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Abstract

In the last years several methods for the analysis of ordinal multivariate mul-
tilevel data have been proposed (Muthén, 1994; Rabe-Hesketh et al., 2001;
Mazzolli, 2001; Lillard and Panis 2000). The present paper highlights the
interpretation of the variance-covariance parameters of the assumed multi-
variate distribution of the latent variables. Moreover, under the hypothesis
of a multivariate Gaussian distribution, the paper illustrates some alternative
specifications of the model, which have been proposed in order to use certain
estimation algorithms yet implemented in the existing statistical software.

1 Basic specification of the model

Let Y (h)
ij be the h-th observed ordinal variable (h = 1, 2, · · · , H) for the

i-th subject (i = 1, 2, · · ·nj) of the j-th cluster (j = 1, 2, · · · J). In our
application the clusters are the courses, the subjects are the questionnaires
and the ordinal variables are the ratings on two items of the questionnaire
(i.e. H = 2). Now assume that each of the observed ratings Y (h)

ij , which
takes values in {1, 2, . . . , C} (letting C be the same for all h for simplicity),
is generated by a latent variable Ỹ (h)

ij through the following relationship:
{

Y (h)
ij = c(h)

}

⇔
{

γ(h)
c(h)−1 < Ỹ (h)

ij ≤ γ(h)
c(h)

}

,

where the thresholds satisfy −∞ = γ(h)
0 ≤ γ(h)

1 ≤ . . . ≤ γ(h)
C−1 ≤ γ(h)

C = +∞.
Now let us consider the following two-level null model for the latent vari-

ables:

Ỹ (1)
ij = α(1) + u(1)

j + ε(1)
ij

Ỹ (2)
ij = α(2) + u(2)

j + ε(2)
ij , (1)

where, for each h, α(h) is the mean, u(h)
j is the cluster’s random effect (level

two error) and ε(h)
ij is the subject’s disturbance (level one error). The errors

are assumed to be distributed as
(

ε(1)
ij , ε(2)

ij

)′ iid∼ N(0,Σε)
(

u(1)
j , u(2)

j

)′ iid∼ N(0,Ω) (2)
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with

Σε =
(

σ2
ε1

σε1ε2 σ2
ε2

)

, Ω =
(

τ 2
1

τ12 τ 2
2

)

; (3)

moreover the first and second level errors are assumed to be independent, so
Cov(ε(h)

ij , u(k)
j ) = 0, ∀i, j, h, k.

The previous model specification implies the following conditional covari-
ance structure for the two latent variables Ỹ (h)

ij :

Cov(Ỹ (h)
ij , Ỹ (k)

i′j′ | u
(h)
j , u(k)

j ) = E(ε(h)
ij ε(k)

i′j′)

=











σ2
εh

if k = h, j = j′, i = i′

σε1ε2 if k 6= h, j = j′, i = i′

0 otherwise
(4)

Then the ratio σε1ε2/σε1σε2 can be interpreted as the conditional polychoric
correlation (see Drasgow, 1981).

The unconditional covariance structure is:

Cov(Ỹ (h)
ij , Ỹ (k)

i′j′ ) = E(ε(h)
ij ε(k)

i′j′) + E(u(h)
j u(k)

j′ ), (5)

with Cov(Ỹ (h)
ij , Ỹ (k)

i′j′ ) = 0 if j 6= j′, while the expression of Cov(Ỹ (h)
ij , Ỹ (k)

i′j′ ) for
j = j′ is reported in Table 1.

Table 1: Cov(ỹ(h)
ij , ỹ(k)

i′j′) for j = j′ (same cluster).

i = i′ i 6= i′

h = k σ2
εh

+ τ 2
h τ 2

h
h 6= k σε1ε2 + τ12 τ12

¿From the expressions reported in Table 1, three types of correlation can
be defined:

• the correlation between the same variable for two distinct subjects of
the same cluster, that is the intraclass correlation coefficient, ICC, rep-
resenting also the proportion of variance explained by the clusters:

Corr(Ỹ (h)
ij , Ỹ (h)

i′j ) = τ 2
h/(σ2

εh
+ τ 2

h) h = 1, 2;
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• the correlation between the two variables for the same subject (marginal
polychoric correlation):

Corr(Ỹ (1)
ij , Ỹ (2)

ij ) = (σε1ε2 + τ12)/
√

(σ2
ε1

+ τ 2
1 )(σ2

ε2
+ τ 2

2 );

• the correlation between the two variables for two distinct subjects of
the same cluster:

Corr(Ỹ (1)
ij , Ỹ (2)

i′j ) = τ12/
√

(σ2
ε1

+ τ 2
1 )(σ2

ε2
+ τ 2

2 ).

