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Abstract

In this paper we suggest a convenient way to obtain parameter es-
timates of a discrete state hidden Markov volatility process within
a framework consistent with observed option prices and stochastic
volatility. Relative to similar proposals, we simplify the model esti-
mation by resorting to some parametric approximation of the model
in a maximum likelihood context. We show how correlation between
returns and volatility innovations can be easily accommodated within
this framework. Empirical applications illustrate model search strate-
gies for the SP500 stock index, comparing the performances to a stan-
dard GARCH model.
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1 Introduction

In the vast array of econometric models of volatility, it is customary to
assume that volatility is time–varying and can take over a continuous range
of positive values. GARCH–type (Bollerslev et al., 1994) and stochastic
volatility models (Harvey et al., 1996) fall in this category. In the theoretical
literature on option pricing, though, it is not infrequent to encounter models
where volatility is assumed to take on a finite number of states (Duan et al.,
2002).

Britten-Jones and Neuberger (BN, 2000) have recently shown how the
classic Black and Scholes (1973) option pricing model can be extended to
make it compatible with stochastic volatility and observed option prices.
Their objective is to evaluate and hedge path-dependent derivatives. Specif-
ically, given the arbitrage-free prices of European options, and allowing for
a wide range of stochastic volatility dynamics, BN derive the class of price
processes for the underlying asset which are consistent with the observed
smile surface. They suggest a simple algorithm to implement the model
in practice, in a discrete-time state-space framework (see also Rossi, 2002)
where volatility is assumed to take on a finite number of states. However,
their paper does not go as far as to deal with parameter estimation.

In what follows, we show that working with a finite number of states
for volatility is not restrictive from an estimation point of view, relative to
other models where volatility can take positive real values. We present an
efficient way to recover estimates of asset price volatility parameters when
a multiplicative model for the evolution of the price of a certain asset is
considered in discrete-time, and volatility dynamics is consistent with the
BN approach and is assumed to evolve as a hidden, discrete-state, Markov
process. This model has good general properties: for example, we show
that the negative correlation between returns and volatility – the so-called
leverage effect – can be easily accommodated. We may stress that our ap-
proach is not an attempt at specifying the ”best” model of volatility, since
a many volatility models are capable of matching given stylized facts, but it
has suitable properties when pricing and hedging of exotic derivatives is of
interest.

We follow a maximum likelihood (ML) estimation framework adopting
filtering techniques to estimate the set of parameters involved in the model
specification, given the unobservability of the volatility process. Among sev-
eral proposals, we favor the filtering approach introduced by Elliott, Aggoun
and Moore (1995), which makes use of reference probability methods to draw
inference about the unobserved state variable. The appealing feature of their
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approach is that it is possible to simplify the filtering procedure using stan-
dard results available for independent and identically distributed random
variables, introducing a change of measure. Their procedure is applied in
Elliott, Hanter and Jamieson (1998) to the IBM and gold prices. We depart
from their approach, since we suggest a parameterization which allows us to
reduce the number of parameters to be estimated, to manage Markov chains
of larger sizes, and to introduce a leverage effect in the model. Moreover,
given the hill–shape of the likelihood function, we show the gains in compu-
tation times obtained by using the Simulated Annealing (SA) algorithm as
an efficient method to find the global maxima. By comparison, the popu-
lar Expectation Maximization (EM) algorithm (Dempster, Laird and Rubin
1977) appears to be more demanding (higher number of parameters, a more
cumbersome filtering procedure, and the need to use different initialization
values).

The paper is structured as follows. Section 2 states the model and the
main assumptions. In section 3, we show how the imposition of some restric-
tions on the parameter space allows us to reduce the number of parameters
for model estimation. In section 4 we show how the model can be extended
to take into account the leverage effect. Model estimation is discussed in
section 5 whereas in section 6 we estimate volatility parameters for the
SP500 stock index, showing that the in and out-of sample performance of
this model comes very close to standard GARCH family models. Section 7
concludes.

2 A Markovian framework for volatility

Let St be the price of a certain asset at time t. We consider asset returns,

observable at time t + 1, as a random variable Yt+1 = ln
(

St+1

St

)
, for a

given time horizon t = 0, 1, ..., τ − 1. Its volatility is driven by a discrete-
time, finite-state Markov chain Zt with N states. We denote with It the
P -augmented increasing sigma-field generated by {Zs, Ys : s ≤ t}, whereas
restrictions to It generated by the specific random variables are denoted by
superscripts (e.g. IZt ).

We will assume the distribution of Z0 and N as known. For convenience,
the Markov chain is assumed to be one of the N -dimensional unit vectors,
ei (i = 1, 2, ..., N) with a one in the i-th position and zeros elsewhere. The
stochastic volatility model of interest here can be written in the state space
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form as
Yt+1 = µt + σ (Zt)Wt+1

Zt+1 = MZt + Vt+1

(1)

where µt = E [Yt+1 |It ] is the conditional mean of the observable process,
Wt is i.i.d. Normal (0, 1) and σ (Zt) is the volatility at time t+ 1 with σ (·)
a positive valued scaling function.

The transition equation for Zt+1 highlights how the short term dynamics
of the first-order Markov chain is fully described by the N × N one-step
transition matrix M, the generic element of which is

mij ≡ P (Zt+1 = ei |Zt = ej ) (2)

describes the transition probability of the chain. The entries of M satisfy
mij ≥ 0 and

∑
imij = 1, for each 1 ≤ i, j ≤ N . With Zt one of the unit

vectors in RN and using (2) we have E
[
Zt+1

∣∣IZt
]

= E [Zt+1 |Zt ] = MZt.
Hence defining Vt+1 ≡ Zt+1 − MZt, we have E

[
Vt+1

∣∣IZt
]

= 0, which
provides a semi-martingale representation for the transition equation. In the
simplest case, the error terms Wt and Vt are assumed to be independent,
but, as we will see, this hypothesis may be easily relaxed.

According to the model (1) and (2), we assume that volatility can take
only a finite number of values, defined by the choice of the scaling function
σ (·). When time elapses, the latent state variable Z switches from one
regime to another according to the one step transition matrix M. Under
the assumptions of model, the conditional variance of the observation process
is given by

V ar
[
Yt+1

∣∣IY
t

]
= E

[
σ (Zt)

2
∣∣IY

t

]
(3)

This model is consistent with many features shown by asset price innova-
tions which are well documented by the GARCH (see for instance Bollerslev,
Engle and Nelson, 1994) and Stochastic Volatility literature (a review is con-
tained in Ghysels, Harvey and Renault, 1996). It allows for fat tails, since it
enables different degrees of kurtosis in the unconditional distribution of as-
set returns, thanks to the randomness of the process Z; volatility clustering,
via the autoregressive behavior of the conditional expectation (3); volatility
persistence and mean-reversion, via the stochastic features of the latent pro-
cess Z. Leverage effect, that is a negative correlation between returns and
volatility innovations, can be accommodated by removing the independence
assumption between the observation and state errors.

In a recent paper (Elliott et al., 1998), this model is applied to IBM stock
and gold prices with µt = c′Zt and σ (Zt) = σ′Zt, being σ = (σ1, σ2, ..., σN )
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and c = (c1, c2, ..., cN ). Note that this approach does not take into consid-
eration the leverage effect, a characteristic often encountered with financial
series. Hereafter, we refer to this structure as the Hidden Markov Unre-
stricted Model (HMU ).1

Let θ = {µi, σi,mij : i, j = 1, 2, ..., N} denote the population parameters
characterizing the probability distribution P (Y;θ) of the observed data.
The primary tasks are

• to estimate θ subject to the constraints mij ≥ 0,
∑N

i=1mij = 1 and
σj > 0, for each 1 ≤ j ≤ N ; and

• to make inference about the unobserved sequence Z, given the available
information up to time t (filtering).

3 A simple model parameterization

The estimation of the unrestricted model is far from being problem-free.
First, the dimension d of the parameter vector θ increases quadratically
with the number of states of the Markov chain

(
d = N2 +N

)
. There are

no guidelines to establish the size of the Markov chain in practical applica-
tions; however, to make an example, a value of N equal to 7, (which could
be justified in practice to get a good fit to the data) implies a number of
parameters equal to 56. From a theoretical point of view, overparameterized
models lead to non efficient estimators even in large samples (Harvey, 1990),
whereas, from a computational point of view, it might not be straightfor-
ward to calibrate the EM algorithm with respect to the parameter starting
values. In practice, this requires several hundreds of values from which to
start the maximization procedure even when the size of the Markov chain
is small (see Hamilton, 1990) making the approach heavily time consuming.
Nevertheless, non concavity of the likelihood function could make the global
maxima still go undetected.

A second point concerns the MLE standard errors when the EM is in-
volved. Although resampling techniques, such as the bootstrap, may solve
this issue, the presence of multiple local maxima of the likelihood function
makes this approach practically unfeasible.

1For reference purposes we recall some technical aspects related to the HMU estima-
tion in Appendix A. It shows how recursive filters for states, the number of jumps, the
occupation time of the Markov chain, and processes related to the observations, can be
derived pursuing the Elliott et al. (1995) approach. These quantities turns out to be useful
for parameter estimation of the unrestricted model via ML, using the EM algorithm.
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In light of these remarks, we propose some possible alternatives. In this
section, we suggest how the model could be parsimoniously parameterized
in a way which removes the dependence upon N . Later in the paper, a
dependence structure between the Markov process and observations is also
introduced, simply relaxing the homogeneity property of the Markov chain.

We start by specifying the conditional mean. Several alternatives are
possible: for instance,

µt = µ+

p∑

k=1

αkYt−k+1 + λσ2 (Zt) (4)

allows for dependence on the past of Y and response to variations in the
conditional variance; calendar or seasonal effects may also be considered.

As in the case of Elliott and al. (1998), we assume σ (Zt) = σ′Zt, but
we depart from their framework by constraining σ

σi = exp {α+ δg (ei)} , i = 1, 2, ..., N (5)

which specifies volatility regimes as a function of only two coefficients, α and
δ, whichever the number of states. The function g (·), is defined as follows

g (ei) =
2i− (N + 1)

N − 1

which has the effect of associating distinct values between -1 and 1 to each
regime. When δ is assumed to be positive, we obtain the result of identifying
by σ1 the lowest volatility regime, and by σN the highest one. In addition,
since we wish to capture the mean-reverting property of volatility, we pa-
rameterize the entries of the transition matrix M as a function of a constant
parameter φ the magnitude of which determines the mean-reverting rate

mij =





1 − φ i = j
1
2φ [1 + g (ej)] i = j − 1
1
2φ [1 − g (ej)] i = j + 1
0 otherwise

(6)

To ensure 0 ≤ mij ≤ 1, for each i and j, φ must belong to [0, 1]. From (5)
and (6) it is easy to prove2 that the (log) volatility process is mean-reverting,

2To do this, let us reason by induction. First let k = 1, and consider E [ln σ (Zt+1) |Zt ] .
Simple calculations give

E [ln σ (Zt+1) |Zt ] = ln σ (Zt) + φ [α − ln σ (Zt)]
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that is,

E
[
lnσ (Zt+k)

∣∣IZt
]

= E [lnσ (Zt+k) |Zt ]

= lnσ (Zt) +
[
1 − (1 − φ)k

]
[α− lnσ (Zt)] (7)

Lower values of φ imply higher persistence of the mean-reverting volatility
process. Note that equation (6) not only constrains the volatility being
mean reverting, but also states that large sudden shifts of volatility are not
possible. This property of continuity in the behavior of the volatility process
is exploited by BN to derive their option pricing formula.

Taking the limit of the above expression we get

lim
k→∞

E
[
lnσ (Zt+k)

∣∣IZt
]

= α

Hence, α is best viewed as the long-run (log) volatility level forecast, thus
making δ in (5) interpretable as a scaling coefficient tied to the volatility of
volatility. We refer to the structure (1), (4), (5), (6) as the Hidden Markov
(hereafter HM ) restricted model.

4 Leverage effect

The empirical evidence of volatility reacting differently according to the sign
of return innovations (higher volatility as a consequence of negative return
innovations) can be accommodated in this model by allowing volatility inno-
vations to be dependent on contemporaneous asset returns. One way to do
this is by making the transition probabilities mij dependent on some func-
tion of return innovations. To clarify, let us suppose a negative correlation
between returns and volatility innovations. If at time t there is a positive
return innovation, then the probability of the state vector to move toward
a higher volatility level should be lower than in the case when the price
exhibits a negative return.3 This means that, for example, for i > j

P (Zt = ei |Zt−1 = ej , Yt > 0) < P (Zt = ei |Zt−1 = ej , Yt ≤ 0)

proving that (7) is satisfied when k = 1. Now suppose (7) to be true when k = n. Setting
k = n + 1

E [ln σ (Zt+n+1) |Zt ] = E [E [ln σ (Zt+n+1) |Zt+1 ] |Zt ]

= E [ ln σ (Zt+1) + [1 − (1 − φ)n] [α − ln σ (Zt+1)] |Zt ]

= ... = ln σ (Zt) +
[
1 − (1 − φ)n+1] [α − ln σ (Zt)]

which concludes the proof.
3This is not restrictive, since we can easily extend the definition to a finer grid of values

of Yt.
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the opposite occurring when i < j. This can be achieved by selecting two
different transition matrices according to the sign assumed by Yt. To this end,
let us define a new sequence of random variables U = (Ut : t = 1, 2, ..., τ)
such that

Ut =

{
f1 = [1 0]′ if Yt ≤ 0
f2 = [0 1]′ otherwise

Clearly Ut is IY
t -measurable. In addition, we introduce the N×N×2 tensor

M̃, the generic element of which describes the transition probabilities of the
chain

m̃ijk = P (Zt+1 = ei |Zt = ej ,Ut+1 = fk ) 1 ≥ i, j ≥ N, k = 1, 2 (8)

The entries of M̃ satisfy 0 ≤ m̃ijk ≤ 1 and
∑

i m̃ijk = 1. In this setup, the
knowledge of the sign of Yt gives extra information about Zt. In other words,
we have two different transition matrices, which will be selected depending
on the state assumed by Ut. As above, we can note that

E
[
Zt+1

∣∣IZt , IY
t+1

]
= E [Zt+1 |Zt,Ut+1 ] =

(
M̃Ut+1

)
Zt.

Hence, defining Ṽt+1 ≡ Zt+1 −
(
M̃Ut+1

)
Zt, the state equation takes the

form
Zt+1 =

(
M̃Ut+1

)
Zt + Ṽt+1,

where
(
Ṽt : t = 1, 2, .., τ

)
is a sequence of martingale increments satisfying

E
[
Ṽt+1

∣∣IZt , IY
t+1

]
= 0.

Therefore, the model with leverage effects can be described in the following
state space representation

Yt+1 = µt + σ (Zt)Wt+1

Zt+1 =
(
M̃Ut+1

)
Zt + Ṽt+1

(9)

Putting σ (Zt) as in (5) and assuming the following parametric specification

of M̃

m̃i,j,k =





mij k = 1 for each i, j
0 k = 2 and |i− j| > 1
1
2φρ [1 + g (ej)] k = 2 and i = j − 1
1
2

φ
ρ

[1 − g (ej)] k = 2 and i = j + 1

1 −∑imi,j,2 otherwise

(10)
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where mij is defined in (6), we have obtained a generalization of the re-
stricted model. Here ρ is introduced to capture different impacts of positive
and negative returns on volatility innovations. Values of ρ greater than one
allow for negative correlation between returns and volatility innovations.
Note that when ρ > 1 and i > j

P (Zt = ei |Zt−1 = ej , Yt > 0) =
1

2

φ

ρ
[1 − g (ej)] <

1

2
φ [1 − g (ej)] = P (Zt = ei |Zt−1 = ej , Yt ≤ 0)

as outlined above. This structure is denoted as Hidden Markov Dependent
(HMD) model and it nests the restricted model (HM) when ρ = 1.

5 Maximum likelihood estimation

We are now in a position to describe a simple recursive algorithm which
allows us to derive the MLE numerically without resorting to the EM algo-
rithm. As shown below, the estimation of the parameter vector

θ = {µ, α, δ, φ, ρ} ,

given the information Y, involves filtered estimates for the states. This
problem is dealt with in Appendix A in the case of the restricted model,
whereas in the case of correlation between returns and volatility innovations
a similar result is derived in the Appendix B.

Let us start by writing the conditional distribution of Yt+1 given past
observations. This exercise provides the sample likelihood function, which
is defined as

LN (θ;Y) =
τ∏

t=1

f
(
Yt

∣∣IY
t−1;θ

)
(11)

where f
(
Yt

∣∣IY
t−1;θ

)
is the conditional density of Yt given the information

up to time t − 1. The subscript N refers to the number of states of the
Markov chain.

Let ξ ∈ R. Standard probability considerations yield

P
(
Yt+1 ≤ ξ

∣∣IY
t

)
=

N∑

i=1

P
(
Yt+1 ≤ ξ

∣∣Zt = ei, I
Y
t

)
P
(
Zt = ei

∣∣IY
t

)
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Now, let Ẑt ≡ E
[
Zt

∣∣IY
t

]
denote the filtered estimate of Zt at time t, based

on processing past and present observations. Since

P
(
Zt = ei

∣∣IY
t

)
= E

[
1l{e

′

iZt}
∣∣IY

t

]
= E

[
e
′

iZt

∣∣IY
t

]
= e

′

iẐt,

we have

P
(
Yt+1 ≤ ξ

∣∣IY
t

)
=

N∑

i=1

e
′

iẐtP (Yt+1 ≤ ξ |Zt = ei ) ,

where Yt+1

∣∣Zt = ei, I
Y
t ∼ N

(
µt, σ

2
i

)
. Denoting with φi (·) the N

(
µt, σ

2
i

)

probability density function, f
(
Yt+1

∣∣IY
t

)
can be written as

f
(
Yt+1

∣∣IY
t ;θ

)
=

N∑

i=1

e
′

iẐtφi (Yt+1) (12)

Hence the sample log-likelihood function is

lN (θ;Y) ≡ logLN (θ;Y) =
τ∑

t=1

log

[
N∑

i=1

e′iẐt−1φi (Yt)

]
. (13)

The MLE is the value of θ which maximize (13). Clearly the sequence(
Ẑt : t = 1, 2, ..., τ

)
depends on θ, hence the maximization of the log-like-

lihood can be accomplished by an iterative pass through the data (filtering)
following the scheme

θ →
(
Ẑt (θ) : t = 1, 2, ..., τ

)
→lN (θ;Y)

that is adopting the algorithm

1. choose θ0;

2. compute Ẑt (θ0) = Eθ0

[
Zt

∣∣IZ
t

]
, t = 1, 2, ..., τ ;

3. compute lN (θ0;Y) as in (13);

4. find θ1 such that lN (θ1;Y) > lN (θ0;Y)

5. set θ0 = θ1 and go back to step 2 until a stopping criterion is satisfied.

6. on the basis of the MLE θ̂ a final pass through the filter allows to
make inference about Z.
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Table 1: Sample statistics for daily returns.

Number of observations 1128
Mean

(
×10−4

)
9.46

Standard Deviation 0.0097
Skewness -0.609
Excess Kurtosis 7.054
Q(12) Returns 18.606 (0.046)
Q(12) Squared Returns 175.30 (0.000)

Note: p-values within parenthesis.

6 SP500 stock index volatility

We have tested the model on real data choosing daily returns (based on
closing–time values) on the SP500 composite index, for which a large number
of corresponding European option prices are available. The period of interest
covers 1303 observations ranging from January 3, 1995 to December 31,
1999. The first 1128 observations (until April 30, 1999) were exploited
for model estimation, while the remaining were used for the out-of-sample
analysis.

Some descriptive statistics are reported in Table 1: we notice, as usual,
negative skewness and the presence of fat tails, some evidence of autocorre-
lation (Q(12) is the Ljung Box statistics with 12 lags with the probability
value in parenthesis) in the returns and volatility clustering (represented by
correlation in the squared returns).

It is worth noting that two days, 8/31/98 and 10/27/99, present abnor-
mal returns since the SP500 fell by 65, respectively, 70 points. Regressing
returns against a constant and a single dummy variable for these two days
causes a decrease of 4.05 points (from 7.05 to 2.90) in the excess kurtosis.
Interestingly, when the time-varying features of volatility were modelled, the
dummy variable was no longer significant and hence it was dropped. By the
same token, we did not find relevant day–of–the–week effects. For the sake
of space we do not report graphical evidence of the behavior of the index,
as it is widely documented elsewhere in the literature.
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Table 2: Model HMU – ML estimates.

N GP d Log-Lik Volatility levelsa (%) µb AIC

st. 1 st. 2 st. 3 st. 4 st. 5

2 45 5 3756.16 10.29 22.21 10.52 -6.6510

3 135 10 3799.82 8.38 16.24 37.88 10.39 -6.7195

5 1215 26 3812.43 6.48 9.29 14.45 18.33 38.32 10.41 -6.7135

Note. d: number of parameters, a: annualized by the factor
√

252. b: ×10−4

6.1 Model estimation

We begin by estimating the unrestricted model with a constant mean (HMU )
using the EM approach.4 Table 2 reports the estimation results with 2,
3 and 5 states (the first is a standard Switching-Markov model used as a
benchmark, the latter two are models directly comparable with the restricted
case). Greater values for N (e.g. 7 and 9, which will be used later) need
substantial additional computational efforts to detect the global maxima,
making the approach unfeasible in practice.

Table 2 contains the number of gridpoints (GP) from which we started
the maximization procedure and the number (d) of estimated parameters.
The values of the log-likelihood and of the estimated volatility levels by
state are reported, as well as the estimated constant mean µ̂ and the value
of the Akaike’s Information Criterion (AIC) (Akaike, 1974). As expected,

4To initialize the EM algorithm we have chosen the following grid-points (GP) of the
parameter space

• mii ranging from 0.85 to 0.99 in steps of 0.007 (3 GP for each i = 1, 2, ..., N) and
mij = mii

N−1
when i 6= j;

• σ ranging from (0.004, ..., 0.016) equally spaced, to (0.008, ..., 0.02) in steps of 0.001
(5 GP)

• µ constant

The overall number of GP for a given N is then 3N ×5. The adopted maximum likelihood
stopping criterium is given by lN (θ; Y )(k+1) − lN (θ; Y )(k) ≤ 10−5 and will be held the
same throughout all the analysis.
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the increase in the number of states brings about an increase in the spread
between the lowest and the highest volatility level. Judging on a comparison
among AIC values there is some evidence that the preferred model would
be the one with three states.

Let us now turn to the estimation of the restricted model. Recall that
the model of reference in its general form can be written as

Yt+1 = µt + σ (Zt)Wt+1

Zt+1 = MZt + Vt+1

where Wt and Vt are mutually independent, and σ (Zt) = σ
′
Zt (recall that

the elements of the vector σ is specified in (5) and the entries of the tran-
sition matrix M are given in (6)). The three estimated models can be
characterized by the common restrictions described earlier in the text and
by the presence (or absence) of an autoregressive component in the mean
µt = µ + βYt−5 ( µt = µ) (HM-AR5 versus HM ) or for the presence (or
absence) of dependency between returns and volatility (HMD-AR5 versus
HM-AR5). The Maximum Likelihood (ML) estimation results are reported,
in decreasing order of generality of the models, in Table 3. We give the
parameter estimates (with standard errors5 in parentheses) for each of the
number of states N (N = 3, 5, 7, 9).

Several points deserve to be stressed. A comparison between HMU and
HM, in correspondence to the same number of states (3 and 5), suggests
a slight preference for the latter when the AIC is used: Likelihood Ratio
tests confirm these results. As shown in Table 3, the log-likelihood, viewed
as a function of the number of states, is almost flat for values of N greater
than 3; this implies that an increase in the size of the Markov chain does
not improve the ability of the model to capture the time-varying behavior
of volatility. This feature is common to all estimated models.6

5Standard errors were computed numerically by inverting the observed information
matrix.

6Note that HM-AR5 and HM show a non-monotonic behavior of the likelihood as a
function of the number of states. Since these model are restricted, note that an increase
in the number of states does not necessarily entail a better fit.
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The estimated values of µ and β do not depend on N and are throughout
statistically significant at a 5% significance level. It is also worth noting
that the estimated volatility parameters (φ, α, and δ) of the HM-AR5 and
HM models are almost the same (by number of states), suggesting that
a misspecification of the mean equation does not seriously affect volatility
estimation. The issue is investigated in and confirmed by a Monte Carlo
analysis presented in Appendix C. For the restricted model with asymmetric
effects and a time-varying mean (HMD-AR5), it would appear that the
coefficient of asymmetry ρ̂ is not statistically different from 1 for N equal to
3 and 5. Since the standard errors may be affected by the specific method
we adopted in estimating them, we will return on the issue later on, using a
Likelihood Ratio test (cf. Table 3).

To compare different models in terms of goodness-of-fit, we use the Stan-
dardized Residuals (SR). In our setting, SRt can be defined as

SRt =
Yt − Ŷt

σ̂t

where Ŷt is the model fitted value, at time t, and σ̂t is the estimated volatility
level prevailing at time t,

σ̂t ≡ σ̂
′

Ẑt−1. (14)

If the models were exactly specified, we would expect standardized residuals
to be serially uncorrelated and normally distributed with zero mean and
unit variance. Model diagnostics (available upon request) show an overall
satisfactory performance, exceptions being the non-normality of residuals.
Isolated problems arise with the HM model which is still plagued by residual
autocorrelation.

As a comparison, we have also estimated the following models: GAR-
CH(1,1)-AR5, TGARCH(1,1)-AR5 and EGARCH(1,1)-AR5. The perfor-
mance of hidden Markov models in terms of goodness-of-fit seems to be
slightly worse than the GARCH -type approach, judging from the residuals
properties. In particular, the EGARCH (1,1 )-AR5 shows the lowest excess
of kurtosis and skewness of standardized residuals. This should not be seen
as a general result, since a similar analysis carried out using daily returns for
the FTSE100, for the same time period, showed the HMD(5) as the “best”
model7.

Table 4 summarizes the Likelihood Ratio specification tests (with p–
values in parentheses) for the three possible pairs of model comparisons

7These results are also available on request from the authors.
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Table 3: HMD and HM ML estimates.

N Log-Lika φ α δ µ
(
×10−4

)
β ρ AIC

HMD-AR5

3 3802.67 .0158 -4.576 0.720 12.60 -0.074 2.56b -6.73168

(.0068) (.036) (.044) (2.10) (.029) (1.06)

5 3809.16 .0349 -4.548 0.953 12.52 -0.080 2.05b -6.74319

(.0079) (.081) (.090) (2.10) (.031) (.61)

7 3811.27 .0503 -4.417 1.136 12.59 -0.077 2.27 -6.74693

(.0108) (.088) (.101) (2.14) (.030) (.56)

9 3812.34 .0553 -4.060 1.484 12.42 -0.077 3.12 -6.74883

(.0050) (.133) (.142) (2.05) (.022) (.82)

HM-AR5

3 3800.25 0.134 -4.585 0.713 12.61 -0.076 -6.72917

(.0048) (.035) (.043) (2.09) (.019)

5 3807.72 .0336 -4.736 0.848 12.55 -0.074 -6.74241

(.0057) (.054) (.055) (2.10) (.030)

7 3808.08 .0479 -4.813 1.106 12.60 -0.078 -6.74305

(.0070) (.063) (.108) (2.03) (.030)

9 3807.68 .0755 -4.743 1.211 12.81 -0.077 -6.74234

(.0083) (.103) (.156) (1.84) (.037)

HM
3 3797.02 .0135 -4.585 0.711 11.70 -6.72521

(.0081) (.037) (.044) (2.61)

5 3804.71 .0340 -4.737 0.839 11.64 -6.73885

(.0045) (.060) (.064) (2.11)

7 3804.82 .0491 -4.800 1.104 11.70 -6.73903

(.0059) (.043) (.118) (1.92)

9 3804.47 .0772 -4.801 1.208 11.81 -6.73844

(.0073) (.078) (.130) (1.88)

Note. Standard errors in parentheses. a: the maximization does include the starting

value for Z. b: not statistically different from 1 at 5% significance level using the

t-statistics.

15



Table 4: LR specification tests.
N HMD-AR5 vs HM-AR5 HMD-AR5 vs HM HM-AR5 vs HM

H0 : ρ = 1 H0 : β = 0; ρ = 1 H0 : β = 0

3 4.84 (0.039) 11.3 (0.004) 6.46 (0.011)
5 2.88 (0.090) 8.90 (0.012) 6.02 (0.014)
7 6.38 (0.011) 12.90 (0.002) 7.52 (0.006)
9 9.32 (0.002) 15.74 (0.000) 6.42 (0.011)

(HMD-AR5 versus HM-AR5; HMD-AR5 versus HM ; HM-AR5 versus HM.)
The first column corresponds to testing the null hypothesis that there are
no asymmetric effects: in this respect there is stronger evidence than shown
before against symmetry (less so for N = 5). When the null of symmetry
and absence of autocorrelation is tested (second column), the results strongly
reject it for all states. At any rate, the restrictions imposed by the HM model
are rejected.

What we have learned so far is that temporal dependence in the mean
and correlation between return and volatility are supported by the empir-
ical evidence across all estimations by number of states; but it seems not
straightforward to select the most appropriate number of states. Different
number of states in each class of model make the models different from one
another and, as such, they cannot be seen as nested. We should resort,
therefore, to other ways of comparing performances: a reasonable sugges-
tion seems to be to focus on forecasting performance, which is done in the
next subsection.

6.2 Measures of forecasting performance

This subsection compares the out-of-sample performance of some of the
volatility models discussed earlier. The forecast exercise was made extending
the time window used for the in-sample-analysis from April 30 to December
31, 1999 (175 additional daily returns). The one-step-ahead predictive abil-
ity of each model is measured by the Mean Square Prediction Error (MSPE).
We adopt as a benchmark the performance of some GARCH–type models
(namely, GARCH, TGARCH and EGARCH ).

Denoting by P the number of out-of-sample observations available, with
µt,i = E

[
Yt+1

∣∣IY
t

]
and σ2

t+1,i = V ar
[
Yt+1

∣∣IY
t

]
the conditional mean and
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variance for i-th model, by µ̂t,i and σ̂2
t+1,i the one-step-ahead forecasts of

the conditional mean and variance, then the MSPE for i-th model is given
by

ψ̂i =
1

P

τ+P−1∑

t=τ

[(
Yt+1 − µ̂t,i

)2 − σ̂2
t+1,i

]2
i = 1, 2, ...,m (15)

The rationale behind (15) can easily be explained by recognizing that

σ2
t+1,i = V ar

[
Yt+1

∣∣IY
t

]
= E

[(
Yt+1 − µt,i

)2 ∣∣IY
t

]
.

To calculate µ̂t,i and σ̂2
t+1,i for each t and i, we estimated the model parame-

ters just once using the initial sample. For hidden Markov models, forecasts
of variances were obtained first applying the filtering methodology described
above, which gives Ẑτ , Ẑτ+1, ..., Ẑτ+P−1, then multiplying these estimates by
the scaling vector σ̂2

σ̂2
t+1 =

〈
σ̂2, Ẑt

〉
t = τ , τ + 1, ..., τ + P − 1.

For the GARCH model, the following recursive equation was exploited

σ̂2
t+1 = ω̂ + â

(
Yt − Ŷt

)2
+ b̂σ̂2

t t = τ , τ + 1, ..., τ + P − 1.

Similar formulae apply for the TGARCH and EGARCH models. The MSPE
results show the following order from the smallest to largest: TGARCH–
AR5, EGARCH–AR5, GARCH–AR5, HMD(7)–AR5, HMD(5)–AR5,
HMD(3)–AR5 with MSPE’s ranging from 2.65 to 2.79

(
×10−8

)
.

Although these results may suggest a slightly preference for the TGARCH,
it is helpful to compare the predictive performance of each model using a
statistical testing procedure. We made use of the approach developed by
West and Cho (1995). The procedure is designed to test the null Bψ = 0
of equal predictive ability across (two or more) competitive models, where

ψ̂ =
(
ψ̂1, ψ̂2, .., ψ̂m

)′

is the vector of (estimated) MSPE’s and B is a matrix

(m− 1) ×m obtained by putting a column equal to (−1,−1, ...,−1)
′

next
to an (m− 1 ×m− 1) identity matrix. The test statistic is given by

P

[
ψ̂

′
B

′
(
BŜB

′
)−1

Bψ̂

]

and it is asymptotically distributed as χ2
(m−1). Following West and Cho, Ŝ

is computed as

Ŝ = Γ̂0 +

k∑

j=1

(
1 − j

k + 1

)(
Γ̂j + Γ̂

′

j

)
, Γ̂j =

1

P

τ+P∑

t=τ+j

λ̂tλ̂
′

t+j
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Table 5: Testing forecasting ability among different model specification.
Model Test statistics p-value k

Overall 3.765 0.191 -1

Benchmark TGARCH(1,1)–AR5

HMD( 3)-AR5 1.766 0.184 -1
HMD( 5)-AR5 1.889 0.169 0
HMD( 7)-AR5 1.804 0.179 -1
GARCH( 1,1)-AR5 1.318 0.251 -1
EGARCH( 1,1)-AR5 0.868 0.352 -1

Benchmark HMD(5)–AR5

HMD( 3)-AR5 0.344 0.557 0
HMD( 7)-AR5 1.032 0.301 0
GARCH( 1,1)-AR5 0.801 0.371 0
EGARCH( 1,1)-AR5 0.837 0.360 -1

where λ̂t the (m× 1) vector whose ith component is
[(
Yt − µ̂t−1,i

)2 − σ̂2
t,i

]
−

ψ̂i. When k is greater than zero, this approach allows forecast errors to be
serially correlated8. Adopting this procedure, we can test for:

1. ψ1 = ψ2 = ... = ψ6, that is a null hypothesis of equal predictive ability
for all models;

2. bivariate comparison, that is a null hypothesis of equal predictive abil-
ity between the best MSPE model (in our case TGARCH(1,1)–AR5)
and each of the other models;

3. equal predictive ability between the HMD(5)–AR5 and each of the
other models.

In the first panel of Table 5 we have reported the value of the test statistics,
their p-values, and the value of k in each case. The null of equal predictive
ability among all models considered in the analysis cannot be rejected. The
outcome of equal predictive ability emerges also when a pairwise comparison
is adopted, either taking the TGARCH (panel 2) or the HMD(5) (panel 3)
as the benchmark model.

8See West and Cho (1995) for details on how the value of k is derived.
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Table 6: Comparison between computational methods in terms of CPU time

N d CPU Time

(minutes)

HMU – EM Algorithm

2 5 7.53
3 10 44.87
5 26 1729.80

HMD–AR5 – SA Algorithm

2 6 0.67
3 6 1.45
5 6 3.55
7 6 7.05
9 6 17.33

Note: Fortran codes were run on a Pentium III, 266 Mhz.

6.3 Some remarks on computational time for model estima-
tion

As a final remark of interest we report, in Table 6, the computational time
required to estimate the unrestricted (HMU ), and the restricted models
HMD-AR5 with asymmetric effect for different states. HMU was estimated
using the EM algorithm, whilst the HMD–AR5, were estimated using our
proposed algorithm on the basis of the simulated annealing maximization
routine.9

Our proposal outperforms the EM estimation scheme. Although the
comparison is not completely fair, since in most cases the HMU has a
greater number of parameters to be estimated, it is worth noting that the
large number of filtered estimates (roughly one for each parameter), which

9All the estimation procedures were implemented using Fortran codes built ad hoc for
each model specification. While any numerical maximization method could be used, in our
applications we tested the performance of two different numerical schemes: an updated
version of the Nelder and Mead (1965) simplex algorithm (SIMP) and the continuous sim-
ulated annealing global optimization algorithm (SA) described in Corana et al. (1987).
SIMP is an optimization method which does not need any computation of the score func-
tion. Unfortunately, it is not able to escape from local maxima. Conversely, SA is one
of most promising techniques when the objective function is characterized by a multiple
local maxima. SA outperforms both the EM and SIMP method, drastically reducing the
computational time.
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are required to implement the EM approach, slows down this estimation
procedure. Conversely, in our proposal, the model parameterization allows
us to avoid the number of parameters being dependent on the number of
states; furthermore, only filtered estimates of the state of the Markov chain
are required, making the overall result faster to achieve.

7 Conclusions

In this paper we have proposed a procedure to estimate volatility parame-
ters for a model which can be applied in the pricing and hedging of path–
dependent derivatives as suggested by Britten–Jones and Neuberger (2000).
Volatility dynamics is ruled by a hidden–Markov structure with a finite num-
ber of states: from an empirical point of view, the performance of the pro-
posed volatility model is comparable to the GARCH-type family of models
both in and out-of-sample (as shown by the West and Cho tests of predic-
tive ability). Relative to similar proposals of estimation of volatility which
can take a finite number of values, the proposed approach simplifies the es-
timation procedure in a ML context, avoiding problems related to the EM
algorithm: furthermore, the computational burden can be further reduced
by resorting to the Simulated Annealing algorithm. We have also shown
how the leverage effect can be accommodated and how the recursive filter
of the states proposed by Elliott et al. (1995) needed for model estimation
are to be modified in this case.

Some issues are still open. In particular, we have not found conclusive
evidence on how to define the choice of the number of states of the Markov
chain in such models in a optimal way. The approach proposed by Otranto
and Gallo (2001) in a nonparametric Bayesian framework could provide some
insights in the matter.
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A Hidden Markov Models: the Elliott, Aggoun
and Moore (1995) framework

This appendix contains some technical aspects involving the estimation of
HMM. Given the discrete time set-up of section 2, leading to model (1),
Elliott et al. (1995) obtain optimal filtered estimates of the states and
model parameters estimation using the EM algorithm: the main difference
of the setup here is that we derive the expectation step when the mean of
the process is a constant. Let us first illustrate how recursive filters for
the states can be obtained. Filtered estimates of the number of jumps,
occupation time, and processes related to the observations, are derived in a
similar manner.

A.1 Filtered estimates for the states

Although the sequence Z is not directly observed, filtered estimates, i.e.
the conditional expectations of Zt, given IY

t , provide inference about Zt,
given past and present observations. A change of measure is introduced to
avoid non-linear recursive filtering. The basic idea, to simplify the filtering
procedure, is to introduce a new probability measure, P ∗, defined on (Ω,=),
under which Y is a sequence of IIN (0, 1) random variables, independent of
Z, and Zt+1 = MZt+Vt+1, where Vt+1 satisfies E∗

[
Vt+1

∣∣IZt
]

= 0. Results
obtained under P ∗ are later reinterpreted under the original probability
measure P . The key result is the following theorem.

Theorem 1 (Conditional Bayes) Let (Ω,=, P ) be a probability space and
ζ a sub-sigma-field of =. If P ∗ is a probability measure on =, absolutely
continuous with respect to P , with Radon-Nikodym derivative dP ∗

dP
= Λ, then

for any integrable random variable X

E∗ [X |ζ ] =
E [ΛX |ζ ]

E [Λ |ζ ]
if E [Λ |ζ ] > 0

and zero otherwise. E∗ and E, denote the (conditional) expectation under
P ∗ and P , respectively.

Consider the model defined in (1), let the parameters θ be known, and
denote the N (0, 1) probability density function by φ (·). Let us write

λk =
σ (Zk−1)φ (Yk)

φ (Wk)
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and

Λ0 = 1, Λt =
t∏

k=1

λk (16)

Define P ∗ by putting dP ∗

dP
|It

= Λt. Then we have

Theorem 2 Under P ∗, Y is a sequence of IIN (0, 1) random variables.

Proof. See Elliott et al. (1995), page 60.

Since we will work under P ∗, we need to construct a probability measure P
(the original measure) such that, under P ,

• Wt ≡ Yt−µt−1

σ(Zt−1)
is an IIN (0, 1), sequence of random variables and

• Zt+1 = MZt + Vt+1, where Vt+1 satisfies E
[
Vt+1

∣∣IZt
]

= 0.

The construction of P from P ∗ follows the same arguments shown above.
To this end, assuming σ (Zk−1 ) 6= 0, let

λ∗k =
φ
[(
Yk − µk−1

)
/σ (Zk−1)

]

σ (Zk−1)φ (Yk)

and

Λ∗
0 = 1, Λ∗

t =
t∏

k=1

λ∗k. (17)

Then, defining dP
dP ∗ |It = Λ∗

t , we have the following result

Theorem 3 Under P, W is a sequence of IIN (0, 1) random variables.

Working under P ∗, and using the conditional Bayes Theorