistically significant impact on the volatility of the latter.
The answer provided here is positive since the models suggested all point to
the relevance of augmenting the information set to include market opening
surprises.

This decomposition echoes the approach adopted by Lin et al. (1994) [9]
who examine the effects on volatility of the interactions between stock indices
from the Tokyo and New York stock exchanges. Such markets are never open
at the same time, and therefore either market’s intra-daily return can be seen
as conveying relevant information for the other market when it opens. Yet,
the present paper departs from that approach in various ways. On a sub-
stantive level, the present approach is of particular interest for assets traded
in segmented markets, e.g., for individual stocks traded on a single special-
ized market for which there is no natural source of additional information
coming from other markets. It is argued here that there is an asymmetry
of behavior behind the realizations of the two components (one originating
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from the accumulation of news during times when exchanges are not pos-
sible, the other from active trading) which makes this analysis distinctive
from the traditional analysis of returns in different markets. By the same to-
ken, therefore, the distinction between the meteor shower/heat waves nature
of innovations across foreign exchange markets operating around the clock
(Engle et al. 1990) [5] does not apply in this context, nor does the need
for correcting the effects implied by simultaneous trading, as in Burns et al.
(1998) [2].

We choose to address the characteristics of this interaction by first es-
tablishing some stylized facts on the two types of returns measured on a
sample of 20 widely traded stocks (Section II); we then suggest a simple test
in order to examine whether there is an opening surprise bias, i.e., whether
the overnight innovation is potentially relevant in explaining the clustering
in intra-daily conditional variance relative to the close-to-open return (Sec-
tion III). In a univariate framework, a model for intra-daily conditional
variance can be derived to account for the explanatory power of the open-
ing innovation (Section IV). A forecasting comparison (Section V) shows
that the extension has a better Mean Absolute Error than standard GARCH
models although it is slightly outperformed in a Root Mean Squared Error
sense. Concluding remarks follow.

II OPENING AND CLOSING PRICES

Let us consider a single stock, and let us define daily returns as the difference
between the logarithms of closing prices. Clark (1973) [3] considers the daily
return on an asset at time t as the sum (arising from a random number of
trades nt) of independently and identically distributed price movements with
mean 0 and variance σ2. Accordingly, conditional on nt, the variance of the
daily returns is ntσ

2. As noted by Gallo and Pacini (1998) [7], one should
keep in mind that among these nt trades, the first recorded price movement
(occurring at market opening time) is bound to have different stochastic
properties than the intra-day price movements. This different nature arises
from the specific market microstructure and opening price formation process
where, alongside the mechanisms adopted for market trading, the overnight
accumulation of information plays a special role. Among the elements of this
information flow, one can consider general stock exchange behavior around
the world, macroeconomic or sector specific news released during market close
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and, of course, cross-listings of the same stock on other stock exchanges.
We will then consider the decomposition of the daily returns by adding

and subtracting the log of opening prices. We will depart from standard
practice by referring to the closing price at time t as Ct (instead of Pt),
and to the opening price as Ot leaving lower case letters to denote (natural)
logarithms of the corresponding quantities. Thus, the daily returns are seen
as

rt = log(Ct)− log(Ct−1)

= ct − ot + ot − ct−1

= ri,t + ro,t, (1)

where ri,t denotes the intra-daily return and ro,t is the overnight return. By
so doing we design a suitable framework to investigate whether the latter has
an impact on the former’s conditional mean and variance1. Thus, given the
assumptions on conditional moments

ri,t|It−1 ∼ (µri
t , hri

t ) (2)

what will follow will focus on whether enlarging the information set It−1 to
include ri,t is relevant for the conditional variance hri

t−1
2.

Let us start by considering 20 large caps stocks (the complete list of tickers
and explanations is in Table I) traded on the New York Stock Exchange
(NYSE): many of these stocks are included in the sample examined by various
authors (Amihud and Mendelson, 1987, among others) and therefore can be
deemed representative of other actively traded stocks. The chosen sample
period is from Jan. 4, 1994 to Oct. 1, 1998 (a total of 1235 days). We will
work on the residuals of the least squares regressions

ri,t = a + bro,t + ζt

ro,t = c + dri,t−1 + ηt,

that is:

ζt = ri,t − r̂i,t

= ri,t − (a + bro,t)

ηt = ro,t − r̂o,t

= ro,t − (c + dri,t−1).
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Extracting the residual from the mean equation does not affect the estimation
of conditional variance (Engle and Ng (1993) [6]), and thus allows us to
concentrate just on the volatility modelling.