The cluster random effects u(1)
j and u(2)

j may be viewed as factors, so
the model described so far may be interpreted as a two-factor model. The
one-factor version is obtained by specifying

u(h)
j = λhwj, h = 1, 2,

where wj
iid∼ N(0, 1) and the λh’s are parameters. In this case u(1)

j and u(2)
j

have a distinct variances, but they are perfectly correlated. The uncondi-
tional covariances (5) are easily derived posing τh = λh and τ12 = λ1λ2.

To make the ordinal model identifiable, it is necessary to impose some
constraints: in the following we assume γ(1)

1 = γ(2)
1 = 0 and σε1 = σε2 = 1.

Note that the model has four estimable variance-covariance parameters, three
at cluster level (τ 2

1 , τ 2
2 , τ12) and one at subject level (σε1ε2 , the conditional

polychoric correlation). In the following we denote with θ the set of all
estimable parameters.

The full model likelihood can be derived in the following steps. First, the
conditional likelihood for subject i of cluster j is

Lij(θ |u) =
∏

c∈C

[

P
( 2

⋂

h=1

{

Y (h)
ij = c(h)

}

| u(1), u(2)

)]dijc

, (6)

where C is the set of all admissible values of the vector c = (c(1), c(2)) and
dijc is the indicator function of the event

⋂2
h=1{Y

(h)
ij = c(h)}. Note that the

relationship between the observed and latent variables and the hypotheses
on the latent model imply that

P
( 2

⋂

h=1

{

Y (h)
ij = c(h)

}

| u(1), u(2)

)

(7)
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= P
( 2

⋂

h=1

{

γ(h)
c(h)−1 < Ỹ (h)

ij ≤ γ(h)
c(h)

}

| u(1), u(2)

)

= Eε

[ 2
∏

h=1

I
{

γ(h)
c(h)−1 − α(h) − u(h) < ε(h) ≤ γ(h)

c(h) − α(h) − u(h)
}

| u(1), u(2)

]

,

where ε = (ε(1), ε(2)); therefore, computation of the probability involves an
integral with respect to a bivariate Gaussian density.

Second, the marginal likelihood for cluster j is

Lj(θ) = Eu

[ nj
∏

i=1
Lij(θ |u)

]

, (8)

involving another integral with respect to a bivariate Gaussian density. Fi-
nally, the overall marginal likelihood is

L(θ) =
J

∏

j=1
Lj(θ). (9)

Maximization of the marginal likelihood (9) requires the solution of the
double integrals at subject and cluster levels. The NLMIXED procedure of
the SAS system (SAS Institute, 1999), which allows to specify an arbitrary
conditional likelihood programmable with SAS statements, can do the job:
in fact the probabilities (7) can be written using the bivariate Gaussian dis-
tribution function and are calculated through finite differences, while the
integration with respect to the random effects u(1), u(2) is performed through
Gaussian quadrature. The approximated marginal likelihood is maximized
using a dual quasi-Newton algorithm.

2 Alternative specifications of the model

In general, to fit a (univariate) two-level model it is necessary to integrate out
the second level errors (random effects). The fitting of the bivariate two-level
model defined in the previous Section involves some additional computational
difficulties, due to the integration required for the bivariate normal distribu-
tion of the first level errors. Moreover, if the outcomes are more than two
the dimension of the multivariate conditional distribution increases, ans so
the order of the integrals.
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One way to handle the computational complexity of the model with sev-
eral responses, is to set up a convenient reparametrization based on the
following decomposition of the first level error:

ε(h)
ij = v(h)

ij + ξ(h)
ij , (10)

where, still considering the case of two items (H = 2), the v and ξ errors are
independent with

(

v(1)
ij , v(2)

ij

)′ iid∼ N(0,Σv )
(

ξ(1)
ij , ξ(2)

ij

)′ iid∼ N(0, I) (11)

with

Σv =
(

σ2
v1

σv1v2 σ2
v2

)

.

