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Abstract

The evaluation of nuclear DNA evidences for identification purposes is here performed

taking account of the uncertainty about population parameters. Graphical models are

used to detail out the hypotheses under forensic debate, those that determine the pedigree

structure. Graphs clarify the set of evidences that contribute to population inferences and

they also describe the conditional independence structure of DNA evidences. Numerical

illustrations are provided by reexamining three case studies taken from the literature.

Our calculations of the weight of evidence differ from those given by the authors of case

studies in the direction of more conservative values.



1 Introduction

The use of nuclear DNA in paternity test, identification of missing persons, siblings

recognition is gaining increasing attention in courts. A careful statistical analysis of

DNA fingerprints in forensic science is an issue for the consequences it embraces, from

considerations about the cost of assessment to ethical concerns.

The evaluation of the weight of evidence (WE) is the core of forensic identification.

Here the joint probability of observing the genotypes that constitute observed evidences

is quantified in turn by conditioning on pairs of hypotheses which are of forensic interest.

Each hypothesis specifies a kinship scheme among individuals so that the two hypotheses

define different conditional independence structures among genotypes. The ratio of the

two probability values is called WE and it is indicated as WE in formulas.

A comprehensive discussion of methods and pitfalls related to the evaluation of DNA

evidences in forensic science is given by Evett and Weir [5]. Essen-Möller [4] deals with

paternity tests and Ihm and Hummel [7] calculate the WE for common kinship schemes.

Brenner [2] has developed an original symbolic program to obtain formulas of the WE.

Mostad and Egeland follow the Ihm and Hummel track and numerically evaluate the WE

in a large variety of kinship schemes, including those involving family reconstruction.

Entry points in the literature dealing with probability calculus for pedigrees are Lange

[9, chapter 7] and Ott [12], the last one focused on linkage analysis.

In this field, Bayesian methods are often invoked since the WE may be interpreted

as the updating factor that map hypotheses prior odds to posterior odds. Nevertheless,

the Bayesian paradigm is not strictly followed because the uncertainty on population

parameters is typically neglected while calculating the WE. Point estimates based on a

reference population sample are often plugged into the model instead.

We believe that population parameters may be coherently included among the un-
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knowns, and this implies that the reference population sample is considered as part of

the available evidences, together with case evidences. The WE arises from the joint

probability associated to case and population sample evidences when they are calculated

under different forensic hypotheses. An example of joint use of sample and case evidence

is given in Dawid and Mortera [3] that deal with a suspect-crime identification problem.

The probabilistic analysis is here achieved making use of graphs to express the sub-

stantive (research) hypotheses Wermuth and Lauritzen [14] under forensic debate and a

related conditional independence structure.

The consequences of coherently considering all the unknowns in the forensic debate are

described also providing illustrative examples. In all the case studies we found that our

method gives a smaller WE then the ‘plug-in’ approach. The issues considered in this pa-

per have important consequences in the forensic use of nuclear DNA evidences. Our soft-

ware implementation is freely available (WEB site http://bayes1.ds.unifi.it/RaCis/ini.html).

2 Preliminaries on the nature of evidences

Sometimes, in forensic identification based on nuclear DNA, the crime and/or the suspect

evidences are missing. A group of individuals genetically related to the missing evidence

is also typed at several genetic loci: these are called case evidences.

The kinship among some members of this group is assumed to be known, because

this information does not enter the forensic dispute as a questionable fact. Nevertheless,

the full specification of kinship among group members is only achieved making at least

two alternative hypotheses, and these are to be debated in the court.

Besides the case evidences, a sample (of evidences) is taken from a reference popula-

tion defined by auxiliary information strictly related to the case (spatial location, race,
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etc.). The sample is often not random (convenience samples, [5] pp 44). Nevertheless,

the observations are considered to be exchangeable if weak information on the genetic

structure of the population makes hard further distinctions. Anyway, cares are taken

to avoid the selection of strictly related individuals in the sample, e.g. siblings are non

included in the sample to avoid the over-representation of highly correlated genotypes.

2.1 Notation

In forensic studies based on nuclear DNA, several polymorphic genetic loci are considered,

i.e. those that have two or more alleles maintained in the population.

Let L = {1, 2, . . .} be the set of natural numbers associated to the genetic loci that

are included in a study, and n(L) its cardinality (from now on n(.) stands for cardinality

of). Let Al = {al,1, . . . , al,i, . . .} be the set of alleles at locus l ∈ L. An individual

carries two alleles at one locus, and this unordered pair is called genotype. Let Gl =

{g : (g ⊂ Al) ∩ (1 ≤ n(g) ≤ 2)} be the sample space of genotypes at locus l. Then, the

sample space of genotypes at n(L) loci is GL = {(g1, . . . , gl, . . .) : gl ∈ Gl, l ∈ L}, and its

cardinality is n(GL).