Table I about here

For the purposes of this paper, it suffices to report just a few stylized
facts about some relevant characteristics of the ηt’s and the ζt’s:

1. Figure 1 presents the time series profile of the three series (ro,t, ri,t

and their sum rt) for a few of the stocks under scrutiny here, from
which we can see that, by and large, the familiar pattern of volatility
clustering is replicated in the two component series, justifying the claim
that the series of overnight innovations has some distinctive features
which make the first trade of the day qualitatively different from each
successive single trade during the day.

Figure 1 about here

2. Table II shows the results of the ARCH LM test performed on both ηt

and ζt (p-values are reported for each stock in the second row). This
table shows that conditional volatility clustering in overnight innova-
tions is present in many stocks but it is not a widespread distinctive
feature of the series, while the presence of ARCH effects is detected in
all the stocks for the intra-daily innovations.

Table II about here

III THE OPENING SURPRISE BIAS TEST

Having established that ARCH effects are present in the ζt’s, while they may
or may not be present in the ηt’s, the relevance of the latter in a model for the
former can be seen, more formally, in terms of a set of estimation residuals
standardized by the conditional standard deviation using information on ζ
alone. In particular, one would not be able to find any significant parameter
from regressing the squared standardized residuals of ζt on a constant, ηt

and η2t . The test can be seen as a specification for the conditional variance
model and can be called an opening surprise bias test in a spirit analogous to
the negative size bias test suggested by Engle and Ng (1993). In Table III,
we report the results for the t-statistics on single coefficients, and the joint
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F-test (with p-values in the second row) for the regression

ζ2t
hζ

t

= φ0 + φ1ηt + φ2ηt1Iηt<0 + φ3η
2
t + ut (3)

where hζ
t is estimated by a standard GARCH(1,1) and a term for possible

asymmetric effects in the opening surprise was inserted.

Table III around here

Having both the value of ηt and its square in the auxiliary regression
ensures that possible asymmetries of effects are captured (a point to which
we will return later). It is clear that, at least judging from the p-value of the
joint F-test, the informational value of the overnight news is quite relevant,
since for only four out of the twenty stocks does the test accept the null
hypothesis of zero effects (Bethlehem Steel, Eastman Kodak, Goodyear and
Exxon). The issue of the sign of the impact does not seem as important as
its presence, since most φ̂1’s are not significant.

we have thus established the potential for investigating the consequences
for intra-daily volatility (evaluated as of the opening time in t), deriving
from the insertion of ηt in the information set and its role in the presence of
asymmetric (“leverage”) effects. Moving now to its full measurement we will
adopt the framework of a simple, univariate Threshold GARCH(1,1) specifi-
cation, applied on the original process ζt with η2t included as a predetermined
variable.

The appealing feature of this specification is that it can be used both in
an ex ante framework, when ηt is observed, but also, as of t− 1, on the basis
of scenarios about what the overnight surprise could be.

IV OPENING NEWS IN THE CONDITIONAL VARIANCE

The model begins with the consideration that the realization of ηt is observed
at the opening of the markets and hence can be used to form a modified
prediction of the intra-daily volatility3.

We have tried four specifications for hζ
t , namely,

hζ
t = ω + α1ζ

2
t−1 + β1h

ζ
t−1; (4)

= ω + α1ζ
2
t−1 + β1h

ζ
t−1 + φη2t ; (5)

= ω + α1ζ
2
t−1 + γ1ζ

2
t−11Iζt−1<0 + β1h

ζ
t−1; (6)

= ω + α1ζ
2
t−1 + γ1ζ

2
t−11Iζt−1<0 + β1h

ζ
t−1 + φη2t . (7)
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The first model is the standard GARCH(1,1) already commented on
earlier (labeled G), followed by a GARCH(1,1) with predetermined vari-
ables (GARCH-X) with η2t as the predetermined variable (labeled GX); the
third and the fourth models, in parallel with the first two, are Threshold
GARCH(1,1) models where a term is inserted accounting for the possibil-
ity that negative past innovations in ζ can increase its volatility (labelled,
respectively, TG and TGX). Table IV summarizes all estimation results
(parameter values with associated t-values), as well as some diagnostics on
the estimation results (value of the Schwarz Information Criterion and of an
ARCH LM test statistic for 4 lags and its associated p-values).

