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Abstract

Multilevel ordinal models are often fitted to survey data gathered with
a complex multistage sampling design. However, if such a design is in-
formative, in the sense that the inclusion probabilities depend on the
response variable even after conditioning on the covariates, then standard
maximum likelihood estimators are biased. In this paper, following the
Pseudo Maximum Likelihood (PML) approach of Skinner (1989), we pro-
pose a probability-weighted estimation procedure for multilevel ordinal
models which eliminates the bias generated by the informativeness of the
design. The reciprocals of the inclusion probabilities at each sampling
stage are used to weight the log-likelihood function and the weighted es-
timators obtained in this way are tested by means of a simulation study.
The variance estimators are obtained by a bootstrap procedure. The
maximization of the weighted log-likelihood of the model is done by the
NLMIXED procedure of the SAS, which is based on adaptive Gaussian
quadrature. Also the bootastrap estimation of variances is implemented
in the SAS environment.

Keywords:Multilevel ordinal model, Multistage sampling, Pseudo Maximum Likeli-
hood.
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1 Introduction

Multilevel models for ordinal responses, including binary responses as a special
case, are frequently used in many areas of research for modelling hierarchically
clustered populations. In fact, both in human and biological sciences, the status
or the response of a subject may often be classified in two categories or in a set
of ordered categories (ordinal or graded scale). At the same time, subjects are
observed clustered in groups (e.g. schools, firms, clinics, geographical areas).
The hierarchical population structure is often also employed to design multi-
stage sampling schemes, with unequal selection probabilities at some or all the
stages of the sampling process. In the multilevel analysis of survey data, com-
plex sampling schemes are often ignored even if they may cause the violation of
the basic assumptions underlying multilevel models. In fact, in complex sam-
pling designs both the subjects and the clusters at all levels could be selected
with probabilities that, even conditionally on the covariates, do depend on the
response variable; in other words, the sampling design might be informative.
For data that are clustered and obtained by multistage informative designs,

proposals for fitting multilevel models have been formulated only for the case
of continuous response variable. In a recent article, Pfeffermann et al. (1998)
propose probability-weighting procedures of first and second level units that ad-
just for the effect of an informative design on the estimation of two-level models
with continuous response variable. The method, known as Pseudo Maximum
Likelihood (PML), consists in writing down a closed form expression for the
census likelihood, estimating the log-likelihood function and then maximizing
the estimated function numerically. The method needs the sampling weights
for the sampled elements and clusters at all levels. The authors also develop
appropriate ‘sandwich’ estimates for the variances of the estimators.
The wide use of multilevel ordinal and binary models in many fields of ap-

plication urges for an analogous solution, which should be both effective and
simple to implement, preferably in the framework of a standard statistical soft-
ware. The present paper represent a contribution in this direction.
The paper structure is as follows. Basic definitions for the multilevel ordinal

model are set out in Section 2, while in Section 3 the probability-weighting
approach for fitting the model is developed. In section 4 the properties of the
various estimators are evaluated by a simulation study. Section 5 contains some
final remarks.

2 The multilevel ordinal model

In order to ease the comparison with the results concerning the linear model
(Pfeffermann et al., 1998), it is useful to write the ordinal model in terms of a
latent linear model endowed with a set of thresholds. Suppose that an observed
ordinal response variable Y , with k = 1, 2, . . . ,K levels, is generated, through
a set of thresholds, by a latent continuous variable Ỹ following a variance com-
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ponent model (Hedeker and Gibbons, 1994):

Ỹij = β0xij + ωuj + εij , (1)

with i = 1, 2, . . . , Nj elementary units for the j-th cluster (j = 1, 2, . . . ,M).
In (1) xij is a covariate vector and β is the corresponding vector of slopes;
the random variables εij and uj are the disturbances, respectively at the first
(elementary) and second (cluster) level; and ω2 is the second level variance
component.
For the disturbances of model (1) we make the standard assumptions, i.e.

