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ABSTRACT

The literature on Markov switching models is increasing and producing interesting

results both at theoretical and applied levels. Most often the number of regimes, i.e.,

of data generating processes, is considered known; this strong hypothesis is adopted

to somewhat bypass the nuisance parameter problem which affects hypothesis testing

for the number of regimes. In this paper we take the view that some results derived

from a nonparametric Bayesian approach provide a convenient way to deal with the

issue of detecting the number of components in the mixture density, based on the

assumption that the parameter distributions are generated by a Dirichlet process. The

advantage is that we need no testing (in a classical sense) for the number of regimes,

and the approach is not affected by a change point at the beginning or at the end of

the sample. A Monte Carlo experiment provides some insights into the performance of

the procedure. The potentiality of the approach is illustrated in reference with some

well known results on exchange rate modelling.
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I Introduction

Some of the recent literature on structural change modeling is related to Markov switching

(MS) models applied to economic phenomena (to mention a few, Hamilton, 1989, for the US

GNP dynamics; Engel and Hamilton, 1990, (EH) and Engel, 1994, for segmented trends in

the US dollar exchange rates;1 Garcia and Schaller, 1995, for monetary effects on output).

These models share the characteristics of assuming known the number of regimes (states),

that is, the number of generating data processes which differ from one another just for the

value of the parameters. Working with a known number of regimes avoids the problem of

selecting it, since it would require hypothesis testing with nuisance parameters identified

only under the alternative (Andrews and Ploberger, 1994). This is a common occurrence in

many nonlinear models (the threshold parameter in threshold models, the unknown time of

a change in regime, the number of regimes in MS models; see Hansen, 1992) and the main

consequence is that the regularity conditions required to apply the asymptotic theory are

no longer respected. In fact, the likelihood function under the null is non-quadratic and

flat with respect to the nuisance parameters at the optimum and the score is identically

null when the parameters under the null hypothesis correspond to a maximum, minimum or

saddle point for the likelihood function. This latter case is typical for switching models with

non-observable regimes (see Hansen, 1992; Andrews and Ploberger, 1994; Garcia, 1995).

There are different approaches to compute the asymptotic distribution of the classical

test statistics in this framework; the seminal work is Davies (1977), which Andrews (1993)

extended in a dependent data context deriving the expression for the asymptotic distribu-

tion of the supremum of a likelihood ratio test statistics relative to a range of nuisance

parameters. Hansen (1992) and Garcia (1995) have proposed a similar approach for the

specific case of the number of regimes in the context of MS models. However, the first is

computationally cumbersome and the second reduces the range of nuisance parameters, pos-

sibly excluding from the analysis some important special cases. As an additional difficulty,

the asymptotic distribution of both tests changes with the specific model adopted.

As an alternative to testing, one may fix the number of regimes to a safely large number

(cf. Franq and Roussignol, 1997).2 When the number of regimes is overparameterized,

for example three estimated regimes instead of two regimes in the data generating process,

maximum likelihood estimation provides the same estimated parameters for the second and

third regime, so that an overparameterized estimated model does not necessarily perform

worse than a correctly specified model.

Yet another alternative, which we investigate in this paper, can be seen as one where
1Some results are reported in Engel (1992) and are not present in the 1994 version
2We thank an anonymous referee for pointing this out to us.
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the number of components of a mixture density has to be determined. As a matter of

fact, the density of a MS model is a mixture density with the number of components equal

to the number of regimes in the data generating process. In classical terms, the problem

is generally bypassed using the likelihood ratio test statistic, obtaining its distribution by

simulation techniques; in particular, Feng and McCulloch (1996) provide the mathematical

background to justify the use of bootstrap likelihood ratios. Böhning et al. (1994) provide

the exact distribution of a likelihood ratio test for mixtures of densities from the one-

parametric exponential family. Recently, Böhning et al. (1992) and Böhning et al. (1998)

include in their nonparametric maximum likelihood approach a criterion to establish the

number of components of a mixture. Briefly put, this last criterion is based on the estimation

of a large number of components, down-grouping those that differ by less than a certain

threshold.

In a Bayesian context there are different suggestions for choosing the number of com-

ponents in the mixture. For example, Roeder and Wasserman (1997) propose a Schwarz

criterion; Raftery (1996) notes that the natural Bayesian solution would be based on a Bayes

factor, but it cannot be used to compare more than two models, so he suggests a Laplace-

Metropolis estimator; Richardson and Green (1997) use a fully Bayesian analysis, based

on the reversible jump Markov chain Monte Carlo methods, developed in Green (1995), in

which the algorithm allows for the change of the dimension of parameter space, changing the

number of mixtures from one iteration to the next. Finally, many authors, for example Es-

cobar (1994), West et al. (1994), Escobar and West (1995), adopt a Bayesian nonparametric

approach, based on Dirichlet processes.