We define Xl to be the random vector that associate an ordered pair of integers to a

generic genotype g:

Xl (g) = (i, j), i ≤ j, whenever g = {al,i, al,j} (1)

By definition, the random vector Xl is unaffected by order in the subset of alleles,

namely Xl ({al,i, al,j}) = Xl ({al,j , al,i}). The range of Xl is Xl = {(i, j) : 1 ≤ i ≤ j ≤ n(Al)}.

A realization of the random vector Xl is xl ∈ Xl. If n(L) > 1 than several loci are con-

sidered and the range is given by the Cartesian product XL = ×l∈LXl.

A (reference) population is biologically defined as a finite collection of genotypes, e.g.

{gj : gj = (gj,1, . . . , gj,l, . . .) ∈ GL}.
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The probability of sampling an allele al,i from a reference population at locus l is given

by its relative frequency in the reference population. Let θl = {θl,i : i = 1, 2, . . . , n(Al)}

be the vector of allele frequencies at locus l. If one locus is considered, we will neglect

the locus index l. If several reference populations would be considered, then θl,p would

indicate the vector of parameters at locus l in the reference population p. If indices l, p

are neglected in the formulas then one locus and one reference population is considered.

2.2 The kinship of individuals

The relatedness of genotypes may be described by a graph. Although graphs called

pedigrees are well known and widely used in genetics [12], here we will use the definition

commonly adopted in statistics under the label of graphical models [10].

By a graph we mean a pair G = (V,E) in which V is a finite set of vertices and

E ⊂ V ×V is the set of edges. The set V may be considered as a list of labels referred to

random vectors associated to the genotype of individuals and to all the other unobserved

quantities, like the parameter vector θ, required to perform the calculation of the WE.

The set E is a subset of the Cartesian product V × V , in which (a, b) ∈ E implies a 6= b.

If (a, b) ∈ E and (b, a) /∈ E than Xb is a descendant of Xa, thus the parent-offspring

relationship a → b holds. An undirected association between Xa and Xb is represented

by the two pairs (a, b) and (b, a) both in E, and in this case an undirected edge joins a

and b.

A genetic sub-system made by individuals, and possibly other unobserved compo-

nents, is indexed by the subset of vertices S ⊂ V . The subgraph induced by S is

GS = (S, ES), where ES = E ∩ (S × S). The subset S also induces the random vector

XS = {Xi : i ∈ S ⊂ V }.

Given a set of vertices S, the boundary bd(S) of S is defined as bd(S) = {a ∈ V \ S |
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∃b ∈ S, (a, b) ∈ E}. In a special case S contains just one vertex s and edges of the

boundary are all directed to s: they are called parents of s, pa(s).

A graph is called chain graph if the set of vertices can be partitioned in a ordered

collection of subsets (V1, . . . , Vk) called chain components. Edges within a chain compo-

nent are undirected and edges joining vertices located in different chain components are

directed.

It will be always assumed that an observed genotype is not affected by measurement

errors and that it may be directly assessed (codominant markers). This is typically the

case for microsatellites genetic loci, widely used in forensic applications.

In graphs, we distinguish the observed from the unobserved random variables, the

former indicated by a black dot vertex, the latter by an empty dot vertex.

3 The weight of evidence for competing hypotheses

The information used to build a graph G is called informative set, indicated as I.

At the most basic level, the informative set I0 collects all the information related to

the forensic case that is not matter of debate. Given I0, the set V0 is defined by the

collection of vertices representing observed DNA evidences (case and reference population

sample evidences). The set I0 is also used to define the relationships among vertices in

V0 and these constitute the set E0.

The graph G0 = (V0, E0) based on I0 is a chain graph. Undirected edges join geno-

types that are related weather they came from the same family or they belong to the

same reference population. Directed edges relate genotypes that belong to the same lin-

eage by the parents-to-offspring Mendelian law. It must be remarked that conditionally

on both parents’ genotypes be known, their offsprings’ genotypes are independent, thus

5



directed edges suffice to account for stochastic dependence.

The graph G0 is not directly suited to calculate the probability of observing the col-

lected evidences because I0 does not include those kinship relations that are debated and

needed to fully specify the conditional independence structure. The working hypothesis

Ij extends I0 through additional information.