a) the εij ’s are iid with zero mean and unknown variance σ2; b) the uj ’s are
Gaussian iid with zero mean and unit variance; c) the εij ’s and uj ’s are mutually
independent.
Note that model (1) leads to the simplest case of multilevel ordinal model,

with just two levels and a single random effect on the intercept; the extension
to three or more levels and to multiple random effects is straightforward in
principle (Gibbons and Hedeker, 1997), but the complications in the formulae
suggest to consider only the simplest case, which is sufficient for the discussion
of the main conceptual issues.
The observed ordinal variable Y is linked to the latent one Ỹ through the

following relationship:

{Yij = k} ⇔
n
γk−1 < Ỹij ≤ γk

o
,

where the thresholds satisfy −∞ = γ0 ≤ γ1 ≤ . . . ≤ γK−1 ≤ γK = +∞.
Therefore, conditional on uj , the model probability for subject i of cluster j is

P (Yij = k |uj) = P
³
γk−1 < Ỹij ≤ γk |uj

´
(2)

= P
³
Ỹij ≤ γk |uj

´
− P

³
Ỹij ≤ γk−1 |uj

´
,

with

P
³
Ỹij ≤ γk |uj

´
= P

¡
εij ≤ γk −

£
β0xij + ωuj

¤ |uj¢
= F

µ
γk
σ
−
·
1

σ
β0xij +

ω

σ
uj

¸¶
= F

¡
γσ,k −

£
β0σxij + ωσ uj

¤¢
, (3)

where F (·) is the distribution function of the standardized first level error term
εij/σ. All the model parameters are defined in terms of the unknown σ, the
standard deviation of the first level error term, so only the ratios of the model
parameters to the standard deviation of the first level error term are identifiable;
we use the notation ψσ to indicate that the latent model parameter ψ is in σ
units, i.e. ψσ ≡ ψ/σ. Note that F (·) is also the inverse of the link function
of the ordinal model: for example, the standard Gaussian distribution function
yields the ordinal probit model.

3



Now let θ denote the vector of all estimable parameters, which include βσ,
ωσ and K−2 thresholds {γσ,k : k = 2, . . . ,K−1} (γσ,1 is fixed to zero to insure
identifiability). The conditional likelihood for subject i of cluster j is

Lij(θ |u) =
KY
k=1

[P (Yij = k |uj)]dijk , (4)

where P (Yij = k |uj) is defined by (2) and (3), while dijk is the indicator func-
tion of the event {Yij = k}. Then the marginal likelihood for cluster j is

Lj(θ) =

Z +∞

−∞

NjY
i=1

Lij(θ |u)φ(u)du,

where φ is the standard Gaussian density function. Finally, the overall marginal
likelihood is

L(θ) =
MY
j=1

Lj(θ). (5)

3 Probability-weighted estimation

3.1 Pseudo Maximum Likelihood (PML) estimators

Suppose that the whole population of M clusters (level 2 units) with Nj ele-
mentary units (level 1 units) per cluster is not observed; instead the following
two-stage sampling scheme is used:

• first stage: m clusters are selected with inclusion probabilities πj (j =
1, . . . ,M);

• second stage: nj elementary units are selected within the j-th selected
cluster with probabilities πi|j (i = 1, . . . , Nj).

The unconditional sample inclusion probabilities are then πij = πi|jπj .
When the sampling mechanism is informative, i.e. the πj and/or the πi|j

depend on the model disturbances and hence on the response variable, the max-
imum likelihood estimator of the parameters of the ordinal variance component
model defined in Section 2 may be seriously biased.
A standard solution to this problem is the Pseudo Maximum Likelihood

(PML) approach (Skinner, 1989). However in the context of multilevel models
the implementation of the PML approach is complicated by the fact that the
population log-likelihood is not a simple sum of elementary unit contributions,
but rather a function of sums across level 2 and level 1 units. This can be seen
by writing the logarithm of the likelihood (5) as follows:

logL(θ) =
MX
j=1

log

Z +∞

−∞

exp


NjX
i=1

logLij(θ |u)

φ(u)du. (6)
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A design-consistent estimate of the population log-likelihood (6) can be ob-
tained applying the Horvitz-Thompson principle, i.e. replacing each sum over
the level 2 population units j by a sample sum weighted by wj ≡ 1/πj and each
sum over the level 1 units i by a sample sum weighted by wi|j ≡ 1/πi|j :

log L̂(θ) =
Xs

j
wj log

Z +∞

−∞

h
exp

nXs

i
wi|j logLij(θ |u)

oi
φ(u)du, (7)

where
Ps denotes a sum over sample units.

