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ABSTRACT

In this paper we examine under what circumstances the information accumulated

during market closing time and conveyed to the price formation at market opening

may be exploited to predict where the stock price will be at the end of the trading day.

In our sample of three financial time series, we find that, in spite of linear uncorrelat-

edness, there exists a strong nonlinear dependence structure in the conditional mean

of the intra-daily returns. To model this structure we use the functional-coefficient

(FC) model of Cai, Fan, and Yao (2000) where the coefficients are time-varying and

dependent on the state of stock return volatility. Out-of-sample forecast performances

of the FC models and linear models where the coefficients are constant are also com-

pared using the criteria of mean square forecast errors, trading returns, and directional

forecasts.
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I Introduction

Research on financial time series has long been based on the widely documented tenet that

future asset prices returns are unpredictable whether one knows the past values of the series

or even enlarged sets including other currently available public information. In statistical

terms the assumption is that returns follow a martingale difference process. Many authors

have attempted to show that if one breaks down the sample period, uses nonlinear models,

introduces new explanatory variables, reproduces market behavior by chartists (Brock et

al., 1991) some degree of predictability is possible, although, as Granger (1992) argued, it

may not lead to profitability of the outcome.

Several authors (e.g., Lo and MacKinlay, 1999; Sullivan, Timmerman and White 1999)

have guarded against the so called data-snooping biases, i.e. the possibility that different

analyses conducted on the same data sets may eventually uncover some sort of pattern

that may be interpreted as evidence of predictability, and White (2000) has suggested a

bootstrap–based reality check test to evaluate out–of–sample forecast performance.

More recently, also due to the increasing diffusion of ultra–high frequency data, the issue

of market efficiency and market predictability has received considerable attention. Among

others, Lo and MacKinlay (1999) claim that the larger quantity of information that is

available to the markets and collected for analysis can reveal patterns which may cast some

doubts about the correctness of the martingale difference hypothesis for asset returns even

after taking data–snooping biases into consideration.

When working with daily data, it is customary that returns are measured on the basis

of the closing prices. Amihud and Mendelson (1987) and Stoll and Whaley (1990) offered

a rationale for this practice, arguing that returns measured as open-to-open are affected by

specific trading mechanisms at work when markets open, resulting in a number of unappeal-

ing statistical features of the corresponding time series. In spite of this, opening prices are

reckoned to be still of interest, since they convey the outcome of information accumulation

during closing times as well and/or the feature of trading to convey a flow of information

which was interrupted during closing times (Romer, 1993, Dow and Gorton, 1993). This in-

formation may be relevant when evaluating the behavior of intra-daily return, even without

resorting to high frequency data.

In this paper, we will concentrate on one aspect of the price formation which can prove

of interest for the study of market predictability, namely how one can use the information

included in the price of an asset recorded when market opens, after many hours of potential

information accumulation in the absence of active trading. In fact, we compute daily returns

as usual as the log-difference of stock prices at market closing time but we decompose them

into two components, namely an overnight return (measured as the log-difference of the

2



opening price and the price at the previous trading day closing time), and an intra-daily

return measured as the log–difference of prices recorded the same trading day (at closing

and opening time). The issue is then under what conditions the overnight return may

contain useful information to predict the intra–daily return. Empirical evidence reported

here shows that, depending on the overall daily return volatility, there is a correlation

between overnight and intra-daily returns which can help in predicting the latter conditional

on the value assumed by the former. This predictability is unlikely to be picked up by linear

models which have constant coefficients. Rather, the model must be capable of reproducing

the empirical regularity that coefficients depend on volatility. The candidate model which

seems to include this needed flexibility is the functional coefficient model proposed by Cai

et al. (2000, henceforth CFY), the coefficients of which are time-varying and can be made

dependent on the degree of volatility prevailing that day.

The structure of the paper is as follows: we first discuss the nature of opening prices and

review some of the evidence present in the literature (Section 2). In Section 3 we discuss

the structure of the functional coefficient model and various strategies followed to capture

some features present in the data. In Section 4 we compare the out–of–sample performance

of the various estimated nonlinear models against a linear benchmark, using the methods

of Diebold and Mariano (1995), West (1996) and White (2000). Section 5 contains some

concluding remarks.

