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Grouped continuous and continuation ratio
discrete time versions of the proportional
hazard model with random effects: are they
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Summary. When analyzing grouped time survival data having a hierarchi-
cal structure it is often appropriate to assume a random effects proportional
hazards model for the latent continuous time and then derive the correspond-
ing grouped time model. There are two formally equivalent grouped time
versions of the proportional hazards model obtained from a different per-
spective, known as continuation ratio (Kalbfleisch and Prentice, 1973) and
grouped continuous (McCullagh, 1980). However the two models require dis-
tinct estimation procedures and, more important, they differ substantially
with respect to the extensibility to time-dependent covariates and/or non
proportional effects. The paper discusses these issues in the context of ran-
dom effects models, illustrating the main points with an application to a
complex data set on job opportunities for a cohort of graduates.

Keywords: Complementary log-log link, Discrete time survival models, Pro-
portional hazards model, Random effects.
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1 Introduction
In many research areas the analysis of the time elapsed between two events of interest
may require some special procedures because: a) the reported times are grouped into
months, quarters etc.; b) the phenomenon under study is characterized by a hierarchical
structure (for example, the graduates who seek for job may be grouped by school, or
by neighborhood). Point a implies the use of discrete time survival models (continuous
time models are inadequate due to the large number of ties), while point b calls for the
inclusion of random effects which describe the correlation structure of the statistical
units.
Discrete time survival models (Allison, 1982) and random effects (multilevel) models

(Goldstein, 1995) each have a long history, but their conjoint use is quite recent: see
Barber et al. (2000), Hedeker et al. (2000), Biggeri et al. (2001) and Reardon et
al. (2001). Among the cited papers only the work of Hedeker et al. focus on the
complementary log-log model, which is the grouped time version of the continuous time
proportional hazards model (Cox, 1972; Kalbfleisch and Prentice, 1973). The present
paper is intended to highlight, in the context of random effects models, the theoretical
and practical differences between the two discrete time versions of the proportional
hazards model, known as grouped continuous (McCullagh, 1980) and continuation ratio
(Kalbfleisch and Prentice, 1973). The two models are formally equivalent, but they
require distinct estimation procedures and, more important, they differ substantially
with respect to the extensibility to time-dependent covariates and/or non proportional
effects.
The structure of the paper is as follows. Section 2 shows the derivation of the

two models under study as grouped time versions of the random effects proportional
hazards model, while Section 3 discusses their differences with respect to estimation
and extensibility to time-dependent covariates and/or non proportional effects. Section
4 presents an application of the models to an analysis of the time to obtain the first
job for a cohort of graduates, showing the superiority, in that context, of the extended
continuation ratio model. Section 5 concludes with some remarks.

2 From the random effects proportional hazards
model to the corresponding grouped time models

When the time of interest is continuous and the subjects are clustered, a suitable
model may be the classical proportional hazards model (Cox, 1972) with the addition
of random effects (RPH model: e.g. Vaida and Xu, 2000):

SY (y |xij , uj) = {SY,00(y)}exp(x0ijβ+uj) , (1)

where SY is the conditional survivor function of the continuous r.v. Y , which represents
the survival time; xij is the covariate vector of subject i in cluster j, possibly including
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cluster-level variables; uj is the random effect of cluster j; and SY,00 is the conditional
baseline survivor function, i.e. SY (y |xij = 0, uj = 0). The model parameters are
the regression slopes β and the random effects variance σ2u, while SY,00 is an arbitrary
function which can be estimated non parametrically.
In this paper the words ‘conditional’ and ‘marginal’ refer to the random effects, the

conditioning on the covariates being implicit. Usually the random effects are assumed
to be iid Gaussian with zero mean and unknown variance σ2u, but other choices are
possible as well. Note that (1) represents the simplest case of random effects model,
with a single random effect on the intercept; to avoid unnecessary complications in the
formulae, in the following only this case will be considered, the extension to multiple
random effects being straightforward.
Suppose now that, due to coarse measurement, the continuous r.v. Y cannot be

observed; rather the times are grouped into disjoint intervals

[y0 = 0, y1), [y1, y2), . . . , [yt−1, yt), . . . , [ytmax−1, ytmax =∞).
The resulting discrete r.v. T , with values in {1, 2, . . . , tmax}, derives from Y accordingly
to the following relationship:

{T = t}⇔ {yt−1 ≤ Y < yt} .
Consequently the conditional survivor function of T is

S(t |xij , uj) ≡ Pr(T > t |xij, uj) = Pr(Y ≥ yt |xij, uj),
with corresponding hazard function

λ(t |xij , uj) ≡ Pr (T = t |T ≥ t , xij , uj) = Pr (yt−1 ≤ Y < yt |Y ≥ yt−1 , xij, uj) .
Note that for the discrete r.v. T the hazard-survivor relationship is

λ(t |xij, uj) = 1− S(t |xij, uj)
S(t− 1 |xij , uj) , (2)

while the distribution-survivor relationship is, as in the continuous time case,

F (t | xij, uj) = 1− S(t |xij, uj).
Now, using the relationship SY,00(y) = exp {−ΛY,00(y)}, where ΛY,00 is the conditional
baseline integrated hazard function (see, for example, Kalbfleisch and Prentice, 1980),
a little algebra yields

log(− log(1− F (t | xij, uj))) = α
(RGC)
t + x0ijβ + uj, (3)

where α(RGC)t ≡ logΛY,00(yt); and

log(− log(1− λ(t | xij, uj))) = α
(RCR)
t + x0ijβ + uj , (4)
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where α
(RCR)
t ≡ log {ΛY,00(yt)− ΛY,00(yt−1)}. Equation (3) defines the random ef-

fects grouped continuous (RGC) model (McCullagh, 1980) while equation (4) defines
the random effects continuation ratio (RCR) model (Kalbfleisch and Prentice, 1973).
Therefore the RGC and RCR models are two grouped time versions of the RPH model;
although the link function is applied to different quantities (the distribution function
and the hazard function, respectively), the two models are formally equivalent, the
only difference being in the parametrization of the baseline hazard. The α(RGC)t ’s and
α
(RCR)
t ’s are linked by the following formula:

α
(RGC)
t = log

(
tX
s=1

exp
³
α(RCR)s

´)
. (5)

For both the RGC and RCR models the conditional survivor function is:

S(t |xij , uj) = S00(t)exp(x0ijβ+uj), (6)

where S00(t) is the conditional baseline survivor function

S(t |xij = 0, uj = 0) =
 exp

n
− exp

³
α
(RGC)
t

´o
for the RGC model

exp
n
−Pt

s=1 exp
³
α(RCR)s

´o
for the RCR model .

Note that the conditional survivor function (6) has the same form as in the RPH model
(1). This is no longer true for the conditional hazard function, which is

λ(t | xij, uj) = 1−
(

S00(t)

S00(t− 1)
)exp(x0ijβ+uj)

. (7)

For two arbitrary subjects A and B (7) implies that

log
n
1− λ(t | x(A)ij , u

(A)
j )

o
log

n
1− λ(t | x(B)ij , u

(B)
j )

o = exp½³x(A)ij − x(B)ij

´0
β
¾
· exp

n
u
(A)
j − u(B)j

o
,

showing that in the grouped time versions of the proportional hazards model (with or
without random effects) the proportionality does not apply directly to the hazard, but
to a particular transformation of it.
As for the relationship between conditional and marginal models, observe that the

marginal survivor and hazard functions are, respectively,

Smarg(t |xij) ≡ Pr(T > t |xij)
= E [S(t |xij, uj)]

λmarg(t |xij) ≡ Pr(T = t |T ≥ t , xij)
6= E [λ(t |xij , uj)]
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Note that the structure which holds conditionally in general does not hold marginally;
for example

Smarg(t |xij) 6= {Smarg0 (t)}exp(x0ijβ) ,
where Smarg0 (t) is the marginal baseline survivor function. The omission of the relevant
random effects is thus a potentially serious misspecification error, which in the context
of survival models causes, among other things, the underestimation of the baseline
hazard (this phenomenon is known as duration bias; see Barber et al., 2000).