We think that using a Bayesian approach is more convenient because the probability

distribution for the number of components can be easily established leaving the estimated

number of regimes to be the mode of that distribution. In this paper, we use the Bayesian

nonparametric approach of Escobar and West (1995) to identify the number of regimes in

switching models.3 There are some aspects that make this approach appealing:

1. we do not need tests for the number of regimes k;

2. the analysis does not need strong hypotheses; they are the same used in switching
3This issue should be kept separate from the estimation of the switching models in a Bayesian context; for

example, Carter and Kohn (1994, 1996) and Shephard (1994) propose Monte Carlo Markov Chain methods

to estimate a general model which encompasses the switching model; Albert and Chib (1993) and McCulloch

and Tsay (1994) use the Gibbs sampling to estimate the MS model; Hamilton himself (1989) uses a quasi-

Bayesian approach to bypass singularity problems in estimation. But in this context the number of regimes

is considered fixed a priori.
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Bayesian models with the additional hypothesis that the distributions of parameters

are generated from a Dirichlet process;

3. the usual tests are not robust to the presence of a structural change-point placed at

the beginning or at the end of the time series while this approach does not suffer from

this limitation.

Relative to other contributions, ours is empirically motivated and aims at extending some

methods developed in the context of mixtures to a dynamic framework which is relevant for

econometric applications. In this respect, we want to illustrate the features of the suggested

procedure when it supplements the traditional econometric specification of Markov switching

models. Rather than working on a novel dataset and models we use well–known studies

about exchange rate dynamics (Engel and Hamilton, 1990; Engel, 1994). The structure of

the paper is as follows: in Section 2 we establish some notation and we set up the outline of

the procedure (the details of which are placed in two appendices). Section 3 contains a Monte

Carlo experiment to assess the properties of the approach when the data are generated with

a change in regime and when they are not. Finally, in Section 4, we apply the procedure to

the data used by EH and by Engel with MS models. Some final remarks follow.

II The Detection of the Number of Regimes

Let us introduce the problem at hand starting from a well–known application of the MS

model in the econometric literature suggested by EH: in order to accommodate the persis-

tence around positive and negative trends (especially during the 1980s) for the US dollar

exchange rates relative to three major currencies (Deutsche Mark, French Franc and British

Pound), EH refer to a MS model with two regimes (with quarterly data; Engel, 1994, works

with monthly data in the same context with less clear–cut results about the presence of a

segmented trend). Given the good approximation provided by the random walk model to

the behavior of the exchange rate, the issue is to characterize whether the exchange rate

returns have different means (positive for appreciation, negative for depreciation) and vari-

ances for empirically recognizable periods. Therefore, they assume that the return data yt

are generated from two Normal distributions, the first with mean µ1 and variance σ2
1 and

the second with mean µ2 and variance σ2
2 , and test the null of a random walk model against

the alternative of a MS model, expressed as:

yt = µst
+ εt, εt ∼ IIN

(
0, σ2

st

)
, t = 1, . . . , T (1)

where the regime is indicated by the discrete random variable st ∈ {1, 2} the dynamics

of which is regulated by a Markov chain with a transition probability matrix P = {pij}
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where pij is the conditional probability to be in state j at time t given state i at time

t − 1 (i, j = 1, 2). Given the adding–up constraints on the conditional probabilities, the

parameters p11 and p22 are the nuisance parameters present only under the alternative

hypothesis when the number of regimes is two.

The aim of EH is to test the null hypothesis of no regimes H0: yt = µ + εt, with

εt ∼ IIN
(
0, σ2

)
, against (1), but this cannot be done directly. To bypass the nuisance

parameters problem, they keep the transition probabilities in both the null and the alter-

native hypotheses by verifying first whether p11 = 1 − p22, µ1 �= µ2, σ1 �= σ2 (testing for

an independent sequence of non-Markovian regimes), and then verifying whether µ1 = µ2,

σ1 �= σ2. In their empirical application, EH favor the MS model as the data generating

process. This approach does not test for the number of regimes, but just for whether the

data are serially uncorrelated or if they have equal mean.

Without a substantial loss in generality, let us adopt their framework and consider the

case of k unknown, allowing it to take an integer value between 1 and T . Let θt =
(
µt, σ

2
t

)
be

the parameter vector of interest and, in a Bayesian framework, let us assume that it has an

unknown distribution G belonging to a class of distributions F . Following a nonparametric
Bayesian approach (Ferguson, 1973), we can put a class of priors on F which should cover

every kind of prior for F and be analitically manageable (Antoniak, 1974). The Dirichlet

process, introduced by Ferguson (1973), is one suitable instrument to this end. We recall

the main properties of the Dirichlet process in this context in the Appendix A.

Let us then assume:

σ−2
t ∼ G (a/2, b/2) , (2)

µt|σ2
t ∼ N (

m,σ2
t τ

)
. (3)

where G is a Gamma distribution and N is a Normal distribution; a, b, and m are hy-

perparameters to be chosen. We will also assume that θt is generated from an unknown

distribution G, that follows a Dirichlet process D (AG0), where A is a hyperparameter which

regulates the prior probabilities on the number of regimes k, and G0 is equal to the bivari-

ate distribution (2)-(3) (cf. the Appendix A for further details). For added generality, one

may think of also placing a prior distribution on the precision parameter τ (e.g. an Inverse

Gamma, with hyperparameters w/2 and W/2). In addition, we suppose that for each t

(t = 1, . . . , T ) the (yt|θt) are independent.