Table IV around here

The results warrant the following comments:

• The absence of an opening surprise bias would be confirmed, based on
the lack of significance of the estimated coefficients φ̂ in models (GX)
and (TGX) for the stocks which had not signaled such a bias in the
test before. However, judging from the outcome of a likelihood ratio
test (the critical values for a significance of 5% are 3.84 for one degree
of freedom and 5.99 for two), the pair-wise comparison between the
nested models shows a significant difference when η2t is inserted in the
specification;

• The consideration of the Threshold GARCH models aims at assessing
whether the opening surprise bias could be due to the neglected asym-
metric effects, but this occurs only once (for the Disney stock for which
the leverage effect is significant). One way of looking at the interaction
between the two effects is to arrange the instances in a 2 × 2 table in
which either rejection is or is not accounted for in the model (TGX).

φ = 0 φ �= 0
γ1 = 0 5 5
γ1 �= 0 1 9

Note that in this context the occurrence of opening surprise biases is
more frequent than the presence of asymmetric effects. As a matter of
fact, less qualitatively, likelihood ratio test statistics can be computed
for the zero restrictions imposed on Model (TGX) which result, re-
spectively, in a. Model (G) (Augmented T-GARCH versus GARCH -
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two restrictions corresponding to opening surprise and leverage effect),
b. Model (GX) (one restriction - leverage effect) and c. Model (TG)
(one restriction - opening surprise). This is done in Table V, where for
each stock, the first row reports the value of the test statistic relative to
Model (TGX), and the second row reports the corresponding p-value
associated with the null of the validity of the zero restrictions.

Table V around here

The results are overwhelmingly in favor of the opening surprise effect,
in that only in the case of Exxon is the restriction φ = 0 accepted
while in all other cases it is rejected. The pure leverage effect is less
supported by the data, with the restriction being accepted for Chevron,
Procter & Gamble, Texaco and Exxon. Finally, the absence of joint
effects is always rejected (with the exception, again, of Exxon).

• There are three instances in which the insertion of a leverage effect gives
a negative estimated value for α1. This, in principle, may create prob-
lems with the non-negativity requirement for the estimated variance,
although this was not the case for the series at hand;

• Finally, the results on asymmetric effects from ηt itself (not reported
here) do not signal any significant impact of negative values of ηt on
the conditional variance.

V A FORECASTING COMPARISON

A full comparison among the four models can be performed in an out-of-
sample forecasting context as well, over the period Oct. 2, 1998 to Jan.
7, 1999, which immediately follows the estimation period and includes 195
observations. The forecasting strategy is one step ahead, by computing the
values of ζ’s and η’s on the basis of the coefficients estimated over the sam-
ple Jan. 7, 1994 to Oct. 2, 1998. The forecast errors are computed as
the difference between the squared realized ζ’s and the variance forecasts
according to each model. As synthetic indicators, we use the out-of-sample
Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) as
shown in Table VI. This complements the analysis presented in Section IV
regarding the evaluation of estimated models. We report, therefore, the sim-
ple GARCH (G), the GARCH with η2t (GX), the Threshold GARCH (TG),
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and the Threshold GARCH with η2t (TGX). Note that we have reported in
boldface character the lowest value of each indicator among the four models,
and that, for ease of reference, we have added an asterisk next to the ticker
when the joint opening surprise bias test above turned out to be significant
(cf. Table III).

Table VI around here

The results point out at least two interesting features:

1. if the criterion used is the mean of forecast errors in absolute value, the
performance of the models where the η’s are included is outstanding,
dominating the more standard models in all cases (14 best performances
for the GARCH-X and 6 for the TGARCH-X).

2. When the other indicator is used, though, this predominance disappears
mainly in favor of the standard GARCH models (13 for the GARCH
and 4 for the TGARCH).

An explanation for these features might be that the extended models perform
less satisfactorily than their standard counterparts when extreme episodes of
volatility are involved: in such instances, in fact, one can expect larger fore-
cast errors which, when weighed more heavily as squares, reveal a poorer
performance in the augmented models. The issue of deciding which kind of
metric translates best into a suitable evaluation criterion still stands and will
not be pursued here (Gallo and Pacini, 1998, [7] adopt an asymmetric cri-
terion for negative and positive forecast errors). However, limiting ourselves
to the comparison between the absolute and the quadratic criteria presented
here, we can draw some suggestions as to the behavior of the models by look-
ing at the scatterplots of the forecasts obtained using the best performing
model according to the MAE (which as we said include the opening surprise
effect) and the ones obtained using the best performing model according
to the RMSE (when this is a standard model). We have selected twelve
cases (neglecting those where the difference was not informative), showing
different situations and a common feature: standard GARCH– or TGARCH–
based forecasts, reported on the x-axis are sistematically higher than their
GARCH-X or TGARCH-X counterparts. This may explain the fact that,
when episodes of higher volatility are involved, traditional GARCH models
seem to react more than their augmented counterparts, avoiding those large
errors associated with such extreme phenomena. On the other hand, aug-
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mented models fit better the actual volatility, so when extreme values are not
squared (i.e. when MAE is used instead than RMSE) they perform better.

