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Abstract: The paper presents some criteria for the specification of ordinal vari-
ance component models when the second level units are grouped in few strata.
The base model is specified using a latent variable approach, allowing the first
level variance, the second level variance and the thresholds to vary according to
the strata. However this model is not identifiable. The paper discusses some al-
ternative assumptions that overcome the identification problem and illustrates a
possible general strategy for the model selection. The proposed methodology is
applied to the analysis of course program evaluations based on student ratings, re-
ferring to three different schools of the University of Florence. The adopted model
takes into account both the ordinal scale of the ratings and the hierarchical nature
of the phenomenon. In this framework, the identification of the latent variable dis-
tributions is crucial, since a different first level variance among the schools would
change substantially the interpretation of model parameters. This is not the case
in our application. Results show that both the latent average evaluation of the
courses and the measurement scale vary with the school, suggesting to be careful
in the interpretation of raw ratings based on an ordinal scale.
Keywords: ordinal response models, variance component models, varying thresh-
olds, course program evaluation.

1 The standard model

Suppose that an observed ordinal response variable Y , with k = 1, 2, . . . , K
levels, derives, through a set of thresholds, from a latent continuous variable
Ỹ following a variance component model (Hedeker and Gibbons, 1994):

ỹij = α + βxij + τuj + εij, (1)

with i = 1, 2, . . . , nj respondents for the j-th group (j = 1, 2, . . . , J). In (1) α
is the intercept; xij is a covariate and β the corresponding slope; the random
variables εij and uj are the disturbances, respectively at the first (individ-
ual) and second (group) level; and σ2 and τ 2 are the variance components,
respectively at the first and second level.

For the disturbances of model (1) the usual hypotheses are:

(i) E(εij) = 0 and V ar(εij) = σ2;

(ii) uj
iid∼ N(0, 1);

(iii) the εij’s and uj’s are mutually independent.
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The observed ordinal variable Y is linked to the latent one Ỹ through the
following relationship:

{yij = k} ⇔ {γk−1 < ỹij ≤ γk} ,

where the thresholds satisfy −∞ = γ0 ≤ γ1 ≤ . . . ≤ γK−1 ≤ γK = +∞.
Therefore, conditional to uj, the model probabilities are:

P (yij = k)
= P (γk−1 < ỹij ≤ γk)
= P (ỹij ≤ γk)− P (ỹij ≤ γk−1)
= P (εij ≤ γk − [α + βxij + τuj])− P (εij ≤ γk−1 − [α + βxij + τuj])

= P
(

εij
σ
c

≤ γk
σ
c

−
[

α
σ
c

+
β
σ
c

xij +
τ
σ
c

uj

])

+

−P
(

εij
σ
c

≤ γk−1
σ
c

−
[

α
σ
c

+
β
σ
c

xij +
τ
σ
c

uj

])

= F
(

γk
σ
c

−
[

α
σ
c

+
β
σ
c

xij +
τ
σ
c

uj

])

− F
(

γk−1
σ
c

−
[

α
σ
c

+
β
σ
c

xij +
τ
σ
c

uj

])

= F (γσ,k − [ασ + βσxij + τσ uj])− F (γσ,k−1 − [ασ + βσxij + τσ uj]) ,

where F (·) is the distribution function of the “standardized” first level error
term εij

c
σ , which has variance c2. The value of the constant c is arbitrarily

chosen, usually on the basis of F (·): typical choices are c = 1 for the normal
distribution, c =

√

π2

3 for the logistic distribution and c =
√

π2

6 for the
complementary log-log distribution.

Note that all the model parameters are defined in terms of σ
c , the standard

deviation of the “standardized” first level error term, which depends on the
unknown σ (this fact is denoted by the presence of the symbol σ in the
subscript of the parameters). Thus only the ratios of the model parameters
to the standard deviation of the first level error term are identifiable; one
popular way to overcome this identifiability problem is to fix σ, usually to 1.

2 Model specification in presence of strata

Suppose now that the second level units can be grouped in few strata h =
1, . . . , H. If the number of strata is small (say, below ten), this new third level
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is most appropriately modelled by allowing the parameters to vary among the
strata. Denoting with the superscript (h) the stratum to which the quantities
are referred, the model for stratum h is:

ỹ(h)
ij = α(h) + β(h)xij + τ (h)uj + ε(h)

ij , (2)

with the following hypotheses:

(i) E(ε(h)
ij ) = 0 and V ar(ε(h)

ij ) = σ2(1 + θ(h))2;

(ii) uj
iid∼ N(0, 1);

(iii) the ε(h)
ij ’s and uj’s are mutually independent.

Therefore the parameters of model (2) are

α(1), α(2), . . . , α(H),
τ (1), τ (2), . . . , τ (H),
σ, θ(2), . . . , θ(H).