We follow Escobar and West (1995) in adopting a technique to estimate the empirical

posterior distribution of k, based on the specific assumptions just made. In Appendix B we

detail the steps used in the procedure which start from the expression of the distribution

for a θt conditional on Θ[−t] (which includes the other θi’s, i = 1, . . ., t− 1, t+1, . . ., T ) as

a sample drawn from G. The posterior distribution p (θt|Θ[−t] ,YT ) is then computed and
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used as the basis for a Gibbs sampler to derive the distribution of the distinct values of the

parameters as an estimate of the number of regimes k.

We will investigate the matter by first running a Monte Carlo experiment about the

performance of the procedure in this context for a suitable choice of hyperparameters and

using several data generating processes. We then we will return to the empirical issues about

exchange rate behavior, and apply it to the data used by EH and by Engel (1994).

III A Monte Carlo Investigation

In order to get some indications as to the validity of the approach suggested here, we

performed a Monte Carlo experiment aimed at assessing the behavior of the mode of the

empirical distribution as an estimate of the number of regimes. The idea is to repeatedly

generate the data according to a known DGP (either with or without MS properties) and

derive the empirical distribution of the mode of number of regimes across replications.

To maintain some economic significance to the results of this experiment, at the same time

preserving its simplicity, we have chosen to span over number of regimes (1, 2, or 3), presence

of an autoregressive component4 and sample size (T=58, as in EH, and T=116 for a larger

sample size).

Specifically, the series of yt is generated from

(yt − µst
) = φ(yt−1 − µst−1) + εt, εt ∼ IIN

(
0, σ2

st

)
, t = 1, . . . T, st = {1, . . . , k}

according to the following set of DGPs:

1. DGP1 a: No AR (φ = 0), one regime (µst
= µ = 0, σ2

st
= σ2 = 9.991, ∀ t), T=58;

2. DGP1 b: AR(1) (φ = 0.7), one regime (µst
= µ = 0, σ2

st
= σ2 = 9.991, ∀ t), T=58;

3. DGP1 c: same as DGP1 a, but T=116;

4. DGP1 d: same as DGP1 b, but T=116;

5. DGP2 a: No AR (φ = 0), two regimes (in regime 1, µ1 = 3.256, and σ2
1 = 9.991; in

regime 2, µ2 = −2.712, and σ2
2 = 36.921, p11 = 0.822, p22 = 0.908, T=58. Note that

for this DGP we have chosen the parameter values taken from the French Franc/US

dollar estimation in EH.
4In the presence of autoregression, the conditional independence of (yt|θt) is lost. The rationale for

working with a DGP with dependent observations is to check the robustness of our procedure relative to

the violation of this assumption.
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6. DGP2 b: AR(1) (φ = 0.7), two regimes (in regime 1, µ1 = 3.256, and σ2
1 = 9.991; in

regime 2, µ2 = −2.712, and σ2
2 = 36.921, p11 = 0.822, p22 = 0.908, T=58.

7. DGP2 c: same as DGP2 a, but T=116;

8. DGP2 d: same as DGP2 b, but T=116;

9. DGP3 a: No AR (φ = 0), three regimes (in regime 1, µ1 = −2, and σ2
1 = 36; in regime

2, µ2 = 0, and σ2
2 = 9; in regime 3, µ3 = 2, and σ2

3 = 36; the unconstrained transition

probabilities are p11 = 0.6, p12 = 0.2, p21 = 0.1, p22 = 0.7, p31 = .2, p32 = 0.1; T=58.

10. DGP3 b: AR(1) (φ = 0.7), three regimes (in regime 1, µ1 = −2, and σ2
1 = 36; in

regime 2, µ2 = 0, and σ2
2 = 9; in regime 3, µ3 = 2, and σ2

3 = 36; the unconstrained

transition probabilities are p11 = 0.6, p12 = 0.2, p21 = 0.1, p22 = 0.7, p31 = .2,

p32 = 0.1; T=58.

11. DGP3 c: same as DGP3 a, but T=116;

12. DGP3 d: same as DGP3 b, but T=116;

To apply the suggested Bayesian procedure, we need to choose the hyperparameters to be

used in the successive Gibbs sampling involved (cf. Appendix B to recall the specifics used

here). For practical purposes, the choice of prior probabilities on the number of regimes must

be inspired by the kind of problem at hand: we want to show the details of our choice as an

example of the kind of reasoning that could be repeated in other situations. Since the final

results strongly depend on the choice of the priors, we could trick the cards and intervene in

order to favor a specific number of regimes. More realistically, from a preliminary analysis

of the data, investigation may result in some beliefs about the possible number of regimes

k: for example, in the case studied by EH, the uncertainty is as to whether there is one

regime or two. Accordingly, for a given sample size T , an impartial position could be to

choose the hyperparameter A so as to assign maximum prior probabilities on k = 1 and

k = 2. This strategy reflects a reasonable stance of uncertainty about the true number of

regimes, while maintaining a connection with the type of data we work with. In Table 1, we

report a few examples of prior distributions for k, based on (8) in the Appendix A, adopted

to implement our procedure on the DGPs used in the simulations. The values should be

seen as reflecting uncertainty between one or two regimes in the first two rows, and two or

three in the other two rows.
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Table 1: Prior Probability Distribution of k for Several Choices of A and T