II Overnight Surprises and Intra–daily Returns

To establish notation, let Ct be the closing price at time t, t = 1, . . . , n, and Ot the opening

price for the same day. Accordingly, the daily returns are approximated by the difference

between the logarithms of closing prices, that is, rt = ln Ct − ln Ct−1, . Clark (1973)

considers rt as the sum (over a random number of trades nt) of independently and identically

distributed price movements with mean 0 and constant variance σ2. Accordingly, conditional

on nt, the variance of the daily returns is ntσ
2. As noted by Gallo and Pacini (1998), though,

one should keep into account that among these nt trades, the first recorded price movement

(occurring at market opening time) has different characteristics than the intra-day price

movements. This different nature is a consequence of the price formation mechanisms at

work around market opening time: next to the trading mechanisms specific to the exchange

considered (cf. Cao, Ghysels, and Hathaway, 2000 for a discussion of pre-opening behavior at

the NASDAQ), the overnight accumulation of information plays a special role. For example,

cross-listings of the same company on other stock exchanges around the world convey some

information available at opening time, and news released when markets are closed have not

been translated into price movements.
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Let us thus consider the decomposition of the daily returns rt by adding and subtracting

the log of opening prices:

rt = (ln Ct − ln Ot) + (ln Ot − ln Ct−1)

≡ ρt + ηt,

so that ρt is the intra-daily return and ηt is the overnight return.

The series we use are the S&P500 index (1/3/1994 - 7/25/2001, 1909 daily observations)

and two large caps stocks traded on the New York Stock Exchange which can be deemed rep-

resentative of actively traded stocks: Citicorp and General Electric (both between 1/3/1994

and 8/4/2000, for a total of 1666 daily observations).

Like daily stock returns, also intra–daily returns exhibit volatility clustering, asymmetric

response of volatility to the sign of returns and some moderate autocorrelation (not reported

here). In addition, one should stress that when overall returns rt are low (in absolute value)

the “half-day” returns ηt and ρt are bound to be negatively correlated (since ηt ≈ −ρt

when |rt| ≈ 0. Since E|rt|2 ≈ ht (the conditional variance), absolute returns are connected

to volatility, and hence a relationship between ηt and ρt should be detectable when daily

volatility is low. Thus, enlarging the information set It−1 available at closing time to include

ηt should be relevant in modelling the conditional mean of ρt, at least for some states of

volatility.

If the conjecture is correct, a linear constant parameter model,

ρt = a0 + a1ηt + εt, (1)

should be incorrectly specified for the conditional mean of the intra-day return ρt; in partic-

ular, the coefficients a0 and/or a1 may happen to be statistically insignificant, whereas they

may be time–varying. In view of what we argued above, the coefficient a1 should capture

a systematic pattern in the correlation between ηt and ρt and the volatility of the daily

return process rt. In synthesis, we want to investigate if the following statement holds for

in-sample goodness-of-fit and for out-of-sample prediction:

Hypothesis: The impact of overnight surprises ηt on the intra-daily return ρt depends on

the conditional volatility of the daily return rt.

Under this hypothesis, the coefficient a1 is not zero, not constant, and can be expressed

as a function of some volatility measure of rt, while the characteristics of a0 are open

to investigation. A suitable model which provides the needed flexibility of time-varying

nonlinear response to some state variable (in our case daily volatility) is the functional

coefficient model proposed by CFY.
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III The Functional-Coefficient Model

The linear model (1) exploits the information available at opening time, denoted as I+
t−1, in

a very restrictive fashion. We can think of a more general model in which the conditional

mean of ρt, be it E(ρt|I+
t−1), is a generic function of this information set, denoted as g(I+

t−1).