Note that the θ(h)’s are intended to measure the difference in the first level
variance from the reference stratum h = 1, for which it is θ(1) ≡ 0.

Consequently, conditional to uj, the probabilities of model (2) for stratum
h are:

= P
(

ỹ(h)
ij ≤ γ(h)

k

)

= P





ε(h)
ij

σ
c (1 + θ(h))

≤

≤ γ(h)
k

σ
c (1 + θ(h))

−
[

α(h)

σ
c (1 + θ(h))

+
β(h)

σ
c (1 + θ(h))

xij +
τ (h)

σ
c (1 + θ(h))

uj

]





= F





γ(h)
σ,k

(1 + θ(h))
−

[

α(h)
σ

(1 + θ(h))
+

β(h)
σ

(1 + θ(h))
xij +

τ (h)
σ

(1 + θ(h))
uj

]





= F
(

γ(h)∗
σ,k −

[

α(h)∗
σ + β(h)∗

σ xij + τ (h)∗
σ uj

])

,

where the superscript (h)∗ indicates that the parameter is in relative terms,
i.e. divided by (1 + θ(h)).

The h∗-parameters can be easily estimated by allowing the intercept,
the second level variance and the thresholds to vary among the H strata.
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However some additional assumptions are to be made in order to estimate
the original h-parameters, which are the ones of interest. For example, if
a certain stratum has a different h∗-intercept, it can be that the true h-
intercept is different, but it can also be that its level one variance is different,
or a mixture of the two cases.

Three possible assumptions that overcome this identifiability problem are
the following:

1. θ(2) = θ(3) = . . . = θ(H) = 0 (common first level variance): in this case
the h-parameters are the same as the h∗-parameters.

2. τ (1)
σ = τ (2)

σ = . . . = τ (H)
σ (common second level variance): in this case

the parameters θ(h) can be estimated from the following identity:

τ (1)∗
σ

τ (h)∗
σ

=
τ (1)
σ

τ (h)
σ

(1+θ(h))

=
τ (1)
σ

τ (h)
σ

(1 + θ(h)) = 1 + θ(h).

The original intercepts and thresholds are then easily calculated by
multiplying the h∗-parameters by (1 + θ(h)). For example,

α(h)
σ = α(h)∗

σ (1 + θ(h)). (3)

3. β(1)
σ = β(2)

σ = . . . = β(H)
σ (common regression coefficient): we can

proceed like in case 2, using the following identity:

β(1)∗
σ

β(h)∗
σ

=
β(1)

σ

β(h)
σ

(1+θ(h))

=
β(1)

σ

β(h)
σ

(1 + θ(h)) = 1 + θ(h).

Often the researcher acts as in case 1, tacitly assuming identical first level
variances. It should be stressed that such an assumption, that is crucial for
the interpretation of the results, is not testable and its validity in the data
at hand is difficult to assess. However, there are other ways to proceed.
The second choice (identical second level variances) is similar to the first
one, since it simply shifts the assumption from the first to the second level
variance. But the third choice (identical regression slopes) is somewhat dif-
ferent, since such an assumption concerns not a variance parameter, but an
association parameter and is consequently more easy to justify. In fact, it is
more common to have some a priori knowledge on the regression coefficients
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than on the variances. Moreover, the validity of such an assumption in the
data at hand can be investigated through some technique which can help to
explore the association among the latent variable and the covariate of inter-
est. For example, one might assign a set of scores to the levels of the ordinal
variable, estimate a separate regression slope for each of the H strata and
then compare the slopes; when also the covariate is ordinal, a closely related
technique is to compare the H Spearman correlations between the response
variable and the covariate. This strategy has a theoretical justification in
the well-known fact that association parameter estimators are usually more
robust to model misspecifications than variance parameter estimators. In
particular, Fielding (1999) found that, for the fixed regression coefficients,
the ordinal variance component model leads essentially to the same conclu-
sions as the linear variance component model on the scores of the ordinal
variable (using various scoring systems); on the other hand, the conclusions
on the variance components are significantly different.

A possible general strategy is the following:

1. Choose a covariate which has a slope sufficiently stable among the H
strata (using a priori information, separate regression lines, Spearman
correlations or the like).

2. Fit the most general model in which all the parameters (the h∗- pa-
rameters in our notation) are allowed to vary among the H strata.

3. Use the estimated β(h)∗
σ ’s to obtain an estimate of the θ(h)’s.

4. Test the hypothesis that the θ(h)’s are jointly null; if such an hypothesis
is rejected, perform a sequence of tests to identify the subset of θ(h)’s
which are significantly different from zero.

5. If the hypothesis that all the θ(h)’s are null is not rejected, then go
on with model selection in the usual manner (the interpretation of the
results is straightforward, since in this case the h-parameters equal the
h∗-parameters).