Number of Regimes

A T 1 2 3 4 5 6 7 8

0.19 116 0.374 0.377 0.181 0.054 0.012 0.002

0.22 58 0.374 0.381 0.179 0.053 0.011 0.002

0.40 116 0.133 0.283 0.284 0.180 0.082 0.028 0.008 0.002

0.48 58 0.126 0.281 0.288 0.184 0.083 0.028 0.008 0.002

Figure 1: Prior distribution for σ2
t .

As far as the mean distribution is concerned and in view of EH’s assumptions, we can

note that the observations with increasing trend should have positive mean and the obser-

vations with decreasing trend should have negative mean. To be realistic and not induce

unrealistically high values (in reference to quarterly returns on exchange rate), we can safely

choose a Normal with zero mean, i.e. m = 0 as a prior distribution for µt.

As far as σ2
t is concerned, an impartial choice of Inverse Gamma prior would favor one

that assigns large probabilities to a large range of values. Recall that the Inverse Gamma

random variable X with parameters a/2 (a ≥ 4) and b/2 has mean b/(a − 2) and variance

2b2/((a− 2)2 (a− 4)). If a = 4 then we obtain a distribution with infinite variance.

Choosing the other hyperparameter b to be equal to 50, we obtain the distribution in

Figure 1, which has the desired properties. Finally, we have to choose the prior distribution

9



Figure 2: Prior distribution for τ .

for τ , which determines the variance of µt. If τ is 1, E(σ2
t )= 25, hence smaller values of

τ are preferable with a good distribution for τ assigning a large probability to the values

within the interval between 0 and 1, to limit the effect of σ2
t , but at the same time it

must have infinite variance not to steer results in a specific direction and hence guarantee

a certain degree of uncertainty. The distribution that we use is an Inverse Gamma with

hyperparameters w = 4 and W = 1 (an Inverse Chi-Square with 4 degree of freedom),

with the graph displayed in Figure 2. When applying the procedure for the Monte Carlo

experiment, the only hyperparameter which we vary across DGPs is A, with values to reflect

uncertainty between k=1 and k=2 for DGP1 and DGP2 and between k=2 and k=3 for DGP3

(cf. Table 1).

Now we are in a position to apply the suggested Gibbs sampling procedure to determine

the number of regimes. For the choice of the number of iterations for burn-in to convergence,

we have applied the Gelman and Rubin (1992) methodology, using the CODA package of

Best et al. (1995). Across esperiments we usually obtain convergence in distribution after

2000 iterations, choosing an observation every 10, to eliminate autocorrelation in the sample.

At any rate, for our application, to be sure that the Gibbs sampler has converged, we select

the observations after 5000 iterations, saving draws every other 10 iterations, to obtain a

sample of 500 observations onΘT . The empirical posterior distribution p (k|YT ) is evaluated

on 1000 series generated from the DGPs with T=58 and 500 series generated from the DGPs

of length T=116.5

5Even on a Pentium III with 1Ghz processor, the time required to generate the results is very high, given

the high number of times the Gibbs sampler is run, so that experiments with a larger sample size would
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Table 2: Empirical Distributions of k for various DGPs

DGPs Number of Regimes

1 2 3 4

1a: No AR, k=1, T=58, A=0.22 0.870 0.130

1b: AR(1), k=1, T=58, A=0.22 0.587 0.412 0.001

1c: No AR, k=1, T=116, A=0.19 0.882 0.118

1d: AR(1), k=1, T=116, A=0.19 0.608 0.382 0.010

2a: No AR, k=2, T=58, A=0.22 0.350 0.610 0.040

2b: AR(1), k=2, T=58, A=0.22 0.285 0.677 0.038

2c: No AR, k=2, T=116, A=0.19 0.246 0.640 0.114

2d: AR(1), k=1, T=116, A=0.19 0.190 0.684 0.126

3a: No AR, k=3, T=58, A=0.48 0.113 0.794 0.093

3b: AR(1), k=3, T=58, A=0.48 0.107 0.763 0.130

3c: No AR, k=3, T=116, A=0.40 0.086 0.818 0.096

3d: AR(1), k=1, T=116, A=0.40 0.072 0.784 0.144

The results of the experiment provide the evidence presented in Table 2 which contains

the relative frequencies of the times that the mode of the posterior distribution in each

replication points to the number of regimes in the column. For ease of reference we recall

the main characteristics of each DGP by row. The general features of the experiments point

to a general satisfactory performance of the procedure, since the correct number of regimes

is always detected with the highest frequency. The presence of autocorrelation in the DGP

seems to induce a tendency of the procedure to increase the relative frequency with which

a larger k is detected.6 When no MS is present, therefore, this may signal more than one

regime, while in the presence of two regimes the problem is less relavant. When the sample

size increases, the performance of the procedure improves slightly.

become very demanding.
6We thank the Associate Editor for pointing out this possibility to us.
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Table 3: Posterior distributions for dollar exchange rates series.