Figure 2 about here

VI CONCLUSIONS

In this paper we have examined the question of whether the information
contained in the overnight returns (measured as open–to–previous close) can
be useful in explaining the volatility of the intra–daily returns (measured as
close–to–open differences). The results obtained provide a positive answer in
that a test suggested here reveals a so–called opening surprise bias. As such,
the overnight return has an explanatory power for the squared residuals of
the intra–daily returns when they are standardized with a univariate estimate
of the conditional variance. An extension of the univariate GARCH model
to include the squares of overnight returns in the specification shows that the
information set thus enlarged is helpful and often provides a better fit for the
conditional variance estimates. The approach followed consists of inserting
the squared overnight innovation directly into the intra-daily variance equa-
tion and has the advantage of being general and simple to compute. The
new suggestion is evaluated in a forecasting framework where one-step ahead
and out-of-sample forecasts are computed with each model. The extended
models outperform the simple GARCH or threshold GARCH as far as mean
absolute error is concerned, while a more mixed result holds for the RMSE,
favoring the standard model.
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1Notice that this decomposition has the interesting aspect of allowing a decomposition
of daily variance into the sum of conditional variances of the components and twice the
conditional covariance. We examine the issue of comparing these estimates of the condi-
tional variance of rt to those obtained by using the time series on rt alone in a separate
note.

2We also found that there is a mild effect on the conditional mean µri , but in general
this result is consistent with market efficiency.

3For example, Gallo and Pacini (1998) [7] show that the insertion of the overnight
innovation in a GARCH or EGARCH specification has the effect of significantly changing
the profile in the news impact curve (Engle and Ng, 1993, [6]).
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Tables and Figures

Table I: List of tickers and companies

TICKER Company
BA Boeing
BS Bethlehem Steel
CHV Chevron
DD Dupont
DIS Disney
EK Eastman Kodak
GM General Motors
GT Goodyear Tires Co.
HWP Hewlett Packard
IBM IBM Co.
JNJ Johnson & Johnson
JPM J.P. Morgan
MCD McDonald’s
MMM Minnesota Mng & Mfg
MO Phillip Morris
MRK Merck
PG Procter & Gamble
TX Texaco
WMT Walmart
XON Exxon
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Table II: ARCH(2) LM Test
TICKER ηt ζt TICKER ηt ζt

BA 7.6892 154.23 JNJ 5.5504 50.944
0.0214 0.0000 0.0623 0.0000

BS 2.0688 12.477 JPM 44.226 221.82
0.3554 0.0020 0.0000 0.0000

CHV 2.7124 33.741 MCD 23.220 77.014
0.2576 0.0000 0.0000 0.0000

DD 0.0283 85.019 MMM 0.2296 21.554
0.9860 0.0000 0.8915 0.0000

DIS 9.9599 73.003 MO 3.9628 6.5071
0.0069 0.0000 0.1379 0.0386

EK 0.1052 26.451 MRK 3.1517 38.161
0.9488 0.0000 0.2068 0.0000

GM 1.7647 14.155 PG 37.823 58.136
0.4138 0.0008 0.0000 0.0000

GT 29.330 46.501 TX 2.2271 103.90
0.0000 0.0000 0.3284 0.0000

HWP 0.1237 25.327 WMT 1.0620 47.088
0.9400 0.0000 0.5880 0.0000

IBM 1.2814 37.408 XON 4.1017 127.38
0.5269 0.0000 0.1286 0.0000
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Table III: Opening Surprise Bias Test
TICKER ηt ηt1Iηt<0 η2