The constraints on the parameters of the model described in the previous
Section must be reported also in the reparametrized version: this amounts
to impose two constraints on the three parameters of Σv, for example σ2

v1
=

σ2
v2

= 1.
The error decomposition (10), which is exploited by the GLLAMM soft-

ware (Rabe-Haskett et al., 2001), is the standard trick used to fit multivariate
multilevel models by the estimation routines for univariate multilevel models
(Snijders and Bosker, 1999). In our context, the bivariate two-level latent
model (1) can be viewed as a univariate three-level model where the two
responses form the new bottom level. Note that the two responses are inde-
pendent conditionally on the random effects at subject level (v(1)

ij , v(2)
ij ) and

cluster level (u(1)
j , u(2)

j ). Under the proposed decomposition, equations (1)
become

Ỹ (1)
ij = α(1) + u(1)

j + v(1)
ij + ξ(1)

ij

Ỹ (2)
ij = α(2) + u(2)

j + v(2)
ij + ξ(2)

ij (12)

The conditional covariance structure for the two latent variables is as (4),
with σ2

εh
= 1 + σ2

vh
and σε1ε2 = σv1v2 . Note that the conditional polychoric

correlation is now σv1v2/
√

(σ2
v1

+ 1)(σ2
v2

+ 1), which is different from the cor-

relation between the subject’s random effects v(1)
ij and v(2)

ij .
It is important to note that the original model, based on equations (1),

and the reparametrized model, based of equations (12), differ in the scaling
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factor used to insure identifiability. In fact, in the reparametrized model it
is natural to fix to one the standard deviations of ξ(1) and ξ(2), while in the
original model the corresponding constraint is imposed on the standard devi-
ations of ε(1) and ε(2). In terms of the reparametrized model, the constraint
used in the original model amounts to scale the parameters of the h-th la-
tent equation by a factor

√

1 + σ2
vh

. Therefore the parameters of the original

model are smaller in magnitude, specifically they are 1/
√

1 + σ2
vh

times the
corresponding parameters of the reparametrized model.

Though the reparametrized model is equivalent to the original one, the
way in which the likelihood is written down is not the same. In particular,
the probability (7) is now written as

P
( 2

⋂

h=1

{

Y (h)
ij = c(h)

}

| u(1), u(2)

)

(13)

= P
( 2

⋂

h=1

{

γ(h)
c(h)−1 < Ỹ (h)

ij ≤ γ(h)
c(h)

}

| u(1), u(2)

)

= Ev

[

P
( 2

⋂

h=1

{

γ(h)
c(h)−1 < Ỹ (h)

ij ≤ γ(h)
c(h)

}

| u(1), u(2), v(1), v(2)

)]

= Ev

[ 2
∏

h=1

P
({

γ(h)
c(h)−1 < Ỹ (h)

ij ≤ γ(h)
c(h)

}

| u(h), v(h)
)

]

= Ev

[ 2
∏

h=1

(

Fξ(h)(γ(h)
c(h) − η(h))− Fξ(h)(γ(h)

c(h)−1 − η(h))
)

]

,

where η(h) = α(h) + u(h) + v(h), v = (v(1), v(2)) and Fξ(h) is the distribution
function of the item-specific error ξ(h). Therefore the reparametrized model
involves an additional step of integration and so it is likely to be computa-
tionally more heavy.