We can then write

ρt = g(I+
t−1) + εt,

where {εt} is a martingale difference sequence with respect to I+
t−1. The key to forecasting is

to manage and specify suitably the conditional mean g(I+
t−1), which is generally a non-zero,

time-varying function but is of complicated and unknown form. The functional-coefficient

(FC) model of CFY, whose coefficients are time-varying and state-dependent, can be viewed

as a linear model with time-varying and state-dependent coefficients, a special case of the

more general state-dependent model of Priestley (1980), while retaining a good degree of

flexibility, since it encompasses the models of Tong (1990) and Chen and Tsay (1993). It

has the advantages of capturing a fine structure of the underlying dynamics and of giving

good out-of-sample forecasts. A key feature of this model is that it makes use of a variable

Ut which is function of the same information set I+
t−1 as a ‘threshold variable’ on which the

functional-coefficients depend; that is, for the case at hand we have,

ρt = a0(Ut) + a1(Ut)ηt + εt (2)

where the aj(Ut)’s, j = 0, 1, are the functional coefficients depending on Ut.

The coefficient functions {aj(·)} are estimated by a locally linear regression method (e.g.,

Fan and Gijbels, 1996). For any given point U0, we can approximate the functions aj(Ut)’s

locally by a linear function:

aj(Ut) ≈ αj + βj(Ut − U0), j = 0, 1,

for Ut in a neighborhood of U0, where αj and βj are constants. The local linear estimator at

point U0 is given by âj(U0) = α̂j . The coefficients {(α̂j , β̂j)}1j=0 are chosen as those values

which minimize the sum of weighted squares

n∑
t=1

{ρt − a0 − a1ηt}2 Kh(Ut − U0),

where Kh(·) = K(·/h)/h for a given kernel function K(·) and bandwidth h. Note that here

n denotes the number of observations used for in-sample estimation.

Since we are interested in out-of-sample predictive ability of the FC model, we can select

h using an out-of-sample cross-validation procedure, as suggested by CFY. Let m and Q be

two positive integers such that n > mQ. The basic idea is first to use Q sub-series of lengths
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n−qm (q = 1, . . . , Q) to estimate the coefficient functions and then to compute the one-step

forecast errors of the next segment of the time series of length m based on the estimated

models. That is, we choose h to minimize the average of the mean square forecast errors

AMS(h) =
1
Q

Q∑
q=1

AMSq(h)

where

AMSq(h)=
1
m

n−qm+m∑
t=n−qm+1

{ρt-â0,q(Ut)-â1,q(Ut)ηt}2

and {âj,q(·)}1j=0 are computed from the sample {ηt, ρt, Ut}n−qm
t=1 . Following CFY, we use

m = [0.1n], Q = 4, and the Epanechnikov kernel K(u) = 3
4 (1− u2)1(|u| < 1), where 1(·) is

the indicator function. As often occurs, the particular choice of the kernel function is not

crucial for the results.

III.1 The choice of Ut

It is obviously important to choose an appropriate variable Ut when estimating the FC

model. Knowledge of the data structure or of some economic theory may be helpful, but

when no prior information is available, Ut may be chosen as a function of given explanatory

variables or may be chosen using some data-driven methods as AIC-based selection and

cross-validation.

In the absence of a specific theory, here we adopt an heuristic approach by choosing the

following variables for Ut:

• The daily return, as level, square and absolute value; the level preserves the sign of

the returns and would signal a dependence of the coefficients on the size and sign of

the returns. Squared returns and returns in absolute value are more closely related to

volatility.

• The spread between daily absolute returns and their moving average of length N . A

moving average of absolute returns can be seen as a rough measure of local volatility

and the spread from it represents whether the most recent return is above or below

this “average” volatility. For the problem analyzed here the spread may signal an

incoming increase or decrease in volatility. Various lengths can be specified: here we

chose N = 5, 10 and 20 trading days. Absolute returns are considered in forming the

moving average rules instead of the squared returns, since the former has very inter-

esting statistical properties (e.g. stronger evidence of long memory), as emphasized in

Granger (1998, p. 269) and Granger and Ding (1995).
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• The daily high-low spread which can be seen as an alternative measure of volatility