3 A comparison between grouped continuous and
continuation ratio models and their extensions

The fact that RGC and RCR models are formally equivalent may seem to close the
question about which one to choose in a specific application. However there are im-
portant differences in two aspects: a) the possibility to extend the models in order to
include time-dependent covariates and/or non proportional effects; b) the estimation
method. It should be stressed that these differences, which will be discussed below,
hold regardless of the presence of random effects.
As for the first point, note that the RGCmodel is based on the distribution function,

so time-dependent covariates are meaningless. However it is possible to relax the
proportionality assumption for a covariate xij by adding to the linear predictor, for
each t, an interaction term γt · xij which modifies the baseline parameter αt (Hedeker
et al., 2000). Thus the effect of xij freely changes with t, but at the price of adding
tmax-1 parameters (γ1 is constrained to zero to guarantee identifiability). This price
may be prohibitive when tmax is large or when there are many covariates with non
proportional effect.
The RCR model, on the contrary, refers to the hazard function, which is a condi-

tional probability, so it is not a problem to include a time-dependent covariate xijt.
This opportunity is valuable also when in the data there are no variables of this kind,
since it allows to:

• Adopt a parametric specification of the baseline hazard, replacing the αt’s with
the parameters of a suitable function of time (time is a special case of time-
dependent covariate). The typical choice is to use anR-grade polynomial

PR
r=0 δrt

r,
whose adequacy can be judged through formal tests or graphical methods (Rear-
don et al., 2001). The main advantage of a parametric specification is parsimony,
especially when the number of time-intervals, tmax, is high; moreover, a paramet-
ric specification allows a more reliable estimation for the time-intervals with few
cases at risk (usually the last ones).

• Take into account the non proportional effect of a covariate xij in a parsimonious
way by building interactions between the covariate and some suitable functions
of time, for example xij · t, xij · t2 etc.
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As for estimation, maximum likelihood estimates for the RGC model and its ex-
tension to non proportional effects can be obtained using the standard methods for
random effects ordinal models, with a simple modification to take into account right
censoring. For example, Hedeker et al. (2000) describe an algorithm based on Gaussian
quadrature which is implemented in the package MIXOR (Hedeker and Gibbons, 1996).
Also the SAS NLMIXED procedure (SAS Institute, 1999) can be readily adapted to
fit such a model.
On the other hand, there is currently no software for fitting the RCR model. In

this case the usual strategy, described in detail in Barber et al. (2000), relies on the
construction of a person-period data set in which every survival time and corresponding
censoring indicator are replaced by a set of person-period indicators of event occurrence,
which can be assumed as the response variable in a standard multilevel binary model.
So for the RCR model and its extension to time-dependent covariates the estimation
can be accomplished by any of the various algorithms for random effects binary models,
but requires a preventive step of data transformation. This step causes an increase in
the number of records which depends on the observed survival times; obviously, if the
number of time intervals, tmax, is high the new data set is likely to be considerably
larger than the original one, with negative consequences on computing times.