6. Otherwise, for the strata whose corresponding θ(h) is significantly dif-
ferent from zero, it is necessary to correct the h∗-estimates with an
estimate of the factor (1 + θ(h)), like in (3). In this case the model
selection should be modified to take into account the restrictions on

6



the parameters. For example, if θ(2) is different from zero, testing the
hypothesis α(1)

σ = α(2)
σ amounts to testing the hypothesis

α(1)∗
σ

α(2)∗
σ

=
β(1)∗

σ

β(2)∗
σ

(4)

One way of testing (4) is to carry out a Wald test with the aid of the
delta method, thought this technique is not always adequate (Godfrey,
1991). Alternatively, one should fit a restricted model which satisfies
the non linear constraint (4) and carry out a deviance test.

3 The data

We apply the proposed method to the data gathered in the survey on course
evaluation carried out by the University of Florence, in all the schools of
the University, for classes in the second semester of the 1999-2000 academic
year. Specifically, we will refer to the results from the schools of Engineering,
Science and Letters.

The data have a hierarchical structure: respondents are nested in courses
that are nested in schools. The total number of groups, represented by the
courses, is 370, while the number of strata, represented by the schools, is
three. Table 1 reports, for each school, the number of respondents, the num-
ber of courses evaluated and the minimum, median and maximum number
of respondents per course.

Table 1: Number of respondents, number of courses evaluated and minimum,
median and maximum number of respondents per course. The University of
Florence, academic year 1999-2000, second semester.
School N. respondents N. courses Respondents per course

min median max
Engineering 3165 150 4 16 71
Science 1633 103 4 13 52
Letters 1932 117 3 10 118
TOT 6730 370 3 13 118
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In the present application we focus on the item relative to the overall sat-
isfaction, which required a response on a 4-level ordinal scale: 1) decidedly
no; 2) more no than yes; 3) more yes than no; 4) decidedly yes. The aim
of the analysis it to establish if the different evaluations expressed by the
students in the three schools might, to some extent, be attributed to a dif-
ferent “measurement scale”, i.e. to a different way of interpreting the levels
of the ordinal scale (obviously, the evaluations expressed by each student are
influenced also by their characteristics and expectations).

4 Empirical results

The first step of the analysis is the estimation of the most general model
presented in section 2, that is the model allowing the intercept, the second
and first level variance and the thresholds to vary among the schools, with
the first threshold for all the schools fixed to 0 and the first level variance
for Engineering fixed to 1. In the present application we always assume that
the first level disturbances have a Gaussian distribution, leading to a probit
model specification.

In order to identify the parameters, we introduce into the model a covari-
ate with an assumed common slope. In this case the covariate is the answer
(on a 4-level ordinal scale) to the question whether the student will take the
exam at the first examination session (covariate exam). The choice of this
covariate is motivated by our knowledge of the phenomenon, since we have
no reason to suppose a differential effect on the latent evaluation among the
schools. Moreover, this covariate shows very similar values of the Spearman
correlation coefficient with the overall satisfaction among the three schools
(0.32, 0.34 and 0.36 respectively, for Engineering, Science and Letters).

The estimation is carried out by the NLMIXED procedure of the SAS
software (SAS Institute, 1999), which performs a dual quasi-Newton opti-
mization with adaptive Gaussian quadrature. Table 2 presents the results
relative to various models.

Comparing models 1 and 2 in terms of deviance, the hypothesis of equal
first level variances among the schools is not to be rejected. Model selection
can now proceed in the usual way. First of all, from model 2 it seems that
Engineering and Science have the same thresholds and second level variance
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Table 2: Results of model selection
Model

with covariate without cov.
1 2 3 4 5 6 7

Intercept
αE 0.3160 0.2539 0.2549 0.2479 0.1636 1.4704 1.4745
αS − αE 0.1305 0.2301 0.2274 0.2244 0.2141 0.2578 0.2425
αL − αE 0.1149 0.2450 0.2444 0.2909 0.6143 0.2410 0.2370
Exam
βE 0.4260 0.4436 0.4434 0.4428 0.4459
βS 0.4692 ” ” ” ”
βL 0.4572 ” ” ” ”
Rand. par.
θS -0.0801
θL -0.1035
τE 0.7505 0.7525 0.7208 0.6692 0.7096 0.7620 0.7596
τS 0.6902 0.6907 ” ” 0.6587 0.7554 ”
τL 0.5000 0.5008 0.5006 ” 0.5788 0.5600 0.5600
ρE 0.3615 0.3464 0.3093 0.3349 0.3674 0.3659
ρS 0.3220 ” ” 0.3026 0.3633 ”
ρL 0.2005 0.2004 ” 0.2509 0.2387 0.2387
Thresholds
γE