(cf. Garman and Klass, 1980, and Parkinson, 1980, for estimating the variance of

returns from high–low range data; and, more recently, Gallant et al., 1999);

• The estimated conditional variance of rt, σ2
t ≡ V ar(rt|It−1) modelled according to

three specifications of the GARCH family: these are special cases of the threshold

GARCH (TGARCH) model of Glosten et al. (1993),

σ2
t = ω + βσ2

t−1 + αe2
t−1 + γe2

t−11(et−1 ≥ 0),

where et ≡ rt − a0 − a1rt−1. The GARCH model of Bollerslev (1986) is the case

with γ = 0. J.P. Morgan’s Riskmetrics (1996) model, which suggests an exponentially

weighted moving average (EWMA) of past squared innovations as an estimate of the

variance, can also be seen as another special case where we do not resort to estimation

but we choose parameters as ω = 0, β = 0.94, α = 1− β, γ = 0.

• The trading volume: the relationship between variability of returns and trading vol-

umes has been analyzed by several authors (Epps and Epps, 1976, Cornell, 1981,

Tauchen and Pitts, 1983, Cooper, 1999) and often modelled jointly.

Summarizing, in the empirical implementation, we include the following eleven choices

for Ut, all included in the information set It−1:

U1,t = rt−1,

U2,t = r2
t−1,

U3,t = |rt−1|,
U4,t = |rt−1| −N−1

∑N
j=1 |rt−j |, N = 5,

U5,t = |rt−1| −N−1
∑N

j=1 |rt−j |, N = 10,

U6,t = |rt−1| −N−1
∑N

j=1 |rt−j |, N = 20,

U7,t = (High-Low Spread)t−1,

U8,t = Riskmetrics EWMA,

U9,t = GARCH,

U10,t = TGARCH, and

U11,t = (Trading Volume)t−1.

In Tables 1-3, the FC model using Uk will be denoted as FCk (k = 1, . . . , 11). For S&P500

index, the trading volume data is not available and thus U11 will not be used.
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III.2 Testing for functional-coefficients

To provide evidence for the usefulness of the FC model, we apply CFY’s goodness-of-fit test

for a specific parametric model against an FC alternative, based on bootstrap. We consider

the linear constant parameter model (1) as the null hypothesis and the functional coefficient

model (2) as the alternative, i.e.,

H0 : aj(Ut) = aj , j = 0, 1, (3)

to test for parameter constancy. Under H0, the process {ρt} is linear in conditional mean.

When H0 in (3) does not hold, the coefficients are functionals of Ut and the linear model

suffers from ‘neglected nonlinearity’. CFY test consists of comparing the residual sum of

squares (RSS) under the null hypothesis

RSS0 ≡
n∑

t=1

ε̂2
t =

n∑
t=1

(ρt − â0 − â1ηt)
2

with RSS under the alternative

RSS1 ≡
n∑

t=1

ε̃2
t =

n∑
t=1

(ρt − â0(Ut)− â1(Ut)ηt)
2.

The statistic is Tn = (RSS0 −RSS1)/RSS1. We reject the null hypothesis for large values

of Tn.

Fan, Zhang, and Zhang (2001, Theorem 5) show the asymptotic normality of Tn with

a suitable normalization. An important consequence of this result is that we do not have

to derive theoretically the normalizing factors in order to be able to use the test, but we

can directly simulate the distribution of the test statistic Tn under the null hypothesis via

bootstrap:

1. Generate the bootstrap residuals {ε∗t } from the centered residuals (ε̃t− ε̃) where ε̃=

n−1
∑

ε̃t and define ρ∗t ≡ â0 + â1ηt + ε∗t .

2. Construct the bootstrap sample {ρ∗t , Ut}n
t=1 and calculate the bootstrap statistic T ∗n .

This step is repeated over the number of desired replications.