Pr (k) \k 1 2 3 4 5 6

DEM 0.273 0.408 0.238 0.062 0.014 0.005

FRF 0.355 0.369 0.190 0.069 0.015 0.002

GBP 0.412 0.402 0.132 0.042 0.009 0.003

IV Long Swings Revisited

We have run the same procedure with the same hyperparameters on the exchange rate

returns for the three currencies used by EH and then for the seven currencies used in Engel

(1994).

IV.1 Quarterly Data

The quarterly data are referred to the US dollar relative to the Deutsche Mark (DEM), the

French Franc (FRF) and the British Pound (GBP); the empirical posterior distributions are

reported in Table 3 (the boldface numbers correspond to the distribution mode by row).

There is a strong evidence of two regimes for the series DEM. For the series FRF the evidence

is less strong, since the mode is in k = 2 with a high value for k = 1 as well. For the GBP,

the evidence is in favor of k = 1 even if, again, the value for k = 2 is not much smaller.

We will maintain, therefore, that the results provided by EH are a good representation

for the DEM and FRF series. For the case of the GBP, we will investigate whether the true

model is the linear model (random walk) or an homoskedastic Markov switching model. This

time, though, we can follow a classical approach by estimating the MS model:7 yt = µst
+εt,

with εt ∼ IIN
(
0, σ2

)
.8 In this case, the likelihood ratio test can be used to verify this

7The log-likelihood function of a Markov switching model presents numerous local maxima, so that the

final estimation depends on the starting values. To choose the starting values, we have selected various

grids for unknown parameters, starting from the combination with highest log-likelihood. The grids are:

µ1 ∈ [0, 5] and µ2 ∈ [−5, 0] both with step-length 1; σ2 ∈ [8, 28] with step-length 2; p11 ∈ [0.5, 0.95] and

p22 ∈ [0.5, 0.95] both with step-length 0.05, for a total of 39,600 combinations.
8We obtain the following values for the parameters (standard errors are in parentheses):

µ̂1 = 2.661
(0.823)

, µ̂2 = −3.838
(1.398)

, σ̂2 = 18.583, p̂11 = 0.935
(0.093)

, p̂22 = 0.902
(0.112)

.
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model against the EH model, because both of them contain the transition probabilities; the

likelihood ratio statistics is equal to 0.238 (to be compared with critical values from a χ2

with one degree of freedom), not allowing the rejection of the null hypothesis of no difference

between the variances across regimes.

To verify the latter model against the linear, we can resort to a Bayesian procedure,

along the lines suggested by West et al. (1994) to take into account homoskedasticity. Let

A equal 0.22, let G (4/2, 50/2) be the σ−2 prior distribution and let N (0, 10) be the prior

distribution for µt (thus allowing high draw probability for a large range of values). The

empirical posterior distribution for the number of regimes is:

k : 1 2 3 4 5 6

Pr (k) : 0.352 0.388 0.193 0.053 0.009 0.005

that has mode k = 2. Hence for the exchange rate British Pound/US Dollar, the ho-

moskedastic MS model receives empirical support.

We can note that the posterior probability of states 1 and 2 are very similar in various

experiments and we acknowledge that this may be caused by the small number of observa-

tions. In such cases the final result would not be robust with respect to the choice of the

prior, but this is a common problem to other Bayesian methods, especially in the presence

of a small sample size.

IV.2 Monthly Data

Let us follow the extension of the analysis, as suggested by Engel (1992), and consider the

performance of the procedure when applied to monthly observations on seven exchange rates

(Canadian Dollar - CAD, French Franc – FRF , Italian Lira – ITL, Japanese Yen - JPY,

Swiss Franc - CHF, British Pound - GBP, and Deutsche Mark – DEM), using the same MS

model. We have chosen to use three priors: one which assigns a high probability to k = 1,

the second which corresponds to a prior with modes in k = 1 and k = 2, and the third

which places a mode at k = 2 with a non-zero probability at k = 1 and k = 3. The A values

chosen and the corresponding priors9 are summarized in the Table 4.

The asymptotic theory for ML estimation of MS models is by no means standard. The consistency of the

ML estimator and the consistency and asymptotic normality of the pseudo-ML estimator are ensured under

given conditions as shown by Francq and Roussignol (1997).
9We have had numerical problems calculating the prior with (8) in the Appendix, using T=214 as in

Engel (1992). Following the result by Escobar and West (1995) that the prior is not sensible to changes in

T , when the sample size is sufficiently high, we have calculated the prior fixing T = 170.
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Table 4: Priors for different values of A, with T=170.

k

A 1 2 3 4 5 6 7

0.01 0.945 0.054 0.001

0.18 0.367 0.377 0.184 0.057 0.013 0.002

0.22 0.295 0.371 0.221 0.084 0.023 0.005 0.001

By applying our procedure we obtain the posterior distributions for the regimes reported

in Table 5.