If the working hypothesis Ij deals with samples taken from several reference popula-

tions, then it introduces at least one parametric model. A first expansion of the set of

vertices V0 is performed by adding vertices {r1, r2, . . . } to label the vectors of population

parameters. Since we will focus on just one reference population, the special role played

by the only population parameter vector is highlighted in formulas by using θ instead of

Xr1 and using the vertex label r in graphs. An undirected edge joining two genotypes

that do not share recent common ancestors is substituted by directed edges from the

population parameter to each genotype.

The formal distinction among recently related and recently unrelated genotypes is

obtained by introducing a partition of the set of vertices V0: founder vertices, F0, and

descendant vertices, F 0 (the symbol o stands for ‘observed evidence’). We remark that

members of the reference population sample are always considered as founders. We

simplify the graph representation by introducing D = (d1, d2, . . . ) as the set of founders

taken from the reference population sample (for example Figure 1). The subgraph r → D

may be expanded into a detailed representation of vertices in D, that is r → d1, r → d2,

etc.. Moreover, if both parents of a vertex v are unobserved and no information is

provided about their kinship (e.g. brothers) then v is a founder, v ∈ F0. Otherwise as

many vertices (and arrows) are introduced as required to have the oldest individuals

of each lineage in the set of founders. Within F 0, a generic vertex v might refer to

a genotype that has just one parent observed. Then, one vertex is introduced for the
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unobserved parent to fill-in the pair of parents, according to a Mendeleian representation.

The fill-in procedure is repeated for each vertex in F 0. If some vertices are introduced

during the fill-in, than the procedure is iterated until no more vertices are added and

all the vertices either have both parents specified (observed or unobserved) or they are

founders.

The result of the fill-in step is that vertices connected by undirected edges in G0 are

substituted by arrows from observed/unobserved parents to their children.

The whole procedure given above produces a special kind of graph given a working

hypothesis: a directed acyclic graph (DAG). It is characterized by the lack of undirected

edges, that is (a, b) ∈ E implies (b, a) /∈ E.

Given two working hypotheses, I1, I2, the joint probability of observing a realization

of the random vector labeled by the vertices in Gj may be calculated for j = 1, 2, namely

p(XVj | Gj).

The marginal conditional probability on the observed vertices is obtained by (Lebesgue)

integration with respect to the appropriate vertices, as specified by the working hypoth-

esis Ij , that is

p(XV0 | Ij) =
∫

XVj\V0

dF (XVj ), (2)

where Vj\V0 is the set of labels for unobserved genotypes, and XVj\V0 the sample space.

The WE of the working hypothesis I1 against the working hypothesis I2 is calculated

as the ratio among the marginal conditional probability values:

WE =
p(XV0 | I1)
p(XV0 | I2)

(3)

Actual calculations of WE require the choice of specific probability models, as de-

scribed in the next section.
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3.1 Probability models for DAG subgraphs

The joint probability of observing genotypes labelled by vertices of a DAG is [6, 10]:

p(XVj | Ij) =
∏

v∈Vj

p(Xv | Xpa(v), Ij). (4)

We first consider just one locus, i.e. L = {1}, while specifying conditional distri-

butions in equation (4), because calculations for several loci, i.e. n(L) > {1}, may be

performed by exploiting the conditional independence structure in equations (8) and (9):

p(XVj | Ij) =
∏

l∈L

∏

v∈Vj

p(Xl,v | Xl,pa(v), Ij). (5)

If the population is at Hardy-Weinberg equilibrium [9, pp2], then the genotipic relative

frequency may be calculated from the alleles relative frequency in the population:

Pr[Xl = (i, j)|θl] = θl,i · θl,j + θl,i · θl,j · I{i 6=j}(i, j). (6)

The probability mass function defined in equation (6) will be indicated as Gen(Xl |

θl), where θl,∀l ∈ L, are typically unknown. It defines the probability of observing the

genotype (i, j) in a individual of the founders. The equation (6) is a compact notation

for the multinomial sampling model from an urn containing alleles where the number of

sampled alleles is 2.

As regards the elements of F , each vertex has two parents specified by the graph Gj .

For example, Xp → Xo and Xq → Xo are the two directed edges that indicate parents (p

and q) to offspring (o) relationship. The Mendel law on alleles segregation at one locus,

specifies the probability of the event Xo = (xo,a, xo,b) given the values Xp = (xp,i, xp,j)

and Xq = (xq,r, xq,s) of parents:

Pr[Xo | Xp, Xq] =
{

I{xp,i,xp,j}(xo,a) · I{xq,r,xq,s}(xo,b) + I{xp,i,xp,j}(xo,b)· (7)

I{xq,r,xq,s}(xo,a)
}

· 1
21−I(u,u)(xp,i,xp,j)

· 1
21−I(z,z)(xq,r,xq,s)
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where the terms in the curly brackets account for the combinatorial aspect of the Mendel

law, and the last two factors determine the probability value.