3. Reject the null hypothesis H0 in (3) when the test statistic Tn computed over the

original data is greater than the 100× (1−α) percentile of the conditional distribution

of T ∗n given {ρt, Ut}n
t=1. The bootstrap p-value of Tn is approximately the relative

frequency of the event {T ∗n ≥ Tn} in the bootstrap resamples.

III.3 Results on the FC models

The bootstrap p-values of Tn are reported in the tables. Both the naive-bootstrap (Efron,

1979) and the wild-bootstrap (Wu 1986, Liu 1988) procedures are used, whose p-values are
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denoted as PB and PW , respectively. The bandwidth h for a FC model is chosen such that

AMS(h) is minimized, among the 11 values of h = 2jn−1/5 where j = −5,−4,−3,−2,−1,

0, 1, 2, 3, 4, and 5. All Ut’s are standardized by dividing them by their unconditional standard

deviations. In the second columns of Tables 1-3, reported are the values of j chosen. The

p-values, computed from 100 bootstrap resamples and reported in brackets, indicate strong

rejection of H0 in (3) in favor of the FC models in most cases. Indeed, the estimated

statistics Tn are positive for all cases indicating RSS0 > RSS1. Thus, the result that we

get in estimation is that neglected nonlinearity in the linear model may be explored using

the FC model. Most choice of Ut delivers significant improvement in goodness-of-fit with

many p-values are close to zero. Comparing the choices of Ut in terms of Tn and its p-

values, it may be interesting to note that FC9 with Ut being estimated from GARCH is the

worst model for S&P500 and GE. FC9 is also the second worst for Citicorp. In general,

asymmetric TGARCH seems to work better. Whether this nonlinearity can be exploited

even in an out-of-sample prediction exercise is an issue explored in the next section.

IV Out-of-Sample Predictive Ability of FC Models

In addition to specification testing and estimation, out-of-sample forecast evaluation is also

important to make the analysis robust to the possible consequences of structural changes

and data snooping. To evaluate the nonlinear models in terms of out-of-sample predictive

ability, in Section 4.1, we first discuss three forecast evaluation criteria – mean squared

forecast error, mean trading returns, and mean correct directional forecasts. Our primary

objective is to compare the FC model with the linear constant parameter model in (1).

When several models using the same data are compared for predictive ability, it is crucial to

take into account the dependence among the forecasts from various models because of the

data-snooping problem, which occurs when a model is searched extensively until a match

with the given data is found. Conducting inference without taking into account specification

search is commonly referred to as ‘data-mining’ and can be extremely misleading (cf. Lo

and MacKinlay 1999, Ch.8). White (2000) develops a test to compare multiple models in

predictive ability accounting for specification search, built on West (1996) and Diebold and

Mariano (1995). Section 4.2 provides a short discussion of the method.

IV.1 Forecast evaluation criteria

Our evaluation of out-of-sample forecasts proceeds as follows. There are P predictions in

all for each model. Suppose one-step predictions are to be made for P prediction periods,

indexed from R through n, so that n = R+P−1. Here, P and R may increase as the sample

size n increases. The first forecast is based on the model parameter estimator β̂R, formed
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using observations 1 though R, the next based on the model parameter estimator β̂R+1,

formed using observations 2 though R + 1, and so forth, with the final forecast based on

the model parameter estimator β̂n. Based on the estimated models using a series of rolling

samples, each of size R, one-step ahead forecasts are generated for P post-samples, resulting

in P forecasts to evaluate each model. Let {ρ̂t+1}n
t=R be an estimated forecast of {ρt+1}n

t=R

using information {I+
t }n

t=R. We compare the forecasts in terms of mean squared forecast

errors (MSE)

MSEP ≡ P−1
n∑

t=R

(ρt+1 − ρ̂t+1)
2.

However, our main aim is to investigate profitability of using a FC model relative to that

of using a benchmark linear model. Because the investors are ultimately trying to maxi-

mize profits rather than minimize forecast errors, MSE may not be the most appropriate

evaluation criterion. We consider two additional forecast evaluation criteria.

Our second criterion is the mean trading return (MTR) of a strategy defined as

MTRP ≡ P−1
n∑

t=R

St+1ρt+1,

where St+1 is a signal function at time t for the next period t + 1 representing the recom-

mended trading position. The estimation of St+1 will be carried out based on the linear

models and the FC models. The signal function is

St+1 = 1(ρ̂t+1 > 0)− 1(ρ̂t+1 < 0),

which takes a value of +1 (for a buy signal), −1 (for a sell signal), or 0. If ρt+1 is predicted

to be positive, then St+1 = 1. Four interesting cases may worth mentioning. First, for the

martingale model, we have ρt+1 = 0 and St+1 = 0 for all t. Hence, MTRP = 0. Second, the

Buy-and-Hold strategy, which is defined with St+1 = 1 for all t, has the mean trading return

MTRBuy-Hold
P = P−1

∑n
t=R ρt+1. Third, if ρt+1 and its forecast ρ̂t+1 have the same signs for

all t, i.e., if we could make the perfect directional forecasts for all t, then St+1ρt+1 = |ρt+1|
for all t, and MTRPerfect

P = P−1
∑n

t=R |ρt+1|.
The third forecast evaluation criterion is about the directional forecasts. The forecast

ρ̂t+1 of ρt+1 is correct in direction (sign) if ρ̂t+1ρt+1 > 0. The probability that a model

generates a correct directional prediction of ρt+1 is Pr(ρ̂t+1ρt+1 > 0), which can be estimated

by mean correct directional prediction (MCD)

MCDP ≡ P−1
n∑

t=R

1(ρ̂t+1ρt+1 > 0).
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IV.2 Comparing forecasting models

Model comparison via forecast criteria can be conveniently formulated as hypothesis testing

of some suitable moment conditions. Consider an l × 1 vector of moments, E(ψ∗), where

ψ∗ = ψ(Z, β∗) is an l × 1 vector with elements ψ∗k ≡ ψk(Z, β∗) for a random vector Z =

(ρ, η, r, U)′ and β∗ ≡ plim β̂n. The appropriate null hypothesis is that the best model is no

better than a benchmark, expressed formally as

H0 : max1≤k≤l E(ψ∗k) ≤ 0. (4)

This is a multiple hypothesis, the intersection of the one-sided individual hypotheses E(ψ∗k) ≤
0, k = 1, . . . , l. The alternative is that H0 is false, that is, that the best model is superior to

the benchmark. White’s (2000) results for testing H0 in (4) hold whenever the l× 1 sample

moment vector

ψ̄ = P−1
n∑

t=R

ψ(Zt+1, β̂t)

has a continuous limiting distribution.

West (1996, Theorem 4.1) shows that under proper regularity conditions,

√
P (ψ̄ − E(ψ∗)) → N(0, Ω) in distribution

as P ≡ P (n) →∞ when n →∞, where Ω is a l × l matrix

Ω = lim
n→∞

var[P−
1
2

n∑

t=R

ψ(Zt+1, β̂t)],

which is a complicated expression as Ω depends on the estimated parameter β̂t.

When we compare a single model (l = 1) with a benchmark we can use Diebold and

Mariano’s (1995) test and West’s (1996) test, with an appropriate estimator of Ω. When

we compare multiple forecasting models (l > 1) against a given benchmark model, however,

sequential use of Diebold and Mariano (1995) and West (1996) tests may result in a data-

snooping bias since the test statistics are mutually dependent due to the use of the same

data. To account for possible bias due to data snooping, we use White’s (2000) procedure.

White’s (2000) test statistic for H0 in (4) is formed as follows:

V̄ ≡ max
1≤k≤l

√
Pψ̄k,

which converges in distribution to max1≤k≤l Zk under H0, where the limit random vector

Z = (Z1, . . . , Zl)′ is N(0, Ω). White (2000) suggests to use the stationary bootstrap of

Politis and Romano (1994, PR) to obtain the null distribution of V̄ . This gives appropriate

p-values for testing the null hypothesis that the best model has no predictive superiority

relative to the benchmark (White, 2000, Corollary 2.4). The p-value is called the ‘Reality
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Check p-value’ for data snooping. White (2000, Proposition 2.5) also shows that the test’s

level can be driven to zero at the same time the power approaches to one as V̄ diverges at

rate P
1
2 under the alternative.

In our application, we will evaluate the predictive ability of l = 10 or l = 11 FC models

using the three criteria. For example, if we compare the FCk model with the benchmark

linear model using mean trading returns, then we set

ψ̄k = MTRk
P −MTRBenchmark

P , k = 1, ..., l.

IV.3 Results of predictive ability tests

We compare the FC models of (2) with a benchmark linear models in (1). PRC denotes the

p-values of White (2000) test computed using PR’s stationary bootstrap. The Bootstrap

Reality Check p-values are computed with 1,000 bootstrap resamples and the bootstrap

smoothing parameter q = 0.5. See PR or White (2000) for the details. The other values

of q (say, q = 0.25, 0.75) give similar p-values (not reported). The bootstrap p-value of

White’s (2000) test with l = 1 are reported next to the values of criterion functions, and

the ‘bootstrap reality check p-values’ to compare the ten or eleven FC models (l = 10 or

11) with the benchmark are reported in the last rows of Tables 1-3, which is to test for the

null hypothesis that the best of the ten FC models has no predictive superiority over the

benchmark linear model. The difference between the p-values with l = 1 and l = 10 (or

11) gives an estimate of the data-snooping bias, which may be substantial, and enables to

quantify the effects of blind specification search and eliminate our illusions to confuse the

spurious with the salient.

The statistically significant nonlinearities in conditional mean found in in-sample analysis

are not generally carried over to significant out-of-sample forecasts, after accounting for data-

snooping. As expected the choice of the loss function directly affects the forecast evaluation

results. Some significant out-of-sample forecast improvement of the FC models is found in

terms of MCD, for Citicorp and GE. The predictive performance of the FC models in terms

of MSE is generally dominated by a linear model.

V Conclusions

This article has demonstrated the relation between the impact of overnight returns on the

intra-daily returns and volatility in daily stock returns on the S&P500 index and on two

large U.S. firms (Citicorp and GE). In terms of in-sample goodness of fit, we do find some

significant evidence that the impact of the overnight surprises on the intra-daily returns

may depend on the state of daily volatility. However, the statistically significant nonlinear

12



responses of intra-daily return to the overnight surprises found in the in-sample analysis are

not generally carried over to significant out-of-sample forecasts, after accounting for data-

snooping. As expected the choice of the loss function directly affects the forecast evaluation

results. There are many possible reasons for the rather disappointing results. One is that

the nonlinear models used are not the most suitable ones. Another possible reason is that

nonlinearities may be exogenous, arising from outliers, structural shifts, and government

intervention, which may render various nonlinearity tests to reject while not being useful

for out-of-sample forecasts. It is also possible that the nonlinearity in conditional mean of

these series may not be strong enough to be exploited for forecasting. It is important to

explore these possible reasons, but this is beyond the scope of this paper, and has to be left

for further research.
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Table 1. S&P500
Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)

Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC

L 1.752 0.022 0.507

FC1 4 0.030 (0.00) (0.00) 1.709 (0.198) 0.002 (0.655) 0.497 (0.707)

FC2 5 0.024 (0.00) (0.00) 1.675 (0.118) 0.058 (0.083) 0.507 (0.467)

FC3 3 0.027 (0.00) (0.00) 1.719 (0.245) 0.027 (0.416) 0.508 (0.421)

FC4 4 0.024 (0.00) (0.00) 1.693 (0.173) 0.040 (0.216) 0.509 (0.367)

FC5 4 0.025 (0.00) (0.00) 1.727 (0.300) 0.005 (0.887) 0.499 (0.871)

FC6 4 0.024 (0.00) (0.00) 1.716 (0.225) 0.029 (0.373) 0.503 (0.654)

FC7 5 0.010 (0.02) (0.08) 1.699 (0.189) 0.067 (0.028) 0.524 (0.016)