t Joint TICKER ηt ηt1Iηt<0 η2
t Joint

BA -1.166 0.065 3.751 16.35 JNJ 1.492 -1.329 0.745 7.512
0.244 0.948 0.000 0.000 0.136 0.184 0.457 0.000

BS 2.266 -1.964 -0.921 2.392 JPM 1.434 -2.849 0.023 11.07
0.024 0.050 0.357 0.067 0.152 0.004 0.982 0.000

CHV 2.154 -2.125 0.930 13.80 MCD 0.484 -0.564 1.094 3.483
0.031 0.034 0.353 0.000 0.629 0.572 0.274 0.015

DD 1.190 -2.165 0.813 8.406 MMM 2.472 -1.461 0.890 5.720
0.234 0.031 0.416 0.000 0.014 0.144 0.373 0.001

DIS -0.423 0.244 1.767 3.965 MO 1.484 -2.216 -0.610 5.354
0.672 0.807 0.077 0.008 0.138 0.027 0.542 0.001

EK 1.308 -1.563 -0.618 1.261 MRK 1.230 -0.794 1.088 4.615
0.191 0.118 0.537 0.286 0.219 0.427 0.277 0.003

GM 1.575 -1.968 -0.109 6.471 PG 0.949 -2.079 0.375 9.373
0.116 0.049 0.913 0.000 0.343 0.038 0.707 0.000

GT 1.840 -1.933 -1.028 2.205 TX 1.381 -0.633 0.263 2.901
0.066 0.053 0.304 0.086 0.168 0.527 0.792 0.034

HWP 6.863 -5.798 -2.179 18.28 WMT -0.886 0.228 2.292 7.015
0.000 0.000 0.029 0.000 0.376 0.819 0.022 0.000

IBM 2.875 -1.776 1.572 17.05 XON 0.790 -0.646 -0.333 0.301
0.004 0.076 0.116 0.000 0.430 0.518 0.739 0.825
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Table IV: GARCH Estimation
TICKER Model ω α1 γ1 β1 φ1 SIC LM(4)
BA G 0.6030 0.2238 0.5028 3.5237 2.58

3.7775 2.9385 4.5476 0.63

GX 0.8431 0.2453 0.2939 0.1588 3.5059 3.89
5.0533 2.9715 2.7231 2.3754 0.42

TG 0.6859 0.0937 0.2177 0.4754 3.5190 1.96
3.8951 2.3277 1.9353 4.1950 0.74

TGX 0.8466 0.1150 0.2072 0.3166 0.1391 3.5047 4.33
4.4914 2.3213 1.6932 2.6013 2.2165 0.36

BS G 0.0294 0.0214 0.9738 4.4664 6.88
0.7713 2.2165 67.087 0.14

GX 0.0959 0.0179 0.9474 0.0526 4.4647 5.12
1.2742 1.6678 30.813 1.4302 0.28

TG 0.0444 0.0152 0.0213 0.9673 4.4688 6.41
0.9705 1.5537 1.6904 59.343 0.17

TGX 0.1122 0.0068 0.0277 0.9422 0.0527 4.4660 5.18
1.2165 0.6071 1.5523 26.932 1.3823 0.27

CHV G 0.0270 0.0449 0.9411 3.3334 8.60
1.8835 3.8961 62.495 0.07

GX 0.7505 0.1406 0.2989 0.5463 3.3395 2.85
5.6055 4.0517 3.1495 4.3474 0.58

TG 0.03174 0.0352 0.0265 0.9350 3.3376 7.60
2.0128 2.0960 1.0088 55.226 0.11

TGX 0.0442 0.0280 0.0379 0.9073 0.0905 3.3379 5.73
2.1383 1.6708 1.3089 39.569 2.3766 0.22

DD G 0.0270 0.0545 0.9359 3.5634 15.13
1.4373 3.0183 42.811 0.00

GX 0.0484 0.0385 0.9163 0.0724 3.5564 15.61
1.8059 2.6229 31.448 2.4469 0.00

TG 0.3888 0.0962 0.2280 0.6339 3.5664 3.79
3.3892 2.2187 3.0413 7.6998 0.44

TGX 0.3553 0.0691 0.2062 0.6212 0.1866 3.5560 3.32
3.5256 1.7342 2.8786 8.0468 3.3184 0.51

DIS G 0.0780 0.0567 0.9062 3.5080 10.26
0.9410 2.0210 13.980 0.04

GX 0.2262 0.03971 0.7804 0.1881 3.4787 7.36
2.3521 1.7839 9.5623 1.5880 0.12

TG 0.1281 -0.002 2 0.1007 0.8891 3.4944 4.21
1.2205 -0.1938 2.0828 11.771 0.38

TGX 0.2964 -0.019 0.1149 0.7500 0.1717 3.4750 2.04
2.8579 -0.9775 2.3391 9.5893 1.6030 0.73

EK G 0.7651 0.0798 0.5628 3.5984 0.89
2.0198 2.2269 2.8615 0.93

GX 0.8978 0.0687 0.4598 0.1511 3.5915 0.79
2.9846 1.8186 2.8877 2.1698 0.94

TG 0.3598 0.0187 0.1070 0.7660 3.5965 0.87
2.4369 0.7159 1.9879 9.8236 0.93

TGX 0.6408 0.0128 0.1292 0.5908 0.1102 3.5696 0.29
3.9592 0.2756 1.8506 6.4810 2.0030 0.99
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Table IV: GARCH Estimation - Cont.’d
TICKER Model ω α1 γ1 β1 φ1 SIC LM(4)
GM G 1.2382 0.0981 0.3718 3.6896 1.32