4 Application to the analysis of the time to obtain
the first job

To illustrate the relative merits of the RGC and RCR models and their extensions we
describe an analysis on the time to obtain the first job for a sample of Italian graduates,
taking the data from a survey on the high-school graduates of the year 1995, carried
out by the Italian National Statistical Institute three years later (Italian National
Statistical Institute, 2000). For the present analysis we employed a subsample of 9404
graduates coming from 1448 schools, obtained by excluding from the whole sample: a)
the individuals who already had a job before getting the certificate; b) the individuals
who are not really interested in finding a job, mainly because they keep on studying;
c) the cases with some missing value in the variables of interest (about 3% of the
remainder). Though the survey is retrospective, the data allow to calculate the time
in quarters (from 1 to 13) needed to obtain the first job; the survival time is censored
on the 13th quarter for the 3466 subjects who were not able to obtain a job by the date
of the interview. Moreover, the data contain many individual-level variables (such
as gender, final mark, military service, attendance of university courses, occupational
status of the parents) and a few contextual variables (in essence, the type of the school
and region in which it is located). In addition, we added to the data set the 1995’s
unemployment rate at regional level for young people, and its variation from 1995 to
1998. Table 1 reports the name, definition and sample average for the variables which
are included in the final model.
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The covariates relative to the military service and to the enrolment in and abandon
of various types of courses are time-varying in nature, but the data do not allow to
determine the corresponding time series, so they are included in the model as fixed-
time covariates. From other items of the questionnaire and external sources we can
infer that, in most cases, the beginning of the military service (which was compulsory
and one year long) and the enrolment in courses is located in the first year after the
achievement of the certificate, so we expect the effects to be stronger in the first half
of the observation period, which is to say that such covariates have non proportional
effects. Obviously, the use of such ill-defined covariates is subject to criticism; however
we retained them because: a) they still carry some information about the pattern of the
hazard; b) the interpretation of the other effects if safe, since in the modeling process
we found no significant interactions with the other covariates.
Figure 1 shows the non parametric estimate of the hazard function: apart from the

large value of the first quarter, which is, as expected, anomalous, the hazard fluctuates
between 0.045 and 0.064 until the 10th quarter, when it shifts to a higher level until
the end of the observation period. Separate curves for specific values of the variables
(not reported here) confirm the non proportional effect of the covariates relative to the
military service and to the enrolment in courses.
The estimation methods for RGC and RCRmodels rely on the standard assumption

of non-informative censoring. Since the data used in the analysis were gathered with
a retrospective survey, it is natural to assume random right-censoring. However some
problems could derive from the sampling non-response, which causes a special type of
left-censoring (Reardon et al., 2001). In the survey on the Italian graduates, realized
with the CATI techique, the total non-response rate was quite high (39.2%), but the
consequencies on the estimates should not be as serious as might seem at first sight,
since over 90% of the non-responses is due to missing contact (wrong telephone number,
no response to the calls etc.). In the present application a likely consequence of non-
response is the underestimation of the hazard curves, since we expect the probability
of missing contact to be higher for an individual who works.
The modelling process started with the basic RGC model, fitted by maximum

likelihood with 10-point gaussian quadrature, as implemented in MIXOR (Hedeker
and Gibbons, 1996; Hedeker et al., 2000). The model selection was based on the Wald
test at 95% level, except for the variance parameters, for which we used the more
appropriate likelihood ratio test with p-value correction (Snijders and Bosker, 1999).
The final model, reported in Table 2, has only one random effect on the intercept,
whose standard deviation is estimated by the algorithm. To fit the formally equivalent
RCR model it is necessary to construct the person-period data set, which results in
83302 records. Since MIXOR does not handle such a large data set, we performed
the estimation through the PQL2 method implemented in MLwiN (Goldstein et al.,
1998). The results, shown in Table 2, are very close to the previous ones; note that the
estimated αt’s of the two models are approximately linked by formula (5), while the
estimated random effects variance is about the square of the value reported by MIXOR
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for the standard deviation. Therefore, in the present case, maximum likelihood with
gaussian quadrature and PQL2 can be considered as equivalent.
We then extended the RGCmodel to account for non proportional effects, trying, for

each variable, the inclusion of a set of 12 interaction parameters whose joint significance
was assessed through the likelihood ratio test. The final model, reported in Table 3,
includes non proportional effects only for the variable which denotes the completion
of the military service in the observation period (MS-Done). Note that the main
effect of MS-Done is not significant, while all the corresponding interaction parameters
have negative values, with a magnitude that increases until the 6th quarter and then
decreases monotonically to reach non significant values in the last two quarters. This
pattern suggests that the forced withdrawal from the job market due to the military
service has a negative effect on the chances to get job, but this effect is temporary
and vanishes in a few quarters, as is confirmed by the sample percentages of graduates
who have found their first job by the date of the interview: 70.0% for the males who
have been exempted from the service and 69.6% for the males who have performed
the service during the observation period. A comparison with the results for the basic
RGC model shows that the inclusion of the interaction parameters for the covariate
MS-Done has produced only minor changes in the estimates of the other parameters.
Finally we developed the RCR model using the person-period data set. The first