FC8 5 0.023 (0.00) (0.00) 1.673 (0.128) 0.046 (0.159) 0.504 (0.627)

FC9 3 0.007 (0.08) (0.24) 1.855 (0.808) 0.027 (0.436) 0.514 (0.185)

FC10 5 0.011 (0.00) (0.03) 1.743 (0.424) 0.046 (0.184) 0.511 (0.297)

(0.344) (0.356) (0.247)

TABLE 2. Citicorp

Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)

Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC

L 5.616 -0.134 0.462

FC1 4 0.021 (0.00) (0.07) 13.620 (1.000) 0.042 (0.088) 0.509 (0.046)

FC2 4 0.027 (0.00) (0.00) 20.400 (0.984) 0.015 (0.131) 0.505 (0.055)

FC3 4 0.016 (0.00) (0.14) 13.077 (1.000) 0.072 (0.064) 0.509 (0.043)

FC4 4 0.012 (0.02) (0.34) 13.205 (1.000) 0.035 (0.118) 0.498 (0.094)

FC5 4 0.014 (0.03) (0.12) 13.484 (1.000) 0.022 (0.113) 0.498 (0.095)

FC6 3 0.026 (0.00) (0.03) 13.480 (1.000) -0.014 (0.191) 0.494 (0.125)

FC7 5 0.007 (0.03) (0.21) 12.587 (1.000) 0.054 (0.088) 0.502 (0.076)

FC8 2 0.054 (0.00) (0.00) 17.677 (0.999) 0.004 (0.154) 0.503 (0.070)

FC9 5 0.005 (0.15) (0.55) 12.504 (1.000) 0.046 (0.095) 0.503 (0.069)

FC10 5 0.009 (0.00) (0.24) 17.292 (0.980) 0.055 (0.069) 0.506 (0.042)

FC11 5 0.002 (0.76) (0.82) 12.976 (1.000) 0.072 (0.063) 0.506 (0.048)

(1.000) (0.106) (0.068)



TABLE 3. GE
Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)

Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC

L 3.293 0.064 0.480

FC1 4 0.034 (0.00) (0.00) 6.111 (1.000) 0.076 (0.443) 0.523 (0.042)

FC2 5 0.020 (0.00) (0.04) 6.572 (1.000) 0.074 (0.475) 0.523 (0.042)

FC3 5 0.017 (0.00) (0.07) 5.723 (1.000) 0.086 (0.392) 0.526 (0.036)

FC4 5 0.014 (0.00) (0.20) 13.875 (0.921) 0.070 (0.449) 0.523 (0.036)

FC5 5 0.019 (0.00) (0.05) 5.711 (1.000) 0.070 (0.472) 0.521 (0.040)

FC6 4 0.027 (0.00) (0.00) 7.468 (0.990) 0.058 (0.502) 0.520 (0.053)

FC7 4 0.010 (0.02) (0.37) 6.462 (1.000) 0.077 (0.423) 0.518 (0.052)

FC8 5 0.020 (0.00) (0.07) 6.600 (1.000) 0.073 (0.455) 0.521 (0.040)

FC9 4 0.003 (0.56) (0.72) 6.662 (1.000) 0.122 (0.264) 0.531 (0.023)

FC10 0 0.085 (0.00) (0.00) 5.745 (1.000) 0.082 (0.396) 0.520 (0.059)

FC11 0 0.080 (0.00) (0.00) 5.749 (1.000) 0.074 (0.488) 0.523 (0.041)

(1.000) (0.363) (0.038)

Notes: (1) Both naive and wild bootstraps are used, whose p-values are denoted as PB and

PW , respectively. The bandwidth h is chosen to minimize AMS(h), among the 11 values of

h = 2jn−1/5 where j = −5,−4, . . . , 4, and 5. (2) PRC denotes denote the p-values of White

(2000) test. The PRC values in all rows (except in the last row) are to compare each of FCk

with the benchmark linear model L. The PRC values in the last row are to compare the best

of the eleven FC model with the benchmark model L.
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