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Abstract

Long memory in conditional variance is one of the empirical features
of most financial time series. One class of models that was suggested to
capture this behavior refers to the so-called Fractionally Integrated GARCH
processes (Baillie, Bollerslev and Mikkelsen 1996) in which the ideas of
fractional integration originally introduced by Granger (1980) and Hosking
(1981) for processes for the mean are applied to a GARCH framework. In
this paper we derive analytic expressions for the second-order derivatives of
the log-likelihood function of FIGARCH processes with a view to the ad-
vantages that can be gained in computational speed and estimation accuracy.
The comparison is computationally intensive given the typical sample size
of the time series involved and the way the likelihood function is built. An
illustration is provided on exchange rate and stock index data.

Keywords: Long Memory, Volatility Modelling, FIGARCH Processes.

JEL Classification : C63, C51, C22.

1 Introduction

The statistical analysis of financial time series provides evidence of various stylized
facts, among which volatility clustering has received considerable attention. Many
models have been added throughout the years to the Autoregressive Conditional
Heteroskedasticity (ARCH) family, following the seminal paper by Engle (1982),

∗Corresponding author. Email:gallog@ds.unifi.it . A preliminary version of this paper
was presented at the conference S.Co. 2001 in Bressanone. We would like to thank Silvano Bor-
dignon for his insightful discussion and Luisa Bisaglia and Giorgio Calzolari for providing useful
comments. We also thank Tim Bollerslev for providing the data on the DEM/USD exchange rate
used in Baillie, Bollerslev and Mikkelsen (1996).
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which capture the short-run dependency of the conditional variances. Among the
many empirical regularities which volatility models try to capture, one is that the
decay exhibited by estimated conditional variances seems to be decreasing hyper-
bolically rather than exponentially. Another way of expressing this feature is that
the process possesses long memory properties in the conditional variance. The ad-
vantage of modelling long memory applied to volatility processes is that the fore-
casting properties of the model so derived better suit the needs of medium-to-long
term predictions which is crucial in derivative pricing models.

One class of models that was suggested in this direction is the so-called Frac-
tionally Integrated GARCH (FIGARCH) process in which the ideas of fractional
integration suggested by Granger (1980) and Hosking (1981) for processes for the
mean are applied to a GARCH framework. Fractional integration serves the pur-
pose of extending ARIMA processes to a more general class, ARFIMA, giving a
continuum of possibilities between the polar cases of unit roots processes and of
integrated processes of order 0. The order of integration in such a case becomes a
real parameterd∗ assuming values between 0 and 1 which can be estimated in the
time or in the frequency domain.

In the FIGARCH case (Baillie et al. 1996), the extension captures the same
idea, with some characterizations which we will summarize in what follows, and
exploits the fact that estimated GARCH models often border with the case in which
the conditional variance is an integrated process. Applications have shown that
these long memory models fit well the data and research is still being undertaken
as of which statistical properties these models possess.

In this paper we derive analytical expressions for the Hessian matrix for these
models and exploit it for numerical optimization and to derive estimates of the
variance – covariance matrix. Our goal is twofold: on the one hand we want to
examine the properties of the Newton – Raphson algorithm when compared with
other numerical algorithms; on the other we want to analyze the impact that a
specific choice of an estimation method has for the variance – covariance matrix
of the parameter estimators, as far as computation time and values obtained are
concerned.

The comparison undertaken is computationally intensive given the typical large
sample size of the financial time series involved and the way the likelihood func-
tion is built. Some savings in computation time can be achieved when analytic
derivatives are employed, providing also a benchmark against which numerical
approaches can be gauged. In this sense, our contribution extends the work by
Fiorentini, Calzolari and Panattoni (1996) who have shown how different methods
can lead to quite different results in the standard GARCH case.

The structure of the paper is as follows: in order to establish notation we sum-
marize the main facts about FIGARCH in section 2. Two different simulation
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exercises (sections 3 and 4) show that our suggestion (references to the notation
for alternative estimators of the variance–covariance matrices adopted here and the
formulas for the appropriate derivatives to build the analytic Hessian are contained
in an appendix) provides a considerable gain in computation time and gives some
insights about the performance of some numerical estimators. Finally (section 5),
we compare parameter estimator standard errors from financial time series. Con-
cluding remarks follow.

2 Long memory and Fractionally Integrated GARCH

The concept of long memory1 was introduced in time series analysis by Granger
(1980) and Hosking (1981). It is well known (e.g., Hamilton (1994) – p. 50)
that, for standard ARMA processes, the autocorrelation function decreases expo-
nentially. By contrast, one way of arguing that a process possesses long memory
suggested in the literature is that its autocorrelation function decreases “slowly”.
The most simple way to obtain long memory is to incorporate in the standard
ARMA (p∗, q∗) formulation thefractional difference operator(1 − L)d∗ , with
0 ≤ d∗ ≤ 1, whereL denotes the lag operator. The resulting process is known as
ARFIMA(p∗, d∗, q∗), that is AutoRegressive Fractionally Integrated Moving Aver-
age:

η(L)(1− L)d∗(yt − µ) = ζ(L)εt.

with η(L) andζ(L) polynomials in the difference operatorL of orderp∗, respec-
tively, q∗. It may be shown (Hosking 1981) that the autocorrelation function of
ARFIMA processes decreases hyperbolically for0 < d∗ < 1, that is sensibly
slower than the standard ARMA case. The fractional difference operator may be
expanded in a McLaurin series to produce an infinite polynomial inL:

(1− L)d∗ =
∞∑

k=0

Γ(k − d∗)
Γ(k + 1)Γ(−d∗)

Lk =
∞∑

k=0

ϕk(d∗)Lk, (1)

which is more suitable for estimation purposes, since theϕk coefficients have a
known form (Γ(·) denotes the gamma function) which depends ond∗. It is obvious
that, in order to obtain a manageable expression to be used for estimation, (1) must
be truncated for some sufficiently high numberM .

One of the most interesting results (Hosking 1981) is that ARFIMA processes
with d∗ < 1/2 are both long memory and covariance stationary processes; this
result makes them suitable for the modelling of several economic variables. Several

1See, for a complete presentation, the monographic work by Beran (1994).
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applications have been proposed up to now2; most of them are focused on the
estimation of long memory in inflation, unemployment or interest rate time series.

A natural question to ask is whether long memory can characterize conditional
volatility processes: (Ding, Granger and Engle 1993) suggest that in financial time
series the speed of decay of squared residuals autocorrelations is slower than ex-
ponential. This stylized fact clashes with the standard GARCH models (Bollerslev
(1986)) which do not reproduce such a feature. Bollerslev (1988) showed that the
squared residuals autocorrelation function in a GARCH (1, 1) decreases exponen-
tially, and, as such, the sum of the absolute values of autocorrelations converges;
in order to exhibit long memory the same sum should diverge. Furthermore, Ding
and Granger (1996) have shown that the autocorrelation function decreases expo-
nentially also in the Integrated GARCH (Engle and Bollerslev 1986) case3.

The Fractionally Integrated GARCH model was first introduced by Baillie et
al. (1996) to account for long memory in conditional volatility. From the standard
GARCH (p, q) formulation:

ht = ω + α(L)ε2t−1 + β(L)ht−1,

that may be written as an ARMA model for the squared residualsε2t , namely,

[1− α(L)− β(L)]ε2t ≡ ψ(L)ε2t = ω + [1− β(L)]wt, (2)

wherewt = ε2t − ht, the FIGARCH(p, d, q) model is simply obtained by inserting
the operator(1− L)d in (2):

ψ(L)(1− L)dε2t = ω + [1− β(L)]wt, (3)

where, again, use is made of the expansion (1) and of a suitable truncation at the
estimation stage4. Another discrepancy with ARFIMA processes is that FIGARCH
processes are not covariance-stationary, not even when when0 < d < 1/2. On

2Cf. the survey by Baillie (1996).
3This shows the fallacy of the parallel with I(1) processes for which the theoretical autocorre-

lations are equal to 1 at all lags. The issue is quite counterintuitive and involves being clear about
whether persistence is a property of the correlogram or whether it impacts on the profile of the fore-
cast function (cf. Ding and Granger (1996), for more details).

4Note that, as a result,ψ(L) is not necessarily equal to[1 − α(L) − β(L)]: this has an impact,
for example, on the interpretation of where a dynamic forecast of conditional variance with a FI-
GARCH converges. Also, in spite of the similarity, this formulation is not equivalent to specifying
an ARFIMA model for the squared residualsε2t : in this case, the fractional difference operator is
not applied toω. To overcome this notational incongruity, Chung (1999) proposed an alternative
parameterization for the FIGARCH model (3):ψ(L)(1− L)d(ε2t − σ2) = [1− β(L)]wt which we
will not adopt here. This means that extension of the results for the ARFIMA to the FIGARCH case
does not carry automatically.

4



the other hand, some results seemingly suggest that the process is indeed strongly
stationary for0 ≤ d ≤ 1.5

Calculating conditional variances for FIGARCH models involves several com-
putations and “long” loops and thus may be very time-consuming. Since the nu-
merical evaluation of derivatives involves the computation of the log-likelihood
function in several points, it is clear that calculating an Hessian matrices (or, for
that matter, gradients) may require quite a lot of time, even on fast machines. Fur-
thermore, numerical derivatives may be, by definition, quite inaccurate, especially
if the log-likelihood function is flat over portions of its domain. On the other hand,
there are clear advantages in considering analytic closed-form expressions for the
second-order derivatives: the analytic Hessian matrix can be used at estimation
stage to potentially improve upon precision and speed of convergence to the maxi-
mum likelihood estimates and can be used to derive expressions for the estimators’
variance – covariance matrices (standard and robust, for example).

In the next section we will address the first set of issues by resorting to a com-
parison among optimization algorithms by simulation, leaving to section 4 the task
of performing a similar comparison on variance – covariance matrix estimation
procedures.

3 Alternative optimization algorithms

The most popular methods of optimization make use of exact or approximated
Hessian matrices. The Newton – Raphson method, for example, uses the exact
Hessian matrix. However, in the absence of analytic expressions for the second-
order derivatives of the log-likelihood function, this method turns out to be too
much time-consuming to be used in practice. Among the methods proposed in
order to avoid the computation of the Hessian matrix, the suggestion by Berndt,
Hall, Hall and Hausman (1974) is very popular. Given the gradient of the log-

likelihood function for each observation,ĝt = ∂ ln `(ϑ̂,yt)

∂ϑ̂
, the Hessian matrix is

approximated by:

P(ϑ) =
T∑

t=1

ĝtĝ′t; (4)

Another common approach, introduced by Davidon – Fletcher – Powell and

5This result, presented in Baillie et al. (1996) is quite counterintuitive and still debated. A more
formal proof of the stationarity is provided in Caporin (2001); an alternative approach to the concept
of long memory for volatility processes that sheds some light on the question is presented in Davidson
(2001).
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improved by Broyden – Fletcher – Goldfarb – Shanno6 is the so-called BFGS
method, in which we approximate the inverse of the Hessian matrix with the fol-
lowing updating formula:

∆Bm+1(ϑ) =
Bm(ϑ)∆ĝm+1(ϑ)∆ĝ′m+1(ϑ)Bm(ϑ)

∆ĝ′m+1(ϑ)Bm(ϑ)∆ĝm+1(ϑ)
− ∆ϑ̂m+1∆ϑ̂′m+1

∆ĝ′m+1(ϑ)∆ϑ̂m+1

, (5)

where∆ĝm+1(ϑ) = [ĝm+1(ϑ)− ĝm(ϑ)] and∆ϑ̂m+1 = (ϑ̂m+1 − ϑ̂m). This
formula is updated at each iterationm of the algorithm.

The first part of the simulation study we carried out consists in simulating 1000
FIGARCH processes:

yt = µ + εt (6)

εt|It−1 ∼ N(0, ht)

whereht is determined according to (3). For each replication the DGP generated
3000 observations with parametersµ = 0.0, ω = 0.01 ψ = 0.2, β = 0.7, d = 0.5;
the variance of the noise term used in the simulation was set to 1. The processes
were then estimated according to four different optimization methods: Newton-
Raphson, BFGS with analytic gradient, BFGS with numeric gradient and BHHH.
We have tried two different choices of starting values: in the first case, we use the
true parameter values of the DGP, in the second one, we useµ = 0.005, ω = 0.005
ψ = 0.3, β = 0.6, d = 0.3. Results are presented in Tables 1 and 2.

Besides the obvious fact that the numeric-gradient BFGS takes quite a lot of
time to converge, we may note that both BFGS algorithms take approximately
twice the number of iterations required by the Newton – Raphson and the BHHH.
Furthermore, whilst the Newton – Raphson seems to be quicker in terms of the
number of iterations, at least for what concerns the “true” starting values, it is
slower in terms of seconds required to converge than the BHHH. This result is also
evident from Figure 1, where we have plotted the estimated distribution functions
of the number of iterations to convergence.

What is really annoying is the fact that the Newton – Raphson algorithm seems
to fall in weak convergence too often, especially when using alternative starting
values7. The algorithm seems to perform correctly in the first two steps, but it
often ends up wandering around the maximum. On the other hand, from Table
2, we may observe that working with the Newton – Raphson method pays quite
well in terms of RMSE. This remains true also when we use the alternative starting
values, provided we discard weak convergences.

6These are Quasi-Newton methods: see Thisted (1988) for complete references.
7We have also tried a smaller number of replications with completely “wrong” starting values and

the results are even worse: on 100 replications, we got about 70% of weak convergences.
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Table 1: Simulation results for 1000 replications. The headings “True values” and
“Alternative values” denote the different choice of starting values. The column
“NR” is for the Newton-Raphson method, “ABFGS” and “NBFGS” denote, re-
spectively, the analytic-gradient and the numeric-gradient BFGS method. The first
rows report the mean of the estimated coefficients across the replications, the row
“Iter” reports the average number of iterations required for convergence, the row
“Time” reports the average time (in seconds) to convergence on an AMD Athlon
processor at 1.1 GHz and finally the row “Weak” reports the number of weak con-
vergences experienced.

NR ABFGS NBFGS BHHH

True values
µ 0.00021 0.00021 0.00021 0.00022
ω 0.01118 0.01145 0.01146 0.01145
ψ 0.18741 0.18923 0.18939 0.18904
β 0.69834 0.69532 0.69524 0.69542
d 0.50969 0.50481 0.50452 0.50510

Iter 5.09 10.10 10.06 5.91
Time 1.96 2.46 30.26 1.78
Weak 51 4 15 1

Alternative values
µ 0.00350 0.00022 -0.00029 0.00022
ω 0.01847 0.01147 0.01150 0.01145
ψ 0.19657 0.18938 0.19005 0.18905
β 0.67201 0.69505 0.69191 0.69536
d 0.47478 0.50441 0.49987 0.50504

Iter 7.47 15.87 15.77 7.20
Time 2.85 3.34 45.21 2.10
Weak 121 7 39 1
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Figure 1: Empirical cumulated distribution functions of the number of iterations
and the required time (in seconds) for convergence for the optimization methods
considered. The solid lines denote the Newton-Raphson method (NR), the dashed
lines are for the analytic-gradient BFGS (ABFGS) and the dotted lines are for the
BHHH.
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Table 2: Simulation results for 1000 replications. The rows report the root mean
squared error of the estimated coefficients across the replications. The column
“NR” is for the Newton – Raphson method, the column “NRS” denote the Newton
– Raphson with weak convergences excluded, “ABFGS” and “NBFGS” denote,
respectively, the analytic-gradient and the numeric-gradient BFGS method.

Parameters NR NRS ABFGS NBFGS BHHH

True values
µ 0.01145 – 0.01162 0.01162 0.01162
ω 0.00574 – 0.00616 0.00616 0.00616
ψ 0.05031 – 0.05348 0.05307 0.05405
β 0.06454 – 0.06839 0.06840 0.06867
d 0.09352 – 0.10072 0.10029 0.10191

Alternative values
µ 0.01661 0.01164 0.01162 0.01241 0.01162
ω 0.02311 0.00625 0.00616 0.00624 0.00616
ψ 0.05803 0.05331 0.05307 0.05325 0.05402
β 0.09796 0.06933 0.06832 0.07137 0.06873
d 0.13461 0.10198 0.10024 0.10468 0.10193
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This suggests, as previously noted by Fiorentini et al. (1996) for the standard
GARCH case, the use of a mixed algorithm: we could perform the fisrt three steps
with the BHHH to close on the maximum and then switch to the Newton – Raphson
to obtain the best performance in terms of RMSE. The results of this approach are
encouraging; we report them in Table 3.

Table 3: Simulation results for 1000 replications – Mixed algorithm – Alternative
starting values. The column “Estimates” reports the mean of the estimated coef-
ficients across the replications, while the column “RMSE” reports the square root
of the mean squared error. The “MIX” columns reports the results for the mixed
algorithm presented earlier, while the columns “NR” and “BHHH” report, respec-
tively, the results previously obtained for the Newton – Raphson and the BHHH
algorithms.

MIX NR BHHH
Estimates RMSE Estimates RMSE Estimates RMSE

µ 0.00035 0.01187 0.00350 0.01661 0.00022 0.01162
ω 0.01166 0.00640 0.01847 0.02311 0.01145 0.00616
ψ 0.19022 0.05304 0.19657 0.05803 0.18905 0.05402
β 0.69402 0.06812 0.67201 0.09796 0.69536 0.06873
d 0.50253 0.10021 0.47478 0.13461 0.50504 0.10193

Iter 5.92 7.47 7.20
Time 1.92 2.85 2.10
Weak 14 121 1

We may note that the performance of the mixed algorithm is clearly superior,
both in terms of time and iterations and in terms of RMSE. Examining more closely
the RMSE column, we may observe that the mixed algorithm performs better es-
pecially for what concerns the parameters of the variance equation (the main focus
of the experiment).

4 Alternative estimators
of variance – covariance matrices

Let us now move to the estimation of the parameters variances. In order to avoid
the calculation of the expected value in the information matrix one may use the
Hessian matrix evaluated at the maximum likelihood estimated parameter vector
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ϑ̂, namely

H(ϑ̂) = −∂2 ln `(ϑ̂)
∂ϑ̂∂ϑ̂′

.

The approach suggested by Berndt et al. (1974) applies also to this inferential
framework: the information matrix may be estimated by inverting (4).

The last estimator we consider (White 1982) is known asQuasi-Maximum
Likelihoodestimator (QML):

Q(ϑ) = H−1(ϑ)P(ϑ)H−1(ϑ),

which is robust over a variety of model misspecification errors.
If the log-likelihood function is maximized using Hessian-based algorithms,

the information matrix can be obtained as a by-product of the optimization pro-
cedure. This is surely the case when the optimization algorithm uses the exact
Hessian (Newton – Raphson method) or an approximation that improves as one
draws nearer to the optimum (BHHH method). On the other hand, as pointed out
in Thisted (1988), if quasi-Newton methods8 such as Davidon – Fletcher – Pow-
ell (DFP) or Broyden – Fletcher – Goldfarb – Shanno (BFGS), are employed, the
estimated Hessian matrix is not guaranteed to converge to its exact value when ap-
proaching the optimum. Using those methods to obtain the estimated information
matrix may thus be misleading.

The second simulation study we carried out is intended to assess whether differ-
ent methods for the estimation of the information matrix may lead to discrepancies
in the standard errors of the parameters. We used the same simulation design as in
the previous section; each replication was estimated using the mixed BHHH/NR
method with an analytic gradient, and then the standard errors of the parameters
were calculated with the various methods mentioned earlier. In Figure 2, we report
the empirical distributions of the estimated parameters across replications.
The average computation time required by the analytic method was 0.18 seconds,
as opposed to a time of 15.82 seconds required by the computation of the numeric
Hessian matrices, which shows obvious computational advantages.

The simulation results, presented in Table 4, report the mean and standard de-
viation of the estimated parameter distribution across replications, and the standard
errors associated with the estimated parameters, according to the various methods.

First, note that the standard errors forµ are in line with one another, hinting at
the possibility that the exact information matrix is indeed block diagonal also in the
FIGARCH case (as in Bollerslev, 1986, for the standard GARCH case). For what
concerns the parameters of the conditional variance equation, the methods con-
sidered seem to perform slightly differently. Note that the results obtained from

8See Thisted (1988) for complete references.
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Figure 2: Kernel densities for the estimates of the parameters. Bandwidths are
reported in each graph asb; arrows point at the “true” parameter values of the
DGP.

Table 4: Simulation results for 1000 replications. In the section “Parameters Dis-
tribution” we report the mean and the standard deviation of the distribution of es-
timated parameters across replications. Under the heading “Standard Errors”, we
report the square root of the average value of the parameter variances computed
according to each method.

µ ω ψ β d

Parameters
Distribution
Mean 0.000222 0.011450 0.189043 0.695417 0.505097
Standard deviation 0.011619 0.005916 0.052924 0.068513 0.101779

Standard Errors
Analytic Hessian 0.012042 0.005477 0.046925 0.060366 0.081240
Numeric Hessian 0.012083 0.005568 0.046271 0.060819 0.080517
Outer product 0.012083 0.005477 0.045673 0.058983 0.077240
QML 0.012083 0.005657 0.053451 0.066030 0.095373
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the analytic Hessian and its numeric counterpart are very close, but for the latter
we have to observe that in several cases the estimation ended up with no results9.
In what concerns the Outer-product estimator, the estimated variances seem to be
systematically smaller than those obtain by Hessian matrices (both analytic and
numeric). For the simulation design adopted here, this would lead to a systematic
underestimation of the standard error by numeric Hessian or the Outer Product,
possibly leading to a tendency to over-rejection in a testing framework. As far as
QML is concerned, we have to note that this method performs much worse than
the others, leading the corresponding test statistic to a tendency to under-reject
for a given level of significance, at least for the simulation design adopted. To
check whether this discrepancy is caused by the small sample size used, we have
replicated the experiment using series of 10,000 and 30,000 instead of 3,000 ob-
servations; the results are reported in Table 5 (further simulations based on 50,000
observations led to similar results).

The results obtained seem to confirm our guess: the order of the discrepancy
gets definitely smaller. For example, if we consider thed parameter, the discrep-
ancy between the analytic Hessian and the QML is 0.014133 (that is, the robust
standard errors are 17.39% higher) for the series of 3000 observations, but drops to
0.001047 (2.49% higher) for 10000 observations and to 0.000109 (0.59% higher)
for 30000 observations. This result could be caused by the fact that, for estimation
purposes, we use, as suggested by Baillie et al. (1996), a set of 1000 pre-sample
values equal to the unconditional variance of the process; the presence of those
“fake” observations could lead to discrepancies in the results. One possible way to
test this conjecture is to use a different estimation approach – for example using
every available observation, as suggested in Teyssière (1996), or “discarding” ob-
servations from the original series, or the one proposed in Chung (1999). A related
issue is addressed by Teyssière (1996), who presents simulation results suggesting
that the magnitude of the truncation orderM may affect the estimates of theω
parameter.

It may be also instructive to examine the distribution of the estimated variances
across methods as done in Figure 3, where we have plotted the sample distribution
of the variances of the parameters calculated according to the following methods:
analytic Hessian, numeric Hessian and Outer Product10. There are no clear advan-
tages of one method over the other (apart from the computation time involved): the
variance estimators have very similar distributions with the exception of the vari-
ance ofψ̂, for which the Hessians are slightly more precise, and ofβ̂, for which

9In 19 cases the differentiation algorithm did not converge, while in 18 cases the Hessian matrix
reported was singular. Over the 1000 replication the ratio of failed numeric Hessian is thus 3.7%.

10We have not included QML in the graphical comparison given the different order of magnitude
of estimated variances which would have made the results for the other three methods look the same.
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Table 5: Simulation results for 1000 replications – series of 10,000 and 30,000
observations. In the section “Parameters” we report the mean and the standard
deviation of the distribution of estimated parameters across replications. Under the
heading “Standard Errors”, we report the square root of the average value of the
parameter variances computed according to each method.

µ ω ψ β d

10,000 observations
Parameters
Mean -0.000131 0.010166 0.197914 0.700269 0.502970
Std. deviation 0.006325 0.002449 0.024839 0.032680 0.045967

Standard Errors
Analytic Hessian 0.006633 0.002449 0.023302 0.031289 0.041976
Outer product 0.006633 0.002449 0.023238 0.030952 0.041328
QML 0.006633 0.002449 0.023473 0.031984 0.043023

30,000 observations
Parameters
Mean 0.000033 0.010002 0.199456 0.700410 0.500950
Std. deviation 0.002828 0.001000 0.010050 0.013601 0.018166

Standard Errors
Analytic Hessian 0.003000 0.001000 0.010099 0.013675 0.018221
Outer product 0.003000 0.001000 0.010099 0.013638 0.018166
QML 0.003000 0.001000 0.010099 0.013711 0.018330
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BHHH has a less dispersed distribution.

Figure 3: Kernel densities for the estimated variances of the parameters. Band-
widths are reported in each graph asB. The solid lines denote the analytic Hessian,
the dashed lines the numeric Hessian and the dotted lines are for the Outer Product.

5 An Application on Financial Series

With these results in hand, we now turn to illustrating how the procedure performs
on real world data. We chose to replicate the results obtained by Baillie et al.
(1996) using their same data on the Deutsche Mark – US dollar exchange rate and
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estimating11 a FIGARCH (1,d, 1) model on the daily returns of the DEM/USD
spot exchange rate from March 13, 1979 to December 30, 1992, for a total of
3454 observations, using the Newton-Raphson optimization method. The results
are presented in Table 6, in order to show the wide difference between “standard”
and robust standard errors.

Table 6: Estimation of a FIGARCH (1,d, 1) model for the daily returns of the spot
exchange rate of the Deutsche Mark versus the U.S. dollar, from March 13, 1979 to
December 30, 1992 (3454 observations). The “ML” columns report the maximum
likelihood estimated standard errors and p-values, while the “QML” columns report
the same quantities computed by resorting to quasi-maximum likelihood.

ML QML
Estimate Standard Error P-Value Standard Error P-Value

µ -0.004068 0.011105 0.714155 0.011415 0.721587
ω 0.018158 0.003994 0.000001 0.005633 0.001279
ψ 0.091543 0.048470 0.059022 0.076918 0.234073
β 0.679127 0.069966 0.000000 0.104912 0.000000
d 0.658186 0.102210 0.000000 0.163107 0.000056

Let us see another example, where we consider a longer series from the Stan-
dard and Poor 500 index from January 3, 1950 to June 29, 2001 (13045 obser-
vations). The estimation results with a comparison between analytic and numeric
Hessians are presented in Table 7. We may observe that the relative difference be-
tween the two standard errors does not change appreciably leaving open the ques-
tion whether the difference is due to poorer performance of QML or considerable
impact of misspecified errors.

6 Concluding remarks

In this paper we have derived closed-form formulas for the second-order analytic
derivatives of the log-likelihood function for the FIGARCH (p, d, q) model and we
have employed them in a comparison exercise among the main estimation meth-
ods. Somewhat surprisingly, the Newton Raphson algorithm performs well only
when used in conjunction with the BHHH, since for the FIGARCH model it shows
a tendency to end up in weak convergence. Overall, the savings in computational
time that can be gained from analytical expressions are quite remarkable. As far as

11The estimation has been carried out with a C routine available, in executable version, at the URL
http://www.ds.unifi.it/˜mjl/bin/Figarch.exe.
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Table 7: Estimation of a FIGARCH (1,d, 1) model for the daily returns of the
Standard & Poor 500 index, from January 3, 1950 to June 29, 2001 (13045 ob-
servations). The “ML” columns report the maximum likelihood estimated standard
errors and p-values, while the “QML” columns report the same quantities computed
by resorting to quasi-maximum likelihood.

ML QML
Estimate Standard Error P-Value Standard Error P-Value

µ 0.050458 0.006053 0.000000 0.007211 0.000000
ω 0.018460 0.002767 0.000000 0.005375 0.000000
ψ 0.366847 0.025776 0.000000 0.044326 0.000000
β 0.669021 0.029659 0.000000 0.052520 0.000000
d 0.444385 0.033014 0.000000 0.063681 0.000000

the variance – covariance matrix estimation is concerned, our results show that the
quality of the estimates is improved upon when the analytical Hessian is employed;
robust standard errors appear to be systematically higher than their standard coun-
terpart. When normal errors are employed, the simulation results show that the
difference between standard errors decreases only for very large sample sizes.
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Appendix. Analytic Derivatives for FIGARCH processes

In a likelihood-based estimation framework, once a suitable estimation procedure
is adopted to derive the value of the estimates, inference needs require the appropri-
ate computation of the estimators’ variance – covariance matrix (that is the inverse
of the information matrixI(ϑ) = E

[−∂2 ln `(ϑ)/∂ϑ∂ϑ′
]
.

In a GARCH-type framework, let us consider a model with a simple constant
termµ in the mean equation and a generic conditional varianceht. The relevant
parameter vectorϑ = (µ, ϑ′v)′, whereϑv is a vector containing the parameters in
the variance equation. The log-likelihood function is defined as:

ln `(ϑ) = −T

2
ln(2π)−

T∑

t=1

ln ht

2
−

T∑

t=1

εt

2ht
. (7)

Differentiating with respect to parametersϑ yields:

∂ ln `(ϑ)
∂ϑ

=
1
2

T∑

t=1

1
ht

[
∂ht

∂ϑ

ε2t − ht

ht
− 2

∂εt

∂ϑ
εt

]
,

that is

∂ ln `(ϑ)
∂µ

=
1
2

T∑

t=1

1
ht

[
2εt +

∂ht

∂µ

ε2t − ht

ht

]
(8)

and

∂ ln `(ϑ)
∂ϑv

=
1
2

T∑

t=1

∂ht

∂ϑv

ε2t − ht

h2
t

. (9)

Analytic formulas for∂ht
∂ϑv

for the FIGARCH model have been derived by Chung
(1999), in its alternative parameterization already mentioned. Exploiting some
of these results, Lombardi (2001) found the analytic expressions for the standard
FIGARCH (p, d, q) case:

∂ht

∂µ
= 2

[
ψ(L)(1− L)d

1− β(L)
− 1

]
εt,

∂ht

∂ω
=

1
1− β(L)

,

∂ht

∂ψi
=

1
1− β(L)

M∑

k=0

ϕkε
2
t−k−i, i = 1, 2, ..., p,
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∂ht

∂βj
=

ht−j − ε2t−j

1− β(L)
, j = 1, 2, ..., q,

∂ht

∂d
= − ψ(L)

1− β(L)

M∑

k=1

dϕk

dd
ε2t−k;

As far as the gamma function in expression 1 is concerned, let us first note that its
exact derivative is given by the Digamma function (sometimes indicated asψ(·)
function), defined as:

ψ(d) =
dΓ(d)

dd
=

∞∑

k=1

[
1
k
− 1

k + d− 1

]
− γ,

whereγ denotes the Euler-Mascheroni constant. In order to obtain the derivative of
ϕk with respect tod, we need to compute the derivative of the ratio of two different
gamma functions

dϕk

dd
=

1
Γ(k + 1)

∂

∂d

[
Γ(k − d)

Γ(d)

]
;

using digamma functions can thus be quite unpractical and time-consuming. A
more manageable expression, proposed in Chung (1999), is the approximation:

dϕk

dd
= −ϕk

k∑

j=1

1
k − j − d

.

Second-order analytic derivatives for GARCH models have been introduced
by Fiorentini et al. (1996). Referring to the model with the onlyµ in the mean
equation we have:

∂2 ln `(ϑ)
∂µ2

=
T∑

t=1

[
1
2

∂2ht

∂µ2

ε2t − ht

h2
t

− 1
ht
− 2

∂ht

∂µ

εt

h2
t

]
+

−1
2

T∑

t=1

[
∂ht

∂µ

∂ht

∂µ

ε2t − ht

h3
t

+
∂ht

∂µ

∂ht

∂µ

ε2t
h3

t

]
, (10)

∂2 ln `(ϑ)
∂ϑv∂ϑ′v

=
1
2

T∑

t=1

[
∂2ht

∂ϑv∂ϑ′v

ε2t − ht

h2
t

− ∂ht

∂ϑv

∂ht

∂ϑ′v

ε2t − ht

h3
t

− ∂ht

∂ϑv

∂ht

∂ϑ′v

ε2t
h3

t

]
, (11)

∂2 ln `(ϑ)
∂µ∂ϑ′v

= −
T∑

t=1

[
∂ht

∂ϑ′v

εt

h2
t

+
1
2

∂ht

∂µ

∂ht

∂ϑ′v

ε2t − ht

h3
t

]
+

+
1
2

T∑

t=1

[
∂2ht

∂µ∂ϑ′v

ε2t − ht

h2
t

− ∂ht

∂µ

∂ht

∂ϑ′v

ε2t
h3

t

]
. (12)
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Extending these results to the FIGARCH case requires the analytic expressions
for the ∂2ht

∂ϑ∂ϑ′ ’s. Let us consider a general FIGARCH (p, d, q) model with the only
constant termµ in the mean equation; we may show that:

d2ϕk

dd2
= ϕk




k∑

j=1

1
k − j − d




2

− ϕk

k∑

j=1

1
(k − j − d)2

; 12

∂2ht

∂µ2
= 2− 2

ψ(1)
1− β(L)

M∑

k=0

ϕk,

∂2ht

∂µ∂ψi
= − 2

1− β(L)

M∑

k=0

ϕkεt−k−i, i = 1, 2, ..., p,

∂2ht

∂µ∂βj
=

2εt−j + ∂ht−j

∂µ

1− β(L)
, j = 1, 2, ..., q,

∂2ht

∂µ∂d
= 2

ψ(L)
1− β(L)

M∑

k=1

dϕk

dd
εt−k,

∂2ht

∂µ∂ω
=

∂2ht

∂ω2
=

∂2ht

∂ω∂ψ
=

∂2ht

∂ω∂d
= 0,

∂2ht

∂ψi1∂ψi2

= 0, i1 = 1, 2, ..., p, i2 = 1, 2, ..., p,

∂2ht

∂ω∂βj
=

∂ht−j

∂ω
+ βj

∂2ht−j

∂ω∂βj
, j = 1, 2, ..., q,

∂2ht

∂ψi∂βj
=

∂ht−j

∂ψi
+ βj

∂2ht−j

∂ψi∂βj
, i = 1, 2, ..., p, j = 1, 2, ..., q,

∂2ht

∂ψi∂d
=

L

1− β(L)

M∑

k=1

ϕkε
2
t−k, i1 = 1, 2, ..., p,

∂2ht

∂βj1∂βj2

= 2
ht−j1−j2 − ε2t−j1−j2

(1− β(L))2
, j1 = 1, 2, ..., q, j2 = 1, 2, ..., q,

∂2ht

∂βj∂d
=

∂ht−j

∂d
+ β

∂2ht−j

∂d∂βj
, j = 1, 2, ..., q,

∂2ht

∂d2
=

ψ(L)
1− β(L)

M∑

k=1

d2ϕk

dd2
ε2t−k.

12Once again, we are considering a simple approximation that allows us to avoid the computation
of the polygamma function.
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