The probability mass function defined in equation (7) will be indicated as Des(Xl,o |

Xl,a, Xl,b) to remark that it deals with probability values of offspring’s genotype.

The extension of equation (7) to several loci, n(L) > 1, is based on the conditional

independence of alleles at loci that are located on different chromosomes.

Let Xo = (xo,1,a, xo,1,b, . . . , xo,l,a, xo,l,b, . . .) be the offspring multilocus genotype, and

Xp = (xp,1,i, xp,1,j , . . . , xp,l,i, xp,l,j , . . .), and Xq = (xq,1,r, xq,1,s, . . . , xq,l,r, xq,l,s, . . .) be

the parents genotypes. According to the Mendel law of independent assortment, the

conditional probability of obtaining the genotype xo is:

Pr[Xo | Xp, Xq] = (8)

=
∏

l∈L

Pr[Xo,l = (xo,l,a, xo,l,b) | Xp,l = (xp,l,i, xp,l,j), Xq,l = (xq,l,r, xq,l,s)].

Equation (8) approximately holds if genetic loci are located on the same chromosome

but their genetic distance is large (say about 45 centiMorgan or more).

The probability of sampling a given genotype from the reference population can be

factored in a simple expression under the assumption of genetic equilibrium in the pop-

ulation. Let θ = {θl : l = 1, 2, . . . , n(L)} be the vector of parameters for n(L) loci. The

probability of sampling a given genotype at one of the founder nodes v is:

Pr[Xv = (xv,1,a, xv,1,b, , . . . , xv,l,a, xv,l,b, . . .)|θ] =
∏

l∈L

Pr[Xv,l = (xv,l,a, xv,l,b) | θl]. (9)

We will always assume that the population is at equilibrium, but we mention in the

discussion section the path to be followed if the assumption is relaxed.
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3.2 The probability of observed evidence

The evaluation of equation (3) is performed taking account of nodes features: founders

(F ) or not founders (F ) individuals, observed (o) or unobserved (u) genotypes.

We give now details on the computation of the conditional distribution in (2) by

distinguishing nodes according to the partition F ,F :

p(XVj | Ij) = p(θ | Ij) ·
∏

k∈F

Des(Xk | Xpa(k), Ij) ·
∏

h∈F

Gen(Xh | θ, Ij), (10)

where again Xr ≡ θ, r ∈ Vj .

We choose a Dirichlet prior distribution for θ, with parameter vector α, as a reasonable

compromise between simple and realistic models. Closed-form calculations depends on

our choice of a Dirichlet as family of prior distributions but any other reasonable choice

might be performed switching to Monte Carlo computation.

Values of vector α are selected to have an expected value of each population allele

frequency equal to 1
n(A) , the number of locus alleles, and a strength of prior belief equal

to 1 (interpreted as ‘prior sample size’).

From equation (10), by keeping the distinction between observed (o) and unobserved

(u) random variables, we rewrite the joint probability associated to graph Gj as:

p(XVj | Ij) =
∏

k∈F o

Des(xk | Xpa(k), Ij) (11)

·
∏

w∈F u

Des(Xw = xw | Xpa(w), Ij) (12)

·
∏

h∈Fu

Gen(Xh = xh | θ, Ij) (13)

·
∏

z∈Fo

Gen(xz | θ, Ij) · p(θ | Ij), (14)

where capital letters are used for unobserved random variables (notation given in section

2.1).

The (Lebesgue) integration specified in equation (2) involves variables representing
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unobserved nodes: summation for genotypes and integration for the population param-

eters.

The calculation conveniently starts with Xw for w ∈ Fu, thus summations involve all

unobserved nodes among the set of founders’ descendants.

The integration of θ concerns factors displayed in lines (13) and (14). The calculation

is clarified by rewriting factors in line (14) as a product of the posterior distribution of θ

(conditionally to founder nodes) times the marginal probability of the observed founders:

∏

z∈Fo

Gen(xz | θ, Ij) · p(θ | Ij) = Dirichlet(θ | α∗) ·
∏

z∈Fo

Md(xz | 2, α̃z), (15)

where Md(·) stands for the multinomial-Dirichlet distribution; α∗ is a vector of elements

α∗i = αi + ni, and ni is the number of alleles of type ai in the set of founders; the vector

∼
αz= has elements

∼
αi,z= αi + n(i, z), where n(i, z) is the number of alleles of type ai

observed up to the evidence labeled by z− 1 in any given ordered sequence Z of vertices

in Fo. Note that the posterior distribution of θ is obtained by sequential application

of the Bayes theorem. This is required since the observational model is parameterized

in terms of population allele frequencies: in order to obtain the closed-form posterior

distribution of θ, genotypes must be considered one at a time.

The proposition clarify how to perform the integration step.

PROPOSITION: Let Z be any ordered sequence labeling the elements of Fu. Let

ni,u be the number of observed alleles of type ai in the set of evidences pertaining Fu,

and nu =
∑nA

i ni,u, where n(A) is the number of different alleles at the considered locus.

Let ni,h ∈ {0, 1, 2} be the number of alleles of type ai scored on the individual labeled by

h ∈ Fu, and nh =
∑n(A)

i=1 ni,h = 2 the sum calculated over h ∈ Fu. Then the identity
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below holds:

∫

∏

h∈Fu

Gen(Xh = xh | θ, Ij) ·
∏

z∈Fo

Gen(xz | θ, Ij) · p(θ | Ij) · dθ = (16)

C ·Md(n1,u, · · · , nn(A),u | nu, α∗),

that is the value given by a Multinomial-Dirichlet distribution, where C is a constant that

may be calculated (proof in Appendix).

By applying the Proposition, we finally obtain the conditional probability of the

observed evidence as:

p(XV0 | Ij) = C ·
∑

xw∈Xw

∏

k∈F o

Des(xk | Xpa(k), Ij) ·
∏

w∈F u

Des(Xw = xw | Xpa(w), Ij) (17)

·Md(n1,u, · · · , nn(A),u | nu, α∗).

3.3 Computational remarks

The calculation of equation (3) is simplified if all individuals belong to the same reference

population. In this case many factors hidden into the C term of equation (17) are sim-

plified in the WE without being numerically evaluated. If the simplification is unfeasible

then a database of individual genotypes must be provided to calculate those constants,

that is allele frequencies do not suffice.

Further computational savings are realized by detailing out only those alleles that

are effectively involved in the forensic case under evaluation. This goal is achieved by

exploiting the well known properties of the marginal distributions of the Dirichlet family

of distributions [1, pp 135].

4 Case studies

In the literature, probability values on a pedigree have been calculated in several forensic

debates involving nuclear DNA. We compared the results from three already published
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studies with the WE obtained following our approach.

In this section, the notation strictly follows that given in the above sections. Neverthe-

less, we simplify the notation when feasible, e.g. n(xa) is the vector of allele frequencies

observed in the individual labeled by a.

4.1 The paternity test

Let us consider the paternity identification problem as discussed in Brenner [2]. The list

of alleles at the considered locus is r, p, q, s. Mother’s (m), alleged father’s (a) and child’s

(c) genotypes are the case evidences respectively equal to {r, p}, {p, q} and {q, s}.

A sample of genotypes is also collected from the reference population and the al-

lele frequencies in the reference population sample are, respectively ̂θr, ̂θp, ̂θq, ̂θs. These

are point estimates that in the ‘plug-in’ approach substitute the unknown population

parameters.

By casting the author’s solution into our notation, after simplifications that depend

on this specific case study, we have:

WE =
Des(xc | xm, xa)

∑

xf∈{(q,q),(q,q)}Des(xc | xm, xt)) ·Gen(Xt | ̂θ)
=

1

2̂θq

We instead account for the uncertainty of population parameters by using case evi-

dences as well as the reference population sample to infer about θ. To provide details, let

V0 be the set of nodes V0 = {m, c, a}
⋃

D, where D = (d1, d2, . . . ) stands for the sample

of size n(D) taken from the reference population. The set I0 is defined by the collection

of sentences:
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I0 = { ‘V0 above is the set of nodes labeling genotypes’,

‘m label the mother and comes from the reference population’,

‘c is the child of m ’,

‘D is a set of labels for genotypes taken from the reference population’,

‘ the alleged father a comes from the reference population ’ }

The first working hypothesis I1 adds to I0 the sentence ‘The alleged father is the

true father’. The graph G1, shown in Figure 1, is obtained using the working hypothesis

I1.

The second working hypothesis I2 adds to I0 the sentence ‘the alleged father is not

the true father’, therefore a new vertex t is introduced to mark the genotype of the true

father taken from the reference population. The graph G2 shown in Figure 1 is defined

using I2.