We can note the strong evidence of two regimes for the Canadian Dollar, Japanese Yen,

and Swiss Franc, one regime for the French Franc and three regimes for the British Pound;

the Italian Lira seems to be particularly sensible to the prior, since the mode is 1 for A = 0.01

and A = 0.18 while it is 2 for the third prior. The Deutsche Mark is a puzzling case in

which the mode changes without any seemingly clear pattern with respect to the changes

in the prior. The case of the British Pound is interesting since it provides evidence in favor

of three states, which is in agreement with the results in Engel (1994).

Repeating the experiment for the case with equal variance for FRF, ITL and DEM, using

the same priors as in the quarterly case, except for the A parameter, we obtain the results

in Table 6.

The evidence in favor of one state is now rather clear. These results are coherent with the

classical tests. In fact, the likelihood ratio tests show the rejection of the null of MS model

with just a changing mean, versus the MS model with both mean and variance switching.

Engel (1994) notes that the null hypothesis of monthly heteroskedastic MS model with

unchanging means is accepted against the MS model with mean and variance switching;

this, along with our results, confirms the impression that the segmented trends get hidden

by the size of monthly returns with time-varying volatility.

V Concluding Remarks

In this paper, we have proposed a new method to detect the number of regimes for MS

models, building on some results of nonparametric Bayesian statistics. The idea is to con-

sider the number of regimes as a discrete random variable with a prior distribution; the

14



Table 5: Posterior distributions for different values of A.

k

1 2 3 4 5 6 7

CAD 0.211 0.773 0.016

FRF 0.994 0.006

ITL 0.737 0.244 0.018 0.001

A=0.01 JPY 0.934 0.064 0.002

CHF 0.972 0.027 0.001

GBP 0.020 0.945 0.035

DEM 0.884 0.110 0.006

CAD 0.069 0.522 0.300 0.099 0.010

FRF 0.870 0.121 0.009

ITL 0.435 0.383 0.145 0.033 0.002 0.002

A=0.18 JPY 0.115 0.523 0.271 0.076 0.014 0.001

CHF 0.405 0.389 0.154 0.042 0.008 0.002

GBP 0.129 0.233 0.384 0.181 0.059 0.013 0.001

DEM 0.023 0.409 0.377 0.154 0.029 0.008

CAD 0.237 0.391 0.241 0.106 0.020 0.004 0.001

FRF 0.841 0.148 0.011

ITL 0.401 0.370 0.167 0.049 0.012 0.001

A=0.22 JPY 0.029 0.529 0.309 0.114 0.015 0.003 0.001

CHF 0.005 0.396 0.369 0.162 0.057 0.010 0.001

GBP 0.026 0.314 0.373 0.189 0.075 0.021 0.002

DEM 0.553 0.339 0.090 0.016 0.002
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Table 6: Posterior distributions for different values of A: selected exchange rates.

k

1 2 3 4 5 6

FRF 0.956 0.044

A=0.01 ITL 0.968 0.031 0.001

DEM 0.960 0.040

FRF 0.436 0.364 0.148 0.039 0.012 0.001

A=0.18 ITL 0.488 0.349 0.124 0.036 0.003

DEM 0.513 0.350 0.111 0.019 0.007

FRF 0.397 0.400 0.161 0.034 0.008

A=0.22 ITL 0.448 0.362 0.146 0.038 0.003 0.003

DEM 0.503 0.337 0.122 0.028 0.010
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mode of empirical posterior distribution will provide evidence about the number of regimes

for the model. In practical applications, our procedure can be seen as a preliminary step to

determine the number of regimes before estimating an MS model.

As shown in the applications, this procedure can be used also after the estimation of

a given MS model with a fixed number of regimes, using the information provided by the

parameter estimates to express the priors; in this case the present procedure would serve as

a test.

We are aware of the fact that, strictly speaking, the use of the number of regimes first as

a random variable (in the specification step) and then as a constant (in the estimation) is

not correct in a Bayesian context. It would be more correct to consider various MS models

each with a different number of states, weighted with the corresponding prior probability

assigned to each model, and then choose the model with the highest posterior probability:

but this procedure would be cumbersome. Invoking the principle of ecumenism in statistics

put forth by Box (1983), we mix classical and Bayesian approaches (not an uncommon

practice in simulation-based econometrics) achieving a simplification in the computational

efforts.

In this paper we have made a specific reference to the MS models popularized by Hamil-

ton, but the approach is valid for every switching model with unknown number of regimes.

The choice of the Hamilton model for the examples here is instructive because it is very

popular in econometrics and it is a leading case for the nuisance parameters problem in

testing. The empirical exercise performed here on exchange rate long swings shows that the

procedure is helpful in refining model specification.
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Appendix A: Dirichlet Processes

In a Bayesian context, let us consider θ to be a parameter vector with unknown distribution G

and let F be a class of distributions containing G; in a nonparametric Bayesian approach we can

put a class of priors, say P, on F . Antoniak (1974) indicates some properties for P: they consist,
essentially, in covering every kind of prior for F and in being analitically manageable. The Dirichlet

process, introduced by Ferguson (1973), is one suitable instrument to this end.

Ferguson considers a non-null, finite, non-negative and finitely additive measure α on the space

(Θ,A), where Θ is a set and A a sigma-algebra of Θ. In addition, let P be a random probability

measure, that is a probability satisfying the following conditions:

1) P (B) ∈ [0, 1] for every B ∈ A;

2) P (Θ) = 1 a. s.;

3) ifB
′
1, B

′
2, ..., B

′
n is a measurable partition ofΘ, andB1 =

n1⋃
i=1

B
′
i , B2 =

n2⋃
i=n1+1

B
′
i , ... Bs =

n⋃
i=ns−1+1

B
′
i , then the joint distribution of [P (B1) , ..., P (Bs)] is identical to the distribution of: n1∑

i=1

P
(
B

′
i

)
,

n2∑
i=n1+1

P
(
B

′
i

)
, ...

n∑
i=ns−1+1

P
(
B

′
i

) .
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We say that P is a Dirichlet process on (Θ,A) with parameter α, if, for every strictly posi-

tive integer h and for every measurable partition (B1, B2, ..., Bh) of Θ, [P (B1) , ..., P (Bh)] has a

Dirichlet distribution with parameter α measurable on the partition, that is

[α (B1) , α (B2) , ...α (Bh)], or:

[P (B1) , ..., P (Bh)] ∼ D [α (B1) , α (B2) , ...α (Bh)]

or simply [P (B1) , ..., P (Bh)] ∼ D (α).
Ferguson verifies that this definition satisfies the Kolmogorov criteria, existing a probability P

on the space of all functions from A into [0, 1] the σ−field generated by the field of cylinder sets;
P yields these distributions.

Three properties of this process are useful in the context of the determination of the number of

regimes:

Property 1:

E [P (Bi)] = α (Bi) /α (Θ) , (4)

where α (Θ) =
h∑

i=1

α (Bi).

Property 2:

(θ1, ...θn) is a sample of size n from P if, for any k = 1, 2, . . . and measurable sets C1, ..., Cn,

B1, ..., Bk :

P [(θ1 ∈ C1) , ..., (θn ∈ Cn) |P (B1) , ..., P (Bk) , P (C1) , ..., P (Cn)] =
n∏

i=1

P (Ci) , (5)

where (C1, ..., Cn) ∈ A.

Property 3:

if [P (B1) , ..., P (Bh)] ∼ D [α (B1) , α (B2) , ...α (Bh)] and (θ1, ...θn) is a sample from P , then:

[P (B1) , ..., P (Bh) |θ1, ...θn] ∼ D
[
α (B1)+

n∑
i=1

δθi (B1) , ..., α (Bh)+
n∑

i=1

δθi (Bh)

]
, (6)

where δθi (Bj) is 1 if θi ∈ Bj , 0 otherwise.

Let us suppose that G follows a Dirichlet process D (α). Let G0 be the prior expectation value

of G and A = α (Θ), so, for equation (4), G0 (·) = α (·) /A and α = AG0. In other terms, we can

write G ∼ D (AG0), where A indicates the concentration of the prior distribution for G around

G0; a high A indicates that there is a strong prior probability that the true G is G0. The previous

properties can be used to establish the posterior expected value of G.
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Let us draw a sample (θ1, ...θn) from G (in the sense of Property 2); if we use a quadratic loss

function, the estimation of the distribution of
(
θ|θ1, ...θn

)
is the expected value of [G (θ) |θ1, ...θn],

and, using properties 1 and 3,

[
∧
G (θ) |θ1, ...θn

]
=

α (θ)+
n∑

i=1

δθi (θ)

α (Θ) + n
=

A

A+ n
G0 +

1

A+ n

n∑
i=1

δθi (θ) . (7)

Note that (7) is simple to interpret as a parameterization of the distribution of θ; in addition,

G0 can assume all the standard distributions used in a Bayesian context.

There are some interesting results in Antoniak (1974) which can be exploited for our purposes,

namely the expression for the probability of obtaining k different components in the last term of

(7), that is:

Pr (kn) = nakA
k/A(n), (8)

where nak is the first type Stirling number in absolute value (tabulated in Abramowitz and Stegun,

1972, p. 833) and A(n) = A(A+1)...(A+n− 1). In addition, the expected value of k depends only

on A and n; in fact:

E (kn) =

n∑
i=1

A/(A+ i− 1) ≈ A

[
log

(
n+A

A

)]
. (9)

When the size of parameter vector θ increases, we can no longer express the estimation process

of G and θ analitically. The Gibbs sampling method is a good way to bypass this problem (West,

1992; Escobar, 1994; Escobar and West, 1995).

Appendix B: The Gibbs Sampler in this Context

As mentioned in the main text, we can consider θt as the θ in (7) and the other θi (i = 1, . . .,

t − 1, t + 1, . . ., T ) as the sample drawn from G. We can then use (7) to express the conditional

distribution p
(
θt|Θ[−t]

)
, where Θ[−t] denotes

{
θ1, ...θt−1, θt+1..., θT

}
:

p
(
θt|Θ[−t]

)
=

A

A+ T − 1G0 (θt) +
1

A+ T − 1
T∑

j=1,j �=t

δθj (θt) . (10)

There is a probability A
A+T−1

that θt is different from the other terms in ΘT and a probability

1
A+T−1

that θt is equal to the j-th term in the matrix ΘT ≡ (θ1θ2. . . θT ). Of course, if there are

nj terms of the sample equal to θj , the probability that θt= θj would be
nj

A+T−1
.
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Based on Bayesian statistical properties, the posterior distribution of
(
θt|Θ[−t]

)
is:

p
(
θt|Θ[−t] ,YT

)
= q0Gt (θt)+

T∑
j=1,j �=t

qjδθj (θt) , (11)

where YT is (y1, y2, . . . yT ), and Gt (θt) is the bivariate Normal-Inverse Gamma, with components:

σ−2
t ∼ G [(a+ 1) /2, βt/2] , (12)

µt|σ2
t ∼ N

(
xt, Xσ2

t

)
. (13)

The new parameters are expressed by (see Escobar and West, 1995):

q0 ∝ A
Γ [(1 + a) /2]

Γ (a/2) a1/2

{
1 + (yt −m)2 / [(1 + τ) b]

}−(1+a)/2
[(1 + τ) b/a]−1/2 ,

qj ∝ exp [− (yt − µj)
2 /

(
2σ2

j

)] (
2σ2

j

)−1/2
, j = 1, . . . , T

with q0 + ...+ qt−1 + qt+1 + ...+ qT = 1;

βt = b+ (yt −m)2 / (1 + τ) ,

xt = (m+ τyt) / (1 + τ) ,

X = τ/ (1 + τ) .

If we can specify the values of a, b, m and τ from available prior information, the only parameter

to specify is the precision of the Dirichlet process, A. Note that we know the prior probability for

k, expressed by (8) and its expected value, expressed by (9), which depends on the sample size (in

this case the length of the series, T ) and on A. Therefore, if we have some expectation about the

number of regimes, we can choose the A that fits this expectation.

Now, we can use the Gibbs sampler to infer the number of regimes; the steps are:

1) choose a starting value for ΘT , call it Θ0
T drawing every θt from Gt

(
θ0

t

)
;

2) sample θ1 from
(
θ1|Θ[−1] ,YT

)
, θ2 from

(
θ2|Θ[−2] ,YT

)
, ..., θT from

(
θT |Θ[−T ] ,YT

)
, obtain-

ing a new ΘT . Note that the last θt sampled is inserted immediately in Θ[−(t+1)] for the subsequent

draw;

3) iterate step 2 until convergence;10 we thereby obtain the first element ΘT (1) for the first

replication;

10The convergence is in distribution, so that every θi is considered sampled from the posterior

distribution
(
ΘT |YT

)
.
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4) repeat step 2 N times, obtaining ΘT (2), ..., ΘT (N);

5) enumerate the k distinct values in ΘT (i) and construct the empirical posterior distribution

p (k|YT );

6) the mode of p (k|YT ) can be taken as an estimate of the number of regimes for the switching

model.

The analysis exposed here is the simplest, because the hyperparameters are considered known.

Surely it is convenient to establish a prior for τ , which is a crucial task in the determination of the

form of the prior distribution for µt|σ2
t . The prior used by Escobar and West (1995) is (w and W

are constants):

τ−1 ∼ G
(

w

2
,
W

2

)
, (14)

that has a posterior distribution that does not depend on yt; in the Gibbs sampling τ−1 is to be

sampled as: (
τ−1|ΘT

) ∼ G
(

w + k

2
,
W +K

2

)
, (15)

where k is the number of different components of ΘT and K =
k∑

i=1

(µi−m)2

σ2
i

. The steps in the Gibbs

sampler do not change, but we have to add the drawing of τ (from (14) for the starting value and

from (15) for the other drawings), before the steps 1-4.

The simpler case, with unchanged variance, is illustrated in West et al. (1994). The principal

difference relative to our case is that the distribution of σ and µt are independent; in fact:

σ−2 ∼ G (a/2, b/2) ,

µt ∼ N
(
m, v2) .

The posterior distributions corresponding to (12) and (13), are:

σ−2 ∼ G [(a+ T ) /2, β/2] ,

µt ∼ N (xt, X) ,

where:

β = b+

T∑
t=1

(yt − µt)
2 ,

xt =
(
σ2m+ v2yt

)
/

(
σ2 + v2) ,
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X = v2σ2/
(
v2 + σ2) ,

and the drawing probabilities:

q0 ∝ A exp
[− (yt −m)2 /2

(
v2 + σ2)] [

2
(
v2 + σ2)]−1/2

,

qj ∝ exp [− (yt − µj)
2 /

(
2σ2)] (

2σ2)−1/2
, j = 1, . . . , T .
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