2.3686 2.4659 1.5924 0.86

GX 1.3180 0.0664 0.2641 0.3447 3.6806 2.17
3.8664 1.9022 1.7102 3.3308 0.71

TG 0.7773 0.0043 0.1365 0.5982 3.6872 1.61
2.4128 0.1594 2.2685 3.7868 0.81

TGX 1.2418 0.0090 0.1191 0.3151 0.2765 3.6823 1.44
3.9644 0.2979 1.8834 2.1851 3.1137 0.84

GT G 1.2088 0.1627 0.2244 3.4986 0.16
3.6987 2.9577 1.2398 0.99

GX 1.0004 0.1442 0.2750 0.2843 3.4942 0.28
3.5881 2.6407 1.7225 2.8330 0.99

TG 0.8289 0.0720 0.1701 0.4303 3.4978 1.36
3.3066 1.6171 1.9137 2.9122 0.85

TGX 0.8047 0.0627 0.1640 0.3861 0.2576 3.4932 1.02
3.3102 1.2174 1.8081 2.6521 2.8519 0.91

HWP G 0.0108 0.0170 0.9811 4.0898 21.80
1.2416 2.6945 132.70 0.00

GX 1.2562 0.1406 0.3900 0.3984 4.0870 0.48
5.7456 4.0332 4.7879 3.2403 0.98

TG 1.4392 0.0732 0.2179 0.4320 4.1062 0.74
4.1229 2.1283 2.6840 3.7006 0.95

TGX 1.3820 0.0279 0.2239 0.3525 0.4068 4.0823 1.25
6.0823 0.9188 3.2955 4.0651 3.1325 0.87

IBM G 0.6858 0.1646 0.6099 3.8773 1.25
2.8905 3.5224 5.4828 0.87

GX 0.8449 0.1250 0.4896 0.3635 3.8481 1.12
4.2655 3.0308 5.2791 3.6037 0.89

TG 0.7102 0.0518 0.3121 0.5718 3.8581 1.70
3.5927 1.5570 3.9475 6.2590 0.79

TGX 0.8049 0.0350 0.2528 0.4856 0.3220 3.8359 1.93
4.1231 0.8634 3.2681 5.0017 3.4453 0.75

JNJ G 0.1263 0.0694 0.8637 3.4438 5.66
1.8769 2.8948 16.164 0.23

GX 0.2332 0.0653 0.7370 0.2545 3.4234 2.70
2.6430 2.6382 10.176 3.1387 0.61

TG 0.1326 0.0290 0.0799 0.8606 3.4418 5.13
2.2168 1.2858 2.2140 17.792 0.19

TGX 0.3570 0.0261 0.1277 0.6334 0.3043 3.4230 3.00
3.3873 0.9799 2.5107 7.6089 3.0700 0.56

JPM G 0.0168 0.0529 0.9413 3.3986 28.90
1.2260 3.8145 54.134 0.00

GX 0.1861 0.1072 0.7160 0.3139 3.3765 4.76
3.2326 3.5440 11.862 3.0697 0.31

TG 0.0201 0.0311 0.0406 0.9416 3.3992 24.77
1.4367 2.2438 1.8487 55.303 0.00

TGX 0.1956 0.0551 0.1108 0.7133 0.2958 3.3757 4.35
3.3503 1.8221 2.1064 11.796 2.9169 0.36
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Table IV: GARCH Estimation - Cont.’d
TICKER Model ω α1 γ1 β1 φ1 SIC LM(4)
MCD G 0.5368 0.0888 0.6125 3.4174 3.92