Note that inserting the weights in the log-likelihood implies the use of a
design-consistent estimator of the population score function. In fact, the popu-
lation score function U(θ) ≡ ∂

∂θ logL(θ) can be written as

MX
j=1

R+∞
−∞

h
exp

nPNj

i=1 logLij(θ |u)
oi
·
nPNj

i=1
∂
∂θ logLij(θ |u)

o
φ(u)duR+∞

−∞ exp
nPNj

i=1 logLij(θ |u)
o
φ(u)du

, (8)

whose corresponding Horvitz-Thompson estimator Û(θ) is

Xs

j
wj

R+∞
−∞

£
exp

©Ps
i wi|j logLij(θ |u)

ª¤ · ©Ps
i wi|j

∂
∂θ logLij(θ |u)

ª
φ(u)duR+∞

−∞ exp
©Ps

i wi|j logLij(θ |u)
ª
φ(u)du

,

(9)
which equals the score obtained by differentiating the probability-weighted log-
likelihood (7).
Under mild conditions, the solution θ̂PML to the estimating equation Û(θ) =

0 is design-consistent for the finite-population maximum likelihood estimator
θ̂ which, in turn, is model-consistent for the super-population parameter θ:
therefore θ̂PML is a consistent estimator of θ with respect to the mixed design-
model distribution (Pfeffermann, 1993).
The implementation of the PML approach requires the knowledge of the

inclusion probabilities at both levels. Using only second level weights or only
first level weights may be insufficient or may even worsen the situation, as shown
by our simulations.

3.2 Scaling the weights

A controversial issue present in Pfeffermann et al. (1998) is the scaling of the
weights to obtain estimators with little bias even in small samples. Obviously,
scaling is not relevant for the level 2 weights, since from (7) and (9) it is clear
that multiplying the wj ’s by a constant does not change the PML estimates
(it simply inflates the information matrix by that constant). On the contrary,
scaling the level 1 weights may have important effects on the small sample
behavior of the PML estimator. In the simulation study discussed in Section (4)
we present the results for the following type of scaling (named ‘scaling method
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2’ in Pfeffermann et al., 1998):

wscaledi|j =
wi|j
w̄j

, (10)

where w̄j = (
Ps
i wi|j)/nj , so that, for the j-th cluster, the sum of the scaled

weights equals the cluster sample size nj . In the present paper we do not wish
to discuss the relative merits of the various scaling methods, so we limit our
simulations to scaled weights (10), which have an intuitive meaning and showed
a good performance in the study of Pfeffermann et al. (1998).

3.3 Estimation technique

The maximization of the weighted log-likelihood (7) involves the computation
of several integrals which do not have a closed-form solution, so a numerical
approximation technique is required. When the dimensionality of the integrals
is low, a simple and very accurate technique is Gaussian quadrature, which
is based on a summation over an appropriate set of points. The NLMIXED
procedure of the SAS (SAS Institute, 1999) is a general procedure for fitting
nonlinear random effects models using adaptive Gaussian quadrature. Various
optimization techniques are available to carry out the maximization; the default,
used in the simulations of Section 4, is a dual quasi-Newton algorithm, where
dual means that the upgrading concerns the Cholesky factor of an approximate
Hessian (SAS Institute, 1999).
Though the NLMIXED procedure does not include an option for PML esti-

mation, it is still possible to insert the weights in the likelihood, using different
tricks for level 1 and level 2 weights. To insert level 1 weights it is necessary to
exploit the option which allows to write, with SAS programming statements, an
arbitrary expression for the conditional likelihood of the model: then one should
simply replace Lij(θ |u) of formula (4) with wi|jLij(θ |u). On the other hand,
level 2 weights can be inserted in the likelihood through the REPLICATE state-
ment. Unfortunately, this statement is limited to integer weights, so to avoid
gross approximations it is advisable to proceed as follows: a) inflate all the level
2 weights by an arbitrary constant k; b) insert the integer part of the inflated
weights in the likelihood through the REPLICATE statement; c) rescale the
information matrix by the constant k or, equivalently, multiply the estimation
covariance matrix by k. This procedure relies on the fact that multiplying the
level 2 weights by a constant has the only effect of inflating the information
matrix by that constant, leaving the estimates unchanged.