However, the computational burden can be greatly reduced by eliminating
one of the two errors at subject level. In fact, the identifiability constraints
imply that only one variance-covariance parameter is estimated at subject
level, so instead of using two random effects with three parameters and two
constraints, one can insert a single random effect. In this way the errors’
decomposition (10) becomes:

ε(h)
ij = vij + ξ(h)

ij , (14)
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with vij
iid∼ N(0, σ2

v), and the bivariate two-level latent model (12) is replaced
by the equations

Ỹ (1)
ij = α(1) + u(1)

j + vij + ξ(1)
ij

Ỹ (2)
ij = α(2) + u(2)

j + vij + ξ(2)
ij . (15)

The conditional polychoric correlation is now σ2
v/(1+σ2

v), which is restricted
to be positive. A negative correlation is obtained multiplying vij by −1 in
one of the two equations. In the model selection process one should try both
versions to discover the sign of the correlation.

An alternative parametrization, suggested by Rabe-Haskett (2002), which
allows the conditional polychoric correlation to assume both positive and
negative values, is the following:

Ỹ (1)
ij = α(1) + u(1)

j + vij + ξ(1)
ij

Ỹ (2)
ij = α(2) + u(2)

j + λvij + ξ(2)
ij . (16)

with vij
iid∼ N(0, 1) and λ is a parameter that determines the conditional

polychoric correlation: λ/
√

2(λ2 + 1). Since the total variance of the subject
level random term is not identified, it does not matter that the variances are
different.

The two-level bivariate probit model based on equations (15) or (16) can
be easily fitted by means of softwares such as GLLAMM (Rabe-Hesketh et
al., 2001) and aML (Lillard and Panis, 2000), which use Gaussian quadrature
to solve the integrals that appear in the likelihood expression.

Finally, it should be noted that the reparametrized model is equivalent
to the original one only because of the hypothesis of Gaussian disturbances
at item and subject levels. Without such an assumption the model based
on the errors’ decomposition (10) in general does not correspond to a model
with a well-known multivariate distribution at the subject level.

3 Application

The models presented in the previous Sections have been used to analyze
some of the data gathered in the survey of course quality carried out by
the University of Florence, in all schools of the university, for classes in the
2000-2001 academic year.
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The survey form was based on the proposal of a unique standard ques-
tionnaire for the evaluation of courses by the students formulated by the
National Committee for the Evaluation of the University System (Chian-
dotto and Gola, 1999). Specifically, we considered the ratings relative to the
courses held in the School of Pharmacy, excluding the courses with less than
five respondents. We also excluded the questionnaires (3.05% of the total)
with a missing response in either of the two items which enter the analysis,
i.e. course workload (Q3) and clarity of the teacher (Q13). Altogether, 2888
questionnaires have been considered, corresponding to 87 courses (see Table
2). The number of respondents per course goes from 6 to 136 (median=32,
mean=34).

Table 2: Courses evaluated and respondents by year. The University of
Florence, School of Pharmacy, academic year 2000-2001.
Year Courses Respondents

evaluated Tot Average min max
1 18 814 46.72 7 136
2 22 677 31.63 12 67
3 21 678 32.90 6 72
4 10 267 27.40 17 42
5 16 452 29.81 7 71

Tot 87 2888 34.24 6 136

The questionnaire begins with a preliminary section, containing informa-
tion about the course (its code, the name of the professor, the number of
attendant students) and goes on with six sections concerning the evaluation
of various aspects of the course. All the questions in these sections require
the same type of ordinal response: 1. decidedly no; 2. more no than yes; 3.
more yes than no; 4. decidedly yes.

We jointly analyzed two of the questions posed in the questionnaire, that
is: course workload (Q3) and clarity of the teacher (Q13). Table 3 reports
the sample bivariate distribution of Q3 and Q13. A standard measure of as-
sociation among the two items is the polychoric correlation (Drasgow, 1981),
which is the correlation coefficient of the underlying bivariate normal dis-
tribution. Ignoring the hierarchical structure of the data, the polychoric
correlation can be estimated by means of a null one-level bivariate probit
model, which is fitted by the ‘plcorr’ option of the SAS FREQ procedure
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applied to the 4 × 4 table of frequencies. The resulting estimate is 0.4483
(s.e. 0.0185, see model (a) of Table 5).

Table 3: Respondents by course workload (Q3) and clarity of the teacher
(Q13). The University of Florence, School of Pharmacy, academic year 2000-
2001.