1.3451 1.6298 2.3892 0.42

GX 0.8084 0.0410 0.3907 0.3164 3.3973 7.86
1.8081 0.9104 1.1672 2.2634 0.10

TG 0.4155 0.0091 0.1176 0.6992 3.4155 3.32
1.8331 0.3199 1.6218 4.6754 0.51

TGX 0.6632 -0.0395 0.1070 0.5089 0.2780 3.3977 7.83
1.7973 -1.3586 2.3031 1.8795 2.6013 0.10

MMM G 0.6563 0.1829 0.3896 3.2268 1.69
3.4350 3.3522 2.5769 0.79

GX 0.6619 0.1594 0.3460 0.1878 3.2234 1.28
3.7739 3.3406 2.4352 2.3928 0.86

TG 0.6909 0.1036 0.1702 0.3630 3.2277 2.65
4.3537 2.4713 1.7425 2.9505 0.62

TGX 0.7109 0.0785 0.1927 0.3030 0.1884 3.2234 3.14
4.7700 1.9761 2.0312 2.5631 2.4028 0.53

MO G 0.2699 0.0895 0.8067 3.7017 0.15
1.5922 2.7333 9.7707 0.99

GX 1.0818 0.0621 0.2163 0.9899 3.6412 0.51
2.6893 1.2664 1.7263 3.3740 0.97

TG 0.2950 0.0755 0.0300 0.7957 3.7070 0.16
1.5761 2.3297 0.6756 8.7783 0.99

TGX 1.1009 0.0138 0.1045 0.2128 0.9579 3.6434 0.34
2.8002 0.3551 1.6350 1.7272 3.3320 0.99

MRK G 1.1981 0.1878 0.2398 3.5475 1.20
4.3852 3.2139 1.6323 0.88

GX 0.1627 0.0392 0.8291 0.1870 3.5289 6.94
3.0685 2.3936 20.962 3.1600 0.14

TG 1.0226 0.0588 0.2619 0.3271 3.5395 1.71
5.1929 1.4452 2.1616 2.9594 0.79

TGX 0.3781 0.0004 0.1418 0.6780 0.2447 3.5260 3.17
4.2345 0.0196 2.0307 10.752 3.3725 0.53

PG G 0.0128 0.0360 0.9587 3.4456 19.18
1.1402 2.4693 62.736 0.00

GX 0.0214 0.0326 0.9344 0.0889 3.4415 18.28
1.3503 2.2857 39.701 1.6870 0.00

TG 0.02096 0.0224 0.0308 0.9525 3.4491 17.14
1.3273 1.9815 1.1400 50.229 0.00

TGX 0.0259 0.0239 0.0188 0.9321 0.0857 3.4467 16.35
1.4459 1.8102 0.8075 38.077 1.6681 0.00

TX4 G 0.0005 -0.0020 1.0031 3.0819 43.54
1.1078 -0.7635 430.29 0.00

GX 0.0149 0.0377 0.9352 0.0875 3.0932 11.50
1.9086 3.1655 51.734 1.4204 0.02

TG 0.0005 0.0008 -0.0037 1.0020 3.0870 44.29
1.0773 0.1025 -0.4146 257.05 0.00

TGX 0.0116 0.0379 -0.0117 0.9448 0.0767 3.0986 16.63
1.7477 2.8290 -0.3689 57.094 1.3950 0.00

4Note that the estimation of Models (4) and (6) for this stock yields not acceptable results.
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Table IV: GARCH Estimation - Cont.’d
TICKER Model ω α1 γ1 β1 φ1 SIC LM(4)
WMT G 2.0394 0.2380 0.0338 3.8253 8.83

7.6848 3.3416 0.4379 0.07

GX 1.6181 0.1450 0.1808 0.2747 3.8213 10.89
4.6951 2.7701 1.3131 2.2290 0.03

TG 1.4790 0.0566 0.2668 0.2781 3.8200 6.94
4.8927 1.5196 2.5672 2.2713 0.14

TGX 1.0961 -0.0051 0.2344 0.4275 0.1946 3.8139 13.00
3.8973 -0.23802 2.8575 3.2682 2.2898 0.01

XON G 0.1171 0.1748 0.7539 3.1165 1.68
3.4271 4.4815 17.302 0.79

GX 0.0967 0.1477 0.7713 0.1036 3.1204 2.07
3.1249 4.9609 17.622 1.3821 0.72

TG 0.1219 0.1296 0.0860 0.7522 3.1193 1.21
3.3764 4.1895 1.2180 16.705 0.88

TGX 0.1081 0.1168 0.0743 0.7622 0.0794 3.1239 1.36
3.1915 3.7072 1.1425 16.600 1.2202 0.85
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Table V: Likelihood Ratio Tests on Model Restrictions
TICKER γ1 = φ = 0 γ1 = 0 φ = 0 TICKER γ1 = φ = 0 γ1 = 0 φ = 0
BA 37.75 8.648 24.84 JNJ 39.95 7.558 30.28