3.4 Variance estimation

In standard maximum likelihood the estimation of the covariance matrix of
the estimators is obtained by inverting the information matrix. However this
conventional estimator is not appropriate when using the PML method. In this
case Skinner (1989) proposed the use of a robust ‘sandwich’ estimator, which is
employed also by Pfeffermann et al. (1998).
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As described in Section 3.3, the NLMIXED procedure of the SAS allows to fit
the model with the PML approach, but the estimated covariance matrix, which
is obtained simply inverting the information matrix, is likely to be misleading
in order to appreciate the actual variability of PML estimators. In the SAS
framework a simple and effective solution, requiring a bit programming, is to
empirically estimate the variance through the bootstrap technique for finite
populations (Särndal et al., 1992), which consists of the following steps: a) using
the sample data, an artificial finite population is constructed, assumed to mimic
the real population; b) a series of independent bootstrap samples is drawn from
the artificial finite population and for each bootstrap sample an estimate of the
target parameter is calculated; c) the bootstrap variance estimate is obtained
as the variance of the observed distribution of the bootstrap estimates.
The artificial finite population can be generated in the following way: i) for

the j-th sampled cluster, each of the nj sampled elementary units is replicated
wi|j times, rounding the weight to the nearest integer, obtaining an artificial
cluster of about Nj elementary units; ii) each of the m artificial clusters is
replicated wj times, rounding the weight to the nearest integer, obtaining an
artificial population of about M clusters. Then the samples are selected from
the artificial population in the following way: i) m clusters are re-sampled with
probability proportional to πj ; ii) for the j-th re-sampled cluster, nj elementary
units are re-sampled with probability proportional to πi|j .
When the sampling fraction m/M is low, most of the variance is due to the

sampling of the clusters, so the bootstrap procedure described above could be
simplyfied by omitting the steps concerning the elementary units, i.e. step i)
in the construction of the artificial population and step ii) in the re-sampling
process.

4 Simulation study

4.1 Design of experiment

The experiment reflects the two-stage scheme assumed for the observed vari-
ables: first, the finite-population values are generated from the adequate super-
population model (stage I) and then an informative or non-informative sample
is selected from the finite population (stage II), with one sample per population.
The two-stage selection scheme was repeated 1000 times for each combination
of sample size and type of informativeness. In order to compare our results
with the ones obtained for the multilevel linear model, the experiment has been
designed following the example of Pfeffermann et al. (1998, section 7).
The simulation study was limited to the simplest case of the model defined

in Section 2, with only two categories for the response variable (i.e. K = 2) and
no explanatory variables; moreover, for the first-level disturbances a Gaussian
distribution was assumed, so the fitted model is in fact a random intercept
probit binary model.
The values of the binary response variable Yij were generated using the

7



mentioned two-stage scheme:

• Stage I. Finite-population values Yij (j = 1, . . . ,M ; i = 1, . . . , Nj) were
obtained by first generating a value from the super-population latent
model Ỹij = β + uj + vij , with uj ∼ N

¡
0,ω2

¢
and vij ∼ N

¡
0,σ2

¢
, and

then putting Yij = 0 if Ỹij ≤ 0 or Yij = 1 if Ỹij > 0 (recall that the binary
model has only one threshold which is set to zero to guarantee identifia-
bility). The latent model parameter values employed in the simulation are
β = 0, ω2 = 0.2 and σ2 = 0.5, so that the parameters estimable from the
binary model are βσ ≡ β/σ = 0 and ωσ ≡ ω/σ = 0.632 (see expression
(3)). The hierarchical structure of the population comprises M = 300
clusters, while the cluster sizes Nj were determined, as in Pfeffermann et
al. (1998), by Nj = 75 exp(ũj), with ũj generated from N

¡
0,ω2

¢
, trun-

cated below by −1.5ω and above by 1.5ω. As a result, in our population
Nj lies in the range [38, 147] with mean around 80.