2 0.9984 1.0022 1.0131 1.0081 0.9603 0.9360 0.9488
γS

2 1.0408 1.0.388 ” ” ” 0.9787 ”
γL

2 0.8032 0.7985 0.7984 0.8070 ” 0.7226 0.7226
γE

3 2.5334 2.5438 2.5368 2.5236 2.3856 2.3751 2.3736
γS

3 2.5333 2.5278 ” ” ” 2.3756 ”
γL

3 2.0132 2.0022 2.0021 2.0279 ” 1.8299 1.8299
N. par. 15 13 10 9 9 12 9
-2 logL 14649 14651 14653 14663 14717 15445 15446

The superscript denotes the school: E=Engineering, S=Science, L=Letters; the
estimates in italics are not significant at the 95% level; the symbol ” indicates that the
value is, by definition, equal to the value in the above cell.
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and this impression is confirmed by the very small increase of the deviance
when fitting model 3. Further simplifications of the model are not supported
by the data: for example, Table 2 reports the estimates for the model with
constant second level variance and varying thresholds for Letters (model 4)
and for the model with varying second level variance but fixed thresholds
(model 5).

Note that imposing fixed thresholds causes an important loss of fit, so
the data strongly support the hypothesis of different “measurement scales”
among the students of the three schools. The consequences of this fact can
be appreciated by comparing models 3 and 5: in model 5 the higher ratings
obtained by the courses of Letters with respect to those of Engineering are
totally attributed to higher latent evaluations (αL − αE = 0.6143), while in
model 3 are attributed partly to higher latent evaluations (αL−αE = 0.2444)
and partly to a more favorable “measurement scale” (the lower values of
the thresholds for Letters imply that, for the same latent evaluation, the
expressed rating on the ordinal scale is greater or equal).

Another interesting feature of model 3 is that, although the first level
variance is constant among the schools, the second level one is not, with Let-
ters having a significantly lower value: 0.5006 versus 0.7208. The intraclass
correlation coefficient, ρ = τ/(1 + τ), is 0.2004 for Letters and 0.3464 for
the other schools: this means that in the school of Letters the proportion of
variance attributable to the courses is substantially lower and, consequently,
the student ratings have a lesser discriminant power.

Note that the conclusions just outlined heavily rely on the hypothesis of
constant first level variance among the schools, highlighting the practical im-
portance of devising a procedure to assess the validity of such an hypothesis.

Since in the present application the inclusion of the covariate exam is
instrumental and not of direct interest, after testing for equal first level vari-
ances we also performed the model selection without the covariate: Table
2 reports the fitting of models 6 and 7, which are the no-covariate counter-
parts of models 2 and 3, respectively. As was to be expected, the omission of
the covariate exam leads to the same substantive conclusions, since its effect
is approximately constant among the strata. Figure 1 represents, for each
school, the marginal distribution and the mean of the latent variable and
the corresponding thresholds estimated from Model 7 of Table 2. It is worth
noting that, with respect to the distribution of Engineering, the distribution
of Science is simply shifted on the right, while the distribution of Letters is
shifted on the right and has a lower variance. Moreover, the thresholds of
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Letters are shifted on the left, with the last threshold being almost equal to
the mean, so that the area under the density function on the right of the last
threshold (i.e. the model estimated proportion of very satisfied students) is
about 0.5.

5 Concluding remarks

The paper has discussed the issues that arise in the specification of ordinal
variance component models in presence of strata, with an application to the
analysis of student ratings.

In the paper we suggest to overcome the identification problem due to
the stratum-dependent first level variance by introducing a covariate with a
common slope among the strata. In a specific application, this choice can
be justified on the grounds of prior knowledge and, to a lesser extent, on
the basis of techniques which attempt to describe the behavior of the latent
variable. The reliability of these techniques in various practical situations
need to be assessed through a careful simulation study.

It should be noted that the same identification problems affect the stan-
dard one level ordinal model; the role of the second level variance is to lead
to a more realistic model for the phenomenon under study, also allowing a
broader and more interesting discussion.

Since in our application the use of the covariate exam was merely instru-
mental, Table 2 also presents the results from the model with no covariate.
Indeed, the exclusion of the covariate used to test for equal first level vari-
ances is not expected to modify the conclusions on such an hypothesis; on the
contrary, the inclusion of further covariates is potentially harmful, especially
if the new covariates have varying effects among the strata. To avoid such
problems the hypothesis of equal first level variances should be tested in the
more general model (i.e. the model including all the relevant covariates),
imposing the appropriate restrictions on the slopes of the covariates which
are assumed to have a constant effect among the strata.

As for the distributional form of the disturbances, the trials we made
suggest that this issue is not crucial in the present application. However,
it would be very useful to carry out a sensitivity analysis and to develop a
formal procedure for the selection of the distributional form; such a selection
is particularly relevant for the first level disturbances, whose distribution
determines the link function of the model.
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