0.000 0.003 0.000 0.000 0.006 0.000

BS 14.04 4.822 9.860 JPM 42.47 8.072 36.10
0.001 0.028 0.002 0.000 0.004 0.000

CHV 8.666 9.150 6.698 MCD 38.59 6.641 29.17
0.013 0.002 0.010 0.000 0.010 0.000

DD 23.46 7.612 20.07 MMM 18.42 7.061 12.47
0.000 0.006 0.000 0.000 0.008 0.000

DIS 55.03 11.76 31.11 MO 86.27 4.417 85.64
0.000 0.001 0.000 0.000 0.036 0.000

EK 24.25 8.580 14.82 MRK 40.73 10.67 23.77
0.000 0.003 0.000 0.000 0.001 0.000

GM 23.21 4.989 13.19 PG 12.94 0.721 10.20
0.000 0.026 0.000 0.002 0.396 0.001

GT 20.85 8.330 12.71 TX5 1.978 0.136 1.946
0.000 0.004 0.000 0.372 0.712 0.163

HWP 23.54 12.96 36.63 WMT 28.36 16.25 14.64
0.000 0.000 0.000 0.000 0.000 0.000

IBM 65.41 22.23 34.52 XON 5.172 2.801 1.490
0.000 0.000 0.000 0.075 0.094 0.222

5Because of the inconsistency of the Model (G) and (TG) estimates, the Wald test was used instead
for this stock.

20



Table VI: Intra-daily Conditional Variance
Out-of-sample MAE and RMSE Comparisons

BA* BS CHV* DD*
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

G 4.422 9.466 10.91 16.02 2.793 4.449 4.454 6.409
GX 4.296 9.467 9.584 16.67 2.541 4.657 3.949 6.604
TG 4.329 9.483 10.96 16.06 2.803 4.475 4.214 6.581
TGX 4.238 9.491 9.673 16.64 2.595 4.548 4.016 6.641

DIS* EK GM* GT
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

G 4.840 8.145 2.460 5.207 3.558 6.250 3.238 5.332
GX 4.315 8.520 2.374 5.221 3.474 6.353 3.196 5.379
TG 4.660 8.263 2.592 5.316 3.641 6.336 3.353 5.386
TGX 4.420 8.606 2.456 5.317 3.527 6.408 3.291 5.436

HWP* IBM* JNJ* JPM*
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

G 6.071 9.499 3.453 5.283 2.465 4.340 4.786 7.027
GX 5.424 9.681 3.192 5.296 2.290 4.442 4.273 7.474
TG 5.679 9.599 3.394 5.296 2.396 4.314 4.748 6.903
TGX 5.425 9.723 3.196 5.296 2.260 4.400 4.259 7.345

MCD* MMM* MO MRK*
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

G 2.696 4.415 3.074 4.557 3.885 8.391 2.787 5.369
GX 2.666 4.569 3.036 4.624 3.641 8.710 2.580 5.370
TG 2.685 4.444 3.062 4.561 3.898 8.398 2.888 5.461
TGX 2.700 4.638 3.036 4.624 3.688 8.708 2.674 5.322

PG* TX* WMT* XON
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

G 3.270 4.834 3.714 7.770 4.047 6.978 2.373 3.592
GX 2.838 4.946 3.619 7.889 3.822 6.927 2.293 3.590
TG 3.151 4.785 3.724 7.767 3.944 6.899 2.390 3.643
TGX 2.829 4.932 3.618 7.891 3.794 6.845 2.333 3.635
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Figure 1: Time Series Profile of ro,t, ri,t and their sum rt for four selected
stocks.

22



0

5

10

15

20

25

0 5 10 15 20 25

G

T
G

X

1

2

3

4

5

6

1 2 3 4 5

G

G
X

2

4

6

8

10

2 4 6 8 10

G

G
X

0

2

4

6

8

0 2 4 6 8

G

G
X

1

2

3

4

5

6

7

1 2 3 4 5 6 7

G

G
X

2

4

6

8

10

12

14

2 4 6 8 10 12 14

G

G
X

0

2

4

6

8

0 2 4 6 8

G

G
X

1

2

3

4

5

1 2 3 4 5

TG

T
G

X

0

5

10

15

20

0 5 10 15 20

TG

T
G

X

1

2

3

4

5

1 2 3 4 5

G

G
X

1

2

3

4

5

6

1 2 3 4 5 6

G

G
X

1

2

3

4

5

6

7

1 2 3 4 5 6 7

TG

T
G

X

BA CHV DD DIS

GM HWP IBM JNJ

JPM MCD MMM PG

Figure 2: Variance Forecast Comparison: Best RMSE model versus best
MAE model.
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