Conditionally to the hypothesis of paternity, all the genotypes in the graph are ob-

served. Let n(xa) be the vector of allele frequencies assessed on individual a, and n(D)

be the vector of allele frequencies assessed on the reference population sample. Then,

the marginal probability with respect to θ is:

p(XV0 |I1) = Des(xc|xm,xa) ·Md(xm|2, α̃a,d) ·Md(xa|2, α̃d) ·
n(D)
∏

i=1

Md(xdi |2, α̃i−1),

where α̃a,d = α+n(xa)+n(D), α̃d = α+n(D) and α̃i = α+
∑i

j=1 n(xdj ) (where α̃0 = α

).

Similarly, the marginal probability for the non-paternity hypothesis is:

p(XV0 |I2) =
∑

xt∈Xt

(Des(xc|xm, xt) ·Md(Xt = xt | 2, α̃a,m,d)

·Md(xm | 2, α̃a,d) ·Md(xa | 2, α̃d) ·
n(D)
∏

j=1

Md(xdi | 2, α̃i−1),

where α̃a,m,d = α + n(xa) + n(xm) + n(D).
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The WE is therefore

WE =
Des(xc|xm,xa)

∑

xt∈Xt
·Des(xc|xm,xt) ·Md(Xt = xt | 2, α̃a,m,D)

.

Several (hypothetical) samples are here considered to assess the sensitivity of WE

to the reference population sample size: all of them provide the same point estimate of

̂θq = 0.01, but the size is in the range 50 to 1000.

Results are shown in Figure 2. Values of WE span from 25 to nearly 50, therefore

our coherent analysis always gives a more conservative evaluation of WE.

4.2 The missing father case study

Let’s consider now a less usual paternity case as in Jourqueira [8]. Here we have two

children (c1, c2) of the same mother (m). The father of the first child is well identified

(f1) but missing. The debate is about the possibility that he is also the father of the

second child (I1). If children have two different fathers then another (unknown) man

(f2) is introduced in the graph (I2). Additional data are the parents (p1, p2) of f1 and

a sample from the reference population labeled as D = (d1, d2, · · · ). In Figure 3, the

graphs obtained under the two hypotheses are shown. The original data from [8] are

summarized in Table 1.

First, we detail the solution obtained using our approach. If I1 holds we have:

p(XV0 |I1) =
∑

xf1∈Xf1

Des(xc1 |xm,Xf1) ·Des(xc2 |xm,Xf1) ·Des(Xf1 |xp1 , xp2) ·

Md(xp1 | 2, α̃p2,D) ·Md(xm | 2, α̃a,p1,p2,D) ·Md(xp2 | 2, α̃D)

·
n(D)
∏

i=1

Md(xdi | 2, α̃i−1),

where symbols have been already introduced.
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Similar calculation may be performed by conditioning on the two-fathers hypothesis

(I2), thus:

p(XV0 |I2) =
∑

Xf1

Des(xc1 |xm,Xf1) ·Des(Xf1 |xp1,xp2)

·
∑

Xf2

Des(xc2 |xm,Xf2) ·Md(Xf2 | 2, α̃m,p1,p2,D)

·Md(xm | 2, α̃p1,p2,D) ·Md(xp1 | 2, α̃p2,D) ·Md(xp2 | 2, α̃D)

·
n(D)
∏

j=1

Md(xdi | 2, α̃i−1).

The WE, after simplification, becomes:

WE =

∑

xf1∈Xf1
Des(xc1 | xm, xf1) ·Des(xc2 | xm, xf1) ·Des(Xf1 = xf1 | xp1,xp2)
∑

xf1∈Xf1
Des(xc1 | xm, xf1) ·Des(Xf1 = xf1 | xp1 , xp2)·

·
∑

xf2∈Xf2

Des(xc2 | xm, xf2) ·Md(Xf2 = xf2 | 2, α̃m,p1,p2,D).

Jourqueira’s solution differs from our equation because the equation term Md(Xf2 =

xf2 | 2, α̃m,p1,p2,D) is substituted by Gen(Xf2 = xf2 | ̂θ), i.e. the plug-in method is

invoked.

In Figure 4, the numerical consequences on the WE are evaluated at four loci (it seems

that original Jorqueira’s calculations are based on the allele frequency 0.021 instead of

0.012 for allele 29 at locus D12S1090). The change of overall WE is appreciable and

it depends on the sample size. If the the sample size is 100 then the author’s WE

is reduced from 234.38 to 150.21. The Figure highlights numerical differences between

Egeland-Mostad’s results and our findings, especially if a rare allele is found in the alleged

person (e.g. on top right, the locus vd12S1090 versus others).