• Stage II. Once the finite-population values were obtained, we adopted one
of the following sampling schemes, as in Pfeffermann et al. (1998):

(a) Informative at both levels: first, m clusters were selected with proba-
bility proportional to a ‘measure of size’Xj , i.e. πj = mXj/

PM
j=1Xj ;

the measure Xj was determined in the same way as Nj but with ũj
replaced by uj , the random effect at level 2. The elementary units
in the j-th sampled cluster were then partitioned into two strata ac-
cording to whether vij > 0 or vij ≤ 0 and simple random samples of
sizes 0.25nj and 0.75nj were selected from the respective strata. The
sizes nj were either fixed, nj = n0, or proportional to Nj .

(b) Informative only at level 2 : the scheme is the same as the previ-
ous one, except that simple random sampling was employed for the
selection of level 1 units within each sampled cluster.

(c) Non-informative: the scheme is the same as the previous one, except
that the size measure Xj was set equal to Nj .

Following Pfeffermann et al. (1998), the simulation study included samples
with m = 35 clusters and varying numbers of elementary units: large samples
with fixed size nj = n0 = 38 and proportional allocation nj = 0.4Nj , and small
samples with fixed size nj = n0 = 9 and proportional allocation nj = 0.1Nj
(mean of about 9).
The simulation study was carried out entirely within the SAS System (SAS

Institute, 1999), writing a specific code with the macro language. The models
were fitted with the NLMIXED procedure, using 10-point adaptive Gaussian
quadrature with a dual quasi-Newton algorithm, which reached convergence in
a few iterations. As explained in Section 3.3, to avoid gross rounding errors the
level 2 weights were pre-multiplied by a factor k = 10000 and the estimation
covariance matrix was then multiplied by the same factor.
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4.2 Results

The results of the simulations are shown in Tables 1 and 2. For each sampling
design the behavior of the point estimators of the intercept βσ and the second
level standard deviation ωσ is summarized by the mean and standard deviation
of their Monte Carlo sampling distribution. The point estimators under study
are the standard maximum likelihood unweighted estimator and the following
three weighted versions of it:

• only level 2 weights (i.e. varying wj ’s and constant wi|j’s);
• weights at both levels, with unscaled level 1 weights;
• weights at both levels, with level 1 weights scaled according to (10).

Our results are shown and discussed according to the following three sc
enarios:

1. Base scenario: the sampling design is non-informative. In this situation
all the basic assumptions underlying the random intercept binary model
are fulfilled, so this case can be assumed as a benchmark for judging the
subsequent results.

2. Unweighted scenario: the sampling design is informative and the estima-
tors are unweighted. In this situation the basic assumptions underlying
the random intercept binary model are violated because of the informa-
tiveness of the design and no adjustment is used.

3. Weighted scenario: the sampling design is informative and the estimators
are weighted. Also in this case the basic assumptions underlying the ran-
dom intercept binary model are violated, but the weights are introduced
as a tentative adjustment for the bias of the estimators.

4.2.1 Base scenario

When the sampling design is non-informative the standard maximum likelihood
unweighted estimator is asymptotically unbiased (Tables 1 and 2: row 3, column
1). However for small samples (nj = 9 and nj = 0.1Nj) there is an appreciable
negative bias in the estimation of ωσ.
If the weights are introduced when there is no need to adjust for the effect

of the design (Tables 1 and 2: row 3, columns 2-4), we face with a slight in-
crease in the variability of the estimators, which is more pronounced when the
unscaled estimators are used with small samples. In that situation there is also
a surprising behavior of the estimator of ωσ, for which the sign of the bias is
reversed.
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Table 1: Simulation means and standard deviations (in parenthesis) of point
estimators of the intercept (true value 0, number of replicates 1000)