target was to represent the baseline hazard in a more parsimonious way through a
polynomial specification. The model selection procedure led to the choice a cubic
function of the time with the addition of a specific parameter for the first quarter, for
a total of 5 parameters. Subsequently we tried the inclusion of the time interaction
terms, defined as interactions between a fixed-time covariate and the covariates which
denote the quarters and the powers of the quarters until the third. In the final model,
reported in Table 4, there are 5 variables with time interactions, for a total of 10
additional parameters; note that, apart from the gender indicator, these variables refer
to events occurred in the observation period. The effects of the other covariates show
only minor changes with respect to the basic RCR model.
Therefore, in our application, the extended RGC and extended RCR models differ

essentially in the representation of the hazard patterns: the extended RGC model uses
13 interval-specific parameters for the baseline hazard plus 12 interaction parameters
to account for the non proportional effect of the covariate MS-Done; on the other
hand, the extended RCR model employes 5 parameters to specify the baseline hazard
plus 10 parameters to include the non proportional effects of five covariates. Figure
2 shows two estimated hazard curves for each model (the curves for the reference
individual are obtained by assuming a null value for all the covariates and for the
random effect). Obviously, the curves for the extended RCR model are smoother
because of the parametric specification. Comparing, for the reference individual, the
curves for the two models, we note that the curve for the extended RCR model tends
to be higher in the first half of the observation period and lower in the second half:
this pattern is due to the fact that the extended RCR model also adjusts for the
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non proportional effects of the enrolement in and abandon of university and training
courses, which exert their negative influence mainly in the first quarters.
Some further comments on the substantive results can be found in Grilli (1999).

5 Concluding remarks
While the RGC and RCR models are formally equivalent, the latter is more difficult
to fit because it requires the contruction of a person-period data set which makes
the estimation procedure less efficient in terms of computing time. However, in most
practical applications it is necessary or convenient to extend the models to include
time-varying covariates and/or non proportional effects: while the extended models
can be fitted in the same manner as the basic ones, their properties are quite different.
In particular, only the RCR model can be extended to include time-varying covariates,
achieving a more parsimonious and accurate representation of the hazard patterns. In
the analysis of the complex data set on the Italian graduates presented in Section 4 the
superiority of the extended RCR model over the extended RGC model was manifest.
Replacing the complementary log-log link in the RCR model with the logit link

produces the random effects version of the discrete time logit model proposed by Cox
(1972), which has no direct relationship with the continuous time RPH model. It
can be argued that the logistic model is the most natural choice when the time is
truly discrete; however, nearly always the qualitative conclusions are unaffected by
the link choice (Allison, 1982). A formal selection procedure could be devised using a
generalized link function (e.g. Stukel, 1988).
A further interesting and straghtforward extention of the RCR model is obtained

by including a random effect (often called frailty) at the individual level to represent
unobserved eterogeneity among individuals. Using the person-period data set this ex-
tention is very simple, because it is sufficent to specify a three-level model in which the
level-one units are the person-period observations, the level-two units are the individ-
uals and the level-three units are the groups. In the analysis on the Italian graduates
no significant unobserved eterogeneity among individuals was found.
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Table 1: Names, definitions and sample averages of the covariates

Name Definition Average
Female 1, female; 0, male 0.54
MS-Exempted* 1, exempted from military service; 0, otherwise 0.10
MS-Done 1, military service done by the date of the interview**; 0,

otherwise
0.33

MS-ToBeDone 1, military service still to be done; 0, otherwise 0.03
FM36 1, final mark equal to 36; 0, otherwise 0.13
FM37-42 1, final mark from 37 to 42; 0, otherwise 0.40
FM43-49* 1, final mark from 43 to 49; 0, otherwise 0.29
FM50-59 1, final mark from 50 to 59; 0, otherwise 0.16
FM60 1, final mark equal to 60; 0, otherwise 0.02
OSP-Indep number of parents that were independent workers (excluding busi-

nessmen and professionals)
0.31

OSP-Business number of parents that were businessmen or professionals 0.08
EnrUniv 1, enrolled in a university course**; 0, otherwise 0.21
IntUniv-NoWork 1, abandoned university for reasons not linked to work**; 0,

otherwise
0.10

IntUniv-Work 1, abandoned university because of work**; 0, otherwise 0.04
EnrTrC 1, enrolled in a regional training course**; 0, otherwise 0.19
EnrOtC 1, enrolled in a course different from a university or regional train-

ing course**; 0, otherwise
0.02

SchTP-Business* 1, received the high-school certificate in a technical/professional
college - business type; 0, otherwise

0.31

SchTP-Industrial 1, received the high-school certificate in a technical/professional
college - industrial type; 0, otherwise

0.20

SchTP-Other 1, received the high-school certificate in a technical/professional
college different from business or industrial; 0, otherwise

0.27

SchGymnasium 1, received the high-school certificate in a gymnasium; 0, otherwise 0.07
SchOther 1, received the high-school certificate in a school different from

technical/professional college or gymnasium; 0, otherwise
0.15

Unempl95 Unemployment rate (%) at regional level for people aged 14-25 in
1995 (variable centered at the value of Tuscany, 25.1)

11.14

Unempl95-98 Variation from 1995 to 1998 in the Unemployment rate (%) at
regional level for people aged 14-25

-1.13

North 1, region of the north of Italy; 0, otherwise 0.40
Center* 1, region of the center of Italy; 0, otherwise 0.20
South 1, region of the south of Italy or islands; 0, otherwise 0.40

Sample size is 9404

The variables denoted by * are reference categories in model specification

The events denoted by ** have occurred at un unknown date between the end of the school and the interview
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Table 2: Estimates for the basic RGC and RCR models

RGC model RCR model
Parameter Estimate Std. Err. Estimate Std. Err.
α1 -1.583 0.073 -1.580 0.073
α2 − α1 0.453 0.019 -0.559 0.055
α3 − α1 0.793 0.024 -0.451 0.055
α4 − α1 0.982 0.025 -0.776 0.064
α5 − α1 1.171 0.027 -0.589 0.062
α6 − α1 1.323 0.028 -0.640 0.065
α7 − α1 1.500 0.029 -0.318 0.060
α8 − α1 1.626 0.029 -0.506 0.066
α9 − α1 1.767 0.029 -0.261 0.063
α10 − α1 1.963 0.031 0.237 0.055
α11 − α1 2.122 0.031 0.209 0.059
α12 − α1 2.277 0.032 0.341 0.060
α13 − α1 2.422 0.033 0.422 0.062
Female -0.345 0.045 -0.346 0.048
MS-Done -0.257 0.044 -0.258 0.047
MS-ToBeDone -0.458 0.116 -0.459 0.116
FM36 -0.144 0.047 -0.144 0.047
FM37-42 -0.114 0.033 -0.114 0.033
FM50-59 0.091 0.040 0.092 0.042
FM60 0.257 0.099 0.258 0.096
OSP-Indep 0.087 0.025 0.088 0.025
OSP-Business 0.257 0.043 0.258 0.047
EnrUniv -1.666 0.105 -1.669 0.105
IntUniv-NoWork 0.956 0.119 0.957 0.114
IntUniv-Work 1.720 0.118 1.722 0.119
EnrTrC -0.440 0.042 -0.441 0.037
EnrOtC -0.666 0.112 -0.669 0.114
SchTP-Industrial 0.135 0.048 0.135 0.048
SchTP-Other -0.211 0.044 -0.211 0.042
SchGymnasium -0.256 0.072 -0.255 0.071
SchOther -0.443 0.053 -0.444 0.053
Unempl95 -0.026 0.003 -0.026 0.002
Unempl952 0.00019 0.00008 0.00019 0.00008
Unempl95-98 -0.022 0.007 -0.022 0.006
North 0.130 0.051 0.131 0.047
South -0.246 0.069 -0.246 0.066
σu (RGC) or σ2u (RCR) 0.257 0.023 0.068 0.011
Number of records 9404 83302
Estimation method ML (Gaussian quad.) PQL2
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Table 3: Estimates for the extended RGC model

Parameter Estimate Std. Err.
α1 -1.654 0.077
α2 − α1 0.538 0.027
α3 − α1 0.918 0.033
α4 − α1 1.128 0.035
α5 − α1 1.329 0.037
α6 − α1 1.489 0.038
α7 − α1 1.654 0.038
α8 − α1 1.774 0.038
α9 − α1 1.887 0.039
α10 − α1 2.055 0.040
α11 − α1 2.180 0.041
α12 − α1 2.322 0.041
α13 − α1 2.456 0.042
MS-Done -0.074 0.072
γ2*MS-Done -0.227 0.039
γ3*MS-Done -0.342 0.049
γ4*MS-Done -0.405 0.052
γ5*MS-Done -0.437 0.055
γ6*MS-Done -0.462 0.057
γ7*MS-Done -0.424 0.059
γ8*MS-Done -0.403 0.060
γ9*MS-Done -0.323 0.060
γ10*MS-Done -0.245 0.062
γ11*MS-Done -0.147 0.063
γ12*MS-Done -0.108 0.065
γ13*MS-Done -0.074 0.065
Female -0.336 0.046
MS-ToBeDone -0.451 0.119
FM36 -0.149 0.047
FM37-42 -0.113 0.034
FM50-59 0.091 0.041
FM60 0.248 0.101
OSP-Indep 0.088 0.025
OSP-Business 0.259 0.043
EnrUniv -1.648 0.106
IntUniv-NoWork 0.928 0.120
IntUniv-Work 1.690 0.120
EnrTrC -0.442 0.043
EnrOtC -0.656 0.113
SchTP-Industrial 0.146 0.048
SchTP-Other -0.208 0.044
SchGymnasium -0.250 0.073
SchOther -0.435 0.054
Unempl95 -0.026 0.003
Unempl952 0.00018 0.00008
Unempl95-98 -0.022 0.007
North 0.125 0.051
South -0.254 0.069
σu 0.255 0.023
Number of records 9404
Estimation method ML (gauss. quad.)
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Table 4: Estimates for the extended RCR model

Parameter Estimate Std. Err.
Intercept -1.627 0.108
Quarter (from 0 to 12) -0.160 0.056
Quarter2 0.016 0.010
Quarter3 -0.00019 0.00055
1st quarter indicator 0.242 0.083
Female -0.479 0.068
Female*Quarter 0.030 0.011
MS-Done -0.265 0.079
MS-Done*Quarter -0.497 0.058
MS-Done*Quarter2 0.114 0.012
MS-Done*Quarter3 -0.006 0.001
IntUniv-NoWork -0.569 0.246
IntUniv-NoWork*Quarter 0.707 0.143
IntUniv-NoWork*Quarter2 -0.096 0.026
IntUniv-NoWork*Quarter3 0.004 0.001
IntUniv-Work 1.335 0.148
IntUniv-Work*Quarter 0.061 0.015
EnrTrC -1.097 0.095
EnrTrC*Quarter 0.162 0.036
EnrTrC*Quarter2 -0.006 0.003
MS-ToBeDone -0.419 0.115
FM36 -0.149 0.047
FM37-42 -0.114 0.033
FM50-59 0.085 0.042
FM60 0.245 0.095
OSP-Indep 0.089 0.025
OSP-Business 0.269 0.047
EnrUniv -1.622 0.105
EnrOtC -0.640 0.114
SchTP-Industrial 0.144 0.047
SchTP-Other -0.204 0.041
SchGymnasium -0.251 0.071
SchOther -0.432 0.052
Unempl95 -0.026 0.002
Unempl952 0.00019 0.00008
Unempl95-98 -0.022 0.006
North 0.124 0.046
South -0.252 0.065
σ2u 0.059 0.011
Number of records 83302
Estimation method PQL2

16



 

 
Figure 1: Time to the first job: non parametric estimate of the hazard function 

 
 
 
 

 
 

Figure 2: Time to the first job: estimated hazard functions 
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