4.3 A missing person case study

Evett and Weir [5] have illustrated a missing person problem in which a corpse, labelled

by x, is found. The genotypes of the mother (m), of four siblings (s1, · · · s4), of the
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spouse (sp) of the missing person and their child (c) are assessed in a family. A sample

D = (d1, d2, · · · ) is taken from the reference population.

Once more, we start showing our solution. In Figure 5 (left), G1 summarizes the

conditional independence structure obtained if the corpse belongs to the missing person.

In Figure 5 (right), the graph G2 is defined by assuming that the corpse comes from a

generic individual tf of the reference population.

The probability of observed evidences given I1 is:

p(XV0 |I1) = Des(xc | xx, xsp) ·
∑

xf∈Xf

·Des(xx | xm, xf )
4

∏

i=1

·Des(xsi | xm, xf )

·Md(Xf = xf | 2, α̃m,sp,D) ·Md(xm | 2, α̃sp,D) ·Md(xsp | 2, α̃D)
n(D)
∏

i=1

Md(xdi | 2, α̃i−1).

Given the alternative hypothesis I2, the marginal probability is:

p(XV0 | I2) =
∑

xtf∈Xtf

∑

xf∈Xf

Des(xc | xsp, xtf ) ·
4

∏

i=1

Des(xsi | xm, xf )

·Des(Xtf = xtf | xm, xf ) ·Md(Xf = xf | 2, α̃x,m,sp,D)

·Md(xx | 2, α̃m,sp,D) ·Md(xm | 2, α̃sp,D) ·Md(xsp | 2, α̃D)

·
n(D)
∏

i=1

Md(xdi | 2, α̃i−1)

The WE, after simplifications, becomes:

Des(xc | xx, xsp) ·
∑

xf∈Xf

Des(xx|xm, xf ) ·
4

∏

i=1

Des(xsi | xm, xf ) ·Md(Xf = xf | 2, α̃m,sp,D)

∑

xtf∈Xtf ,xf∈Xf

Des(xc | xsp, xtf ) ·
4

∏

i=1

Des(xsi | xm, xf ) ·Des(Xtf = xtf | xm, xf ) ·

·Md(Xf = xf | 2, α̃x,m,sp,D) ·Md(xx | 2, α̃m,sp,D)

Evett and Weir follow the symbolic approach and calculate the WE through the

appealing expression WE = 2
2bθ3+bθ4

, where ̂θi is the relative frequency of allele i.
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Unfortunately, under the informative set I2, they did not consider the stochastic

vertex tf thus their WE is flawed. Fixing the cited flaw, we obtained WE = 2bθ3·(2bθ3+bθ4)
,

and the corrected expression numerically matches the numerical solution given by Mostad

and Egeland [11]. Nevertheless, the uncertainty about the population parameters is not

accounted.

The sensitivity of the WE to the sample size for fixed allele relative frequencies is

shown in Figure (6). In Table 2 the artificial reference population sample used to build

the graph is listed.

5 Discussion

The use of graphs in which a vertex represents population parameters characterizes our

evaluation of the probability of observing the collected DNA evidences given two or more

forensic hypotheses.

In our approach, the set of genotypes that shall be used to make inference on pop-

ulation parameters is made explicit. We called these contributing genotypes ‘founders’,

whether they belong to the reference population sample or they pertain case evidences.

The coherent treatment of unknowns entails appreciable changes in the evaluation of

WE, as we described in the re-analysis of case studies from the literature. A common

feature of all the case studies is that greater differences occur if rare alleles in the pop-

ulation are found in the alleged person(s). The explanation follows from the inclusion

of the alleged person’s relatives (or some of them) among the founders, so that infer-

ence on population parameters is strongly affected by the augmentation of the reference

population sample, making rare alleles ‘less rare’.

The results of our analysis are always conservative, that is favorable to the non-
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identification. This is an important feature, especially if the reference population sample

is in the order of few hundreds, as it very often happens in reference populations that

are not widely typed (e.g. Eastern Europe).

Our approach asymptotically gives the same value of WE obtained using the ”plug-

in” with an infinite sample size, that is, if the sample size diverges then the contribution

of the case-related founders becomes negligible.

Closed-form expressions has been obtained but this achievement depends on the pres-

ence of Hardy-Weinberg equilibrium in the reference population. The generalization of

the approach to reference populations far from equilibrium could require a more com-

plex model addressing features like the structure of subpopulations. Nevertheless, the

conditional independence structure expressed by a DAG still holds and it might be ex-

ploited by the BUGS simulation software [13] that accepts a graph as description of a

probabilistic model.