Sampling design Unweighted
estimator

Weighted estimators

Only level 2
weights

Weights at
both levels -
Unscaled

Weights at
both levels -
Scaled

Informative at both levels
Fixed size nj = 38 -0.120 (0.212) -0.411 (0.202) 0.014 (0.193) 0.015 (0.188)
Prop. size nj = 0.4Nj -0.163 (0.212) -0.453 (0.200) 0.018 (0.190) 0.021 (0.183)
Fixed size nj = 9 -0.214 (0.204) -0.512 (0.190) -0.062 (0.258) 0.000 (0.185)
Prop. size nj = 0.1Nj -0.164 (0.220) -0.450 (0.209) -0.074 (0.294) 0.008 (0.203)
Informative only at level 2
Fixed size nj = 38 0.281 (0.169) 0.018 (0.168) 0.017 (0.170) 0.017 (0.169)
Prop. size nj = 0.4Nj 0.274 (0.169) 0.014 (0.178) 0.014 (0.182) 0.014 (0.181)
Fixed size nj = 9 0.274 (0.187) 0.010 (0.195) 0.010 (0.212) 0.009 (0.196)
Prop. size nj = 0.1Nj 0.269 (0.179) 0.007 (0.179) 0.007 (0.203) 0.006 (0.182)
Non-informative
Fixed size nj = 38 0.000 (0.108) 0.000 (0.114) 0.001 (0.115) 0.001 (0.115)
Prop. size nj = 0.4Nj 0.003 (0.113) 0.004 (0.120) 0.003 (0.123) 0.003 (0.122)
Fixed size nj = 9 -0.007 (0.108) -0.009 (0.115) -0.010 (0.125) -0.010 (0.117)
Prop. size nj = 0.1Nj -0.002 (0.110) -0.002 (0.114) -0.004 (0.132) -0.003 (0.117)

Table 2: Simulation means and standard deviations (in parenthesis) of point
estimators of the second level standard deviation (true value 0.632, number of
replicates 1000)

Sampling design Unweighted
estimator

Weighted estimators

Only level 2
weights

Weights at
both levels -
Unscaled

Weights at
both levels -
Scaled

Informative at both levels
Fixed size nj = 38 0.671 (0.106) 0.638 (0.112) 0.637 (0.137) 0.604 (0.128)
Prop. size nj = 0.4Nj 0.673 (0.108) 0.636 (0.112) 0.645 (0.142) 0.592 (0.130)
Fixed size nj = 9 0.644 (0.145) 0.584 (0.172) 0.920 (0.289) 0.536 (0.222)
Prop. size nj = 0.1Nj 0.598 (0.164) 0.546 (0.183) 1.002 (0.317) 0.498 (0.242)
Informative only at level 2
Fixed size nj = 38 0.595 (0.100) 0.596 (0.110) 0.605 (0.111) 0.601 (0.111)
Prop. size nj = 0.4Nj 0.582 (0.096) 0.582 (0.115) 0.603 (0.113) 0.596 (0.113)
Fixed size nj = 9 0.547 (0.121) 0.548 (0.135) 0.671 (0.144) 0.563 (0.133)
Prop. size nj = 0.1Nj 0.538 (0.122) 0.535 (0.142) 0.696 (0.158) 0.551 (0.139)
Non-informative
Fixed size nj = 38 0.611 (0.086) 0.612 (0.092) 0.621 (0.090) 0.617 (0.091)
Prop. size nj = 0.4Nj 0.609 (0.084) 0.606 (0.088) 0.626 (0.088) 0.618 (0.088)
Fixed size nj = 9 0.561 (0.105) 0.561 (0.112) 0.685 (0.119) 0.575 (0.111)
Prop. size nj = 0.1Nj 0.551 (0.109) 0.546 (0.113) 0.703 (0.134) 0.559 (0.112)
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4.2.2 Unweighted scenario

The informativeness of the sampling design produces biased and unstable es-
timates. The bias is still evident for large samples (Tables 1 and 2: rows 1-2,
column 1). The conclusions are the same for both types of informative designs,
though the bias has a different sign. Moreover the informativeness of the design
inflates the variability of the estimators with respect to the base scenario: in
particular, when the design is informative at both levels the standard error of
the estimator of βσ is doubled.

4.2.3 Weighted scenario

Estimation of βσ.
The results in Table 1 show that, when the design is informative, the weighted

based adjustment is effective in removing the bias in the estimation of βσ.
Particularly, when the design is informative only at level 2 (Table 1: row

2, columns 2-4) and the weights are introduced only at this level, the bias in
the estimation is corrected with no important increase in the sampling variance.
The result is valid also for fully weighted estimators (unscaled or scaled). The
bias correction works for small samples too.
When the design is informative at both levels (Table 1: row 1, columns 2-4)

and the weights are introduced for both level 1 and level 2 units, the bias in
the estimation of βσ is corrected, also reducing the sampling variance. In small
samples scaling is preferable, since it allows to achieve an unbiased estimator
with a substantial lower sampling variance. It should be noted that when the
design is informative at both levels, the estimator which uses only the level 2
weights is worse than the standard unweighted estimator.
Estimation of ωσ.
The results in Table 2, concerning ωσ, are more difficult to be interpreted

(Table 2: rows 1-2, columns 2-4) . First note that also in the base scenario the
estimation of ωσ is biased, especially for small samples. Therefore the weight-
based adjustment should be judged as effective if it is able to reproduce the same
bias which is observed in the base scenario. On these grounds the behavior of
the scaled weighted estimator is satisfactory in nearly all situations, with the
exception of the small samples when the design is informative at both levels. In
that case there is also a not negligible number of replications which yielded a
zero estimate for ωσ (4.5% for the design with fixed size and 2% for the design
with proportional size). The unscaled weighted estimator do not suffer from
the problem of null estimates, but, apart from having a larger variance than
the scaled version, tends to overestimate ωσ, showing a relative bias of about
50% in the small samples when the design is informative at both levels. Note
also that the scaled estimator outperforms the estimator which uses only level
2 weights even when the design is informative only at level 2.
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4.2.4 General remarks

Our simulations showed that the PML approach is, in most cases, a simple
and effective strategy to deal with informative sampling designs. The only
requirement is the knowledge of the inclusion probabilities at every stage of the
sampling process (except when the informativeness does not concerns all the
levels).
The scaled version of the weighted estimator can be recommended in gen-

eral, since it allows to obtain a low bias with a modest increase in the sampling
variance. Even if weighting is superfluous, the loss of efficiency due to the inclu-
sion of scaled weights is very low. Moreover, if the design is informative at both
levels, when passing from standard estimation to scaled weighted estimation the
sampling variance increases for ωσ, but even decreases for βσ.
While for the estimation of βσ weighting is always effective, for ωσ attention

should be paid to the sample size: in fact, weighting leads to satisfactory results
only when the cluster size is high, i.e. when it allows a good representation
of the complex variance structure. However the sample size is crucial in the
estimation of ωσ also when all the basic assumptions for the estimation of the
multilevel ordinal model are satisfied.
The differences induced by the type of clusters in the sample, fixed or variable

size, are minimal, with equal sized clusters leading to slightly better estimators;
however, as already noted, the important differences are always due to the
average size of the clusters in the sample.
The results of our simulation study confirm the findings of Pfeffermann et al.

(1998) on the random intercept linear model: probability-weighted estimators
are good for the intercept, while some relevant bias remains in the estimation of
the variance component when the sample is small. As was to be expected, when
passing from a linear to a non-linear model the performance of the estimators
slightly worsen, but the direction and importance of the bias in the various cases
are similar. Also the advantages of scaling are confirmed.
The critical point in the random intercept binary model is the estimation

of the variance component ωσ, which represents a difficult task also when the
design is non-informative. Note that, using the threshold formulation, ωσ is
defined as ω/σ, so estimation of ωσ conveys the problems that in the linear
model are associated with the estimation of the two variance components.
Finally the comparison between our results and those of Pfeffermann et al.

(1998) shows an interesting difference concerning the sampling variance of the
weighted estimators. In particular, in the random intercept linear model the
inclusion of the weights increases the sampling variance in a significant manner,
while scaling has little role in reducing the variance. On the contrary, in the
random intercept binary model the weights have a modest effect on sampling
variance, which is even reduced for the estimator of the intercept when the
design is informative at both levels; moreover, scaling seems to be important in
reducing the variance in small samples.
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Table 3: Simulation standard deviations of the unscaled weighted point esti-
mators of the intercept and of the second level standard deviation (on 1000
replicates) and corresponding bootstrap estimates (on 150 replicates, with 200
bootstrap samples each) for the design informative at both levels

Sampling design Type of βσ ωσ
Inform. both levels boot. Simul.

s.d.
Boot.
estim.

Relative
error

Simul.
s.d.

Boot.
estim.

Relative
error

Fixed size nj = 38 FULL 0.193 0.179 -7.3% 0.137 0.116 -15.3%
Fixed size nj = 38 PSU 0.193 0.167 -13.5% 0.137 0.105 -23.4%
Prop. size nj = 0.4Nj FULL 0.190 0.189 -0.5% 0.142 0.141 -0.7%
Prop. size nj = 0.4Nj PSU 0.190 0.177 -6.8% 0.142 0.114 -19.7%
Fixed size nj = 9 FULL 0.258 0.369 43.0% 0.289 0.375 29.8%
Fixed size nj = 9 PSU 0.258 0.251 -2.7% 0.289 0.254 -12.1%
Prop. size nj = 0.1Nj FULL 0.294 0.449 52.7% 0.317 0.440 38.8%
Prop. size nj = 0.1Nj PSU 0.294 0.258 -12.2% 0.317 0.256 -19.2%

4.2.5 Bootstrap variance estimation

The bootstrap procedure described in Section 3.4 has been applied to estimate
the sampling standard deviations of the weighted point estimators of βσ and ωσ.
We limited the analysis to unscaled weighted estimators and to designs that are
informative at both levels. Two different types of bootstrap were implemented
(see Section 3.4): in the first type (FULL) the artificial population is generated
at both levels, i.e. both the elementary units and the clusters are re-sampled; in
the second type (PSU) the steps concerning the elementary units are omitted,
i.e. only the clusters are re-sampled. Since the sampling fraction of the clusters
is quite low (35/300), we expect that FULL and PSU types of bootstrap will
produce similar results. Each simulation comprises 150 replications. For every
replication the values of the response variable are generated through the two-
stage scheme described in Section 4.1 and 200 bootstrap samples are selected.
Table 3 reports, for each parameter, the Monte Carlo standard error of the
sampling distribution of the unscaled weighted estimator on 1000 replications
of the complex design (see Tables 1 and 2), the corresponding average bootstrap
estimate and the relative bias.
Due to the extremely long computational time, we limited our experiment

to 150 replications of bootstrap procedures based on 200 bootstrap samples.
These numbers are clearly not enough to draw firm conclusions, though some
hints about the behavior of the bootstrap estimators can still be derived.
As was to be expected, the PSU-type bootstrap estimate is always smaller

than the FULL-type, though the differences are sometimes not so relevant. For
both types the performance is slightly better for the estimation of the sampling
standard deviation of the estimator of βσ, rather than of ωσ.
The sample cluster sizes seem to have little effect on the PSU-type bootstrap

estimator, which produced a similar underestimation of the true variability both
with small cluster sizes (nj = 9 and nj = 0.1Nj) and with large cluster sizes
(nj = 38 and nj = 0.4Nj). On the other hand, the FULL-type bootstrap
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estimator seems to be strongly influenced by the sample cluster sizes, showing
an excellent performance with large cluster sizes and a serious positive bias with
small cluster sizes. On these grounds it might be advisable to use PSU-type
bootstrap when the sample cluster sizes are very small.

5 Conclusions

The wide use of multilevel ordinal and binary models in many fields of applica-
tion has motivated our study on the effects of complex sampling designs on the
fitting of such models. In the paper we demonstrated, by means of simulations,
the bias induced by a two-stage complex sampling design on the fitting of a
simple multilevel binary model when the clusters and/or the subjects are se-
lected with probabilities that depend on the response variable. The simulation
study also showed that in such situations the bias can be reduced in an effective
manner by the probability-weighted estimation procedure we developed in the
paper, which is easily implemented in the SAS environment. In particular, the
scaled version of the weighted estimator allows to obtain, for both fixed and
random parameters, a low bias with a modest increase in the sampling vari-
ance. Even if weighting is superfluous, the loss of efficiency due to the inclusion
of scaled weights seems to be very low.
A drawback of probability-weighted estimation is the need for special pro-

cedures to estimate the variability of the estimators. The standard sandwich
variance estimator is not immediately implementable in the SAS environment,
so we adopted a bootstrap technique, which is conceptually simple and easy to
program, though it requires some computational effort. Our very limited simu-
lation study suggests that its performance is good only for large sample cluster
sizes; however much more simulations would be needed to fully understand the
behavior of the bootstrap estimator.
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