Teacher’s clarity Total
Workload 1 2 3 4 N %
1 44 24 30 6 104 3.60
2 64 138 186 76 464 16.07
3 116 268 718 486 1588 54.99
4 26 56 198 452 732 25.35
Total 250 486 1132 1020 2888
% 8.66 16.83 39.20 35.32 100.00

In general, the rating of a student to a given item for a certain course
may depend on the characteristics of the following hierarchical levels: a) the
student (background, expectations etc.); b) the course (subject-matter, orga-
nization, professor, readings); c) the curriculum or the school or department
(halls, laboratories, sections, orientation etc.); d) the university.

Therefore a full analysis would require a complex multivariate multilevel
model (Goldstein, 1995; Snijders and Bosker, 1999). However in our appli-
cation we consider a single school, so there is no need for the school and
university levels; morover in this first stage of the analysis we omit the co-
variates.

3.1 The univariate models

In order to make an initial assessment of the proportion of variance in the
ratings which is linked to the course, we used the NLMIXED procedure of
SAS to fit a two-level probit model without covariates (null model) for each
of the two considered items (Table 4).

The variance component is highly significant in both cases. The null
model provides an estimate of the intraclass correlation coefficient (ICC).
This estimate is very different for the two considered items: the proportion
of variability of the evaluations which is attributable to the courses is 0.24
for the course workload and 0.41 for the teacher’s clarity.
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Table 4: Variance decomposition by univariate null models. The University
of Florence, School of Pharmacy, academic year 2000-2001.
Model n.of param. -2logL ICC
Course workload (Q3)
Null, without var.comp. 3 6297.1
Null, with var.comp. 4 5920.0 0.2369
Teacher’s clarity of the (Q13)
Null, without var.comp. 3 7199.2
Null, with var.comp. 4 6171.4 0.4143
Number of quadrature points=10, number of observations=2888

3.2 The bivariate model

Now let us consider the bivariate two-level model defined in Section 1, which
can be used to jointly analyze the items Q3 and Q13 (Muthén, 1994; Rabe-
Hesketh et al., 2001). The bivariate model includes the correlation structure
between the two items, which is interesting in itself and might also influence
the other parameters.

In order to identify the model, for each item we fix to zero the first
threshold γ(h)

1 and to one the first level standard deviation σεh , i.e. at the
first level only the correlation is estimated.

Interpreting the random effects as factors, two alternative hypotheses can
be set up for the second level model:

1. one-factor model : there is a single random effect at course level, enter-
ing the two linear predictors with different factor loadings;

2. two-factor model : there are two random effects at course level (one for
each item), whose variances and covariance can be estimated.

The one-factor model is a special case of the two-factor model in which
the factors are perfectly correlated. Having a single factor is useful in that
the courses can be easily ranked on the basis of the predicted values of that
factor; however such a model should be used only if supported by the data.

Table 5 reports the results for three types of bivariate model: (a) single-
level (no factor) model, (b) two-level one-factor model and (c) two-level two-
factor model. The estimates were obtained with the NLMIXED procedure
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Table 5: Bivariate null models. The University of Florence, School of
Pharmacy, academic year 2000-2001.
Parameter (a) no u’s (b) same u’s† (c) different u’s†

Estim s.e. Estim s.e. Estim s.e.
fixed
α(Q3) 1.797 0.0440 1.809 0.0463 1.988 0.0632
γ(Q3)

2 0.946 0.0413 0.974 0.0424 1.081 0.0471
γ(Q3)

3 2.458 0.0479 2.526 0.0503 2.785 0.0563
α(Q13) 1.355 0.0329 1.677 0.0578 1.571 0.0530
γ(Q13)

2 0.693 0.0288 0.941 0.0383 0.940 0.0382
γ(Q13)

3 1.729 0.0357 2.327 0.0494 2.332 0.0495
covariance
ρỹ(Q3)ỹ(Q13)|u(Q3),u(Q33) . . 0.401 0.0227 0.421 0.0205
ρỹ(Q3)ỹ(Q13) 0.448 0.0185 0.45 0.0188 0.477 0.0245
ICC(Q3) 0 . 0.056 0.0111 0.245 0.0289
ICC(Q13) 0 . 0.426 0.0229 0.501 0.0248
ρu(Q3)u(Q13) . . 1 . 0.624 0.0503
-2logL 13058 12029 11738
n. of param. 7 9 10
obs=2888, †non-adaptive Gaussian quadrature with 21 points.

of SAS, using for models (b) and (c) non-adaptive Gaussian quadrature with
21 points.

In terms of deviances (−2logL) the two-factor model is clearly preferable
over the one-factor model. Even if the two models lead to a similar estimate
of the marginal polychoric correlation (0.477 versus 0.450), in the two-factor
model the correlation between the factors (0.62) is farther from unity, which
is the value assumed by the one-factor model. The consequences of this
incorrect restriction seem to concern mainly the item Q3: in the one-factor
model the ICC goes down to 0.056, causing an attenuation in the intercept
and thresholds.

Therefore the ranking of the courses on the basis of the considered items
cannot rely upon a single measure. Instead, the predicted values of both
factors (second level residuals) should be computed and plotted: the best
courses are then the ones lying in the I quadrant, while the worst courses
are the ones lying in the III quadrant. Extreme cases should be selected for
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further investigation.

4 Computational remarks

The choice of the number of quadrature points at the higher level is crucial in
the case of two or more factors, like model (c) of Table 5, because especially
the variance-covariance parameter estimates are quite sensitive to the number
of quadrature points. As an example consider the results reported in Table
6.

First consider the original model defined in Section 1 and fitted with SAS
NLMIXED. In this case there is only one level which need numerical inte-
gration and we found that 21 points were adequate. Note that with 5 points
the variance-covariance estimates are totally misleading and change in a sub-
stantive manner if the order of the equations is inverted! (this phenomenon
was noted also in univariate models with two random effects, in which the
estimates obtained with few quadrature points are sensitive to the ordere in
which the random effects enter the equation).

The situation is more complex for the reparametrized model defined in
Section 2, equations (15), which requires numerical integration at two levels
of the hierarchy. However, with both GLLAMM and AML, it is clear that
the course level, which has two random effects, is more demanding, in terms
of quadrature points, than the subject level, which has a single random ef-
fect. For example, the estimates obtained with 21 points of quadrature at
both the levels are the same as the estimates obtained with 21 points at the
second level and 10 points at the first level. Also using the same number
of quadrature points at the second level, in this particular case, the three
software give estimates that are not exactly the same. This can be due to
the different implemented algorithm, but more investigation is needed to
understand what is going on.

The presented model can be easily extended to the case of more then two
items, by means of the reparametrization proposed in (12) or (15). The
NLMIXED SAS procedure does not allow to estimate such an extended
model, instead one can use the GLLAMM procedure of STATA or the aML
software. GLLAMM is a flexible procedure, but the the time requested for
the estimation increases rapidly with the complexity of the model. Provided
with good initial values, aML seems to be very quickly, but the software does
not allow, at the present moment, to estimate the second level residuals.
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Table 6: Bivariate null model (c) of Table 5 estimated with different software
and number of quadrature points.
Parameters SAS NLMIXED aML GLLAMM

5 qp 10 qp 21 qp 10;21 qp 10;21 qp
Fixed
α(Q3) 1.934 1.854 1.988 2.055 2.055
γ(Q3)

2 1.072 1.082 1.081 1.081 1.081
γ(Q3)

3 2.764 2.782 2.785 2.785 2.786
α(Q13) 1.547 1.342 1.571 1.877 1.879
γ(Q13)

2 0.924 0.928 0.940 0.936 0.935
γ(Q13)

3 2.295 2.314 2.332 2.325 2.325
Covariance
ρỹ(Q3)ỹ(Q13)|u(Q3),u(Q13) 0.425 0.422 0.421 0.424 0.423
ICC(Q3) 0.194 0.219 0.245 0.228 0.228
ICC(Q13) 0.302 0.522 0.501 0.401 0.400
ρu(Q3)u(Q13) 0.289 0.677 0.624 0.552 0.550
-2logL 11781 11767 11738 11732 11732
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