The calculation of the WE by simulation should not be particularly intensive following

our specifications. The marginalization over unobserved nodes does not entail additional

computer simulations after the updating of population parameters. This property follows

from the rules we gave to build the graph.
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APPENDIX: Proof of the proposition.

Let’s first consider the joint probability of observing individuals in Fu, using the

multinomial representation:

∏

h∈Fu

Gen(Xh = xh | θ, Ij) = =
∏

h∈Fu

[(

nh!Qn(A)
i=1 ni,h!

)

·
∏n(A)

i=1 θni,h
i

]

=
∏

h∈Fu

(

nh!Qn(A)
i=1 ni,h!

)

·
∏n(A)

i=1 θni,u
i ,

where ni,u =
∑

h∈Fu
ni,h, ni,h ∈ {0, 1, 2} and nh =

∑n(A)
i=1 ni,h = 2 for each h ∈ Fu.

Conditionally on θ, the above probability value is proportional to the probability of

observing nu alleles without regards for the assortment of alleles into genotypes.

By exploiting the conjugate structure of the Dirichlet model for θ, the integration

proceeds as:

∫

∏

h∈Fu

Gen(Xh = xh | θ, Ij) ·
∏

z∈Fo

Gen(xz | θ, Ij) · p(θ | Ij) · dθ =

=
∫

∏

h∈Fu

(

nh!
∏n(A)

i=1 ni,h!

)

·
n(A)
∏

i=1

θni,u
i ·Dirichlet(θ | α∗) ·

∏

z∈Fo

Md(xz | 2, α̃z) · dθ =

=
∫

∏

h∈Fu

nh!Qn(A)
i=1 ni,h!

nu!Qn(A)
i=1 ni,u!

· nu!
∏n(A)

i=1 ni,u!
·

n(A)
∏

i=1

θni,u
i ·Dirichlet(θ | α∗) ·

∏

z∈Fo

Md(xz | 2, α̃z) · dθ =

= C ·Md(n1,u, · · · , nn(A),u | nu, α∗),

where C is given by:

C =

∏

h∈Fu

nh!Qn(A)
i=1 ni,h!

nu!Qn(A)
n1,u

ni,u!

∏

z∈Fo

Md(xz | 2, α̃z) (18)
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Table 1: Allele relative frequencies and evidences for Jorqueira case study (section

4.2).

Case Evidences

Loci p1 p2 m c1 c2

D1S80 (31, 33) (24, 31) (22, 31) (22, 33) (31, 31)

D12S1090 (20, 22) (22, 29) (12, 25) (12, 29) (12, 29)

D3S1744 (18, 21) (18, 21) (18, 21) (18, 21) (18, 18)

D18S849 (16, 16) (16, 16) (16, 17) (16, 16) (16, 16)

Relevant allele frequencies (locus, allele)

D1S80, 31 D12S1090, 29 D3S1744, 18 D18S849, 16

0.110 0.021 0.341 0.339
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Table 2: Reference population sample and evidences for Evett and Weir case study

(section 4.3).

Alleles 1 2 3 4 5 6 7 8

θ̂3 .004 .008 .0444 .240 .32 .32 .052 .012

n 1 2 11 60 80 80 13 3

Genotypes m s1 s2 s3 s4 x sp c

(3, 4) (2, 4) (2, 4) (2, 4) (3, 4) (3, 3) (5, 6) (3, 5)
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Figure 1: Brenner case study. Graph G1 (left) refers to the paternity hypothesis, while

graph G2 deals with not paternity (section 4.1).
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Figure 2: Brenner case study. Solid lines represent the weight of evidences for different

sample sizes (full Bayesian approch). Dotted lines represent the weight of evidences

obtained by the plug-in approach (section 4.1).
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Figure 3 : Jourqueira case study. Graph G1 (left) represents the ”one missing father”

hypothesis, while G2 (right) refers to the ”two missing fathers” hypothesis (section 4.2).
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Figure 4: Jourqueira case study. Solid lines represent the weight of evidences (four loci)

for different sample sizes (full Bayesian approch). Dotted lines represent the weight of

evidences obtained by the plug-in approach (section 4.2).
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Figure 5: Evett and Weir case study. Graph G1 (left) refers to the missing person

identification hypothesis, while G2 (right) deals with the no identification hypothesis

(section 4.3).
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Figure 6: Evett and Weir case study. Solid lines refers to the weight of evidences for

different sample sizes (full Bayesian approch). Dotted lines deals with the weight of

evidences obtained by the plug-in approach (section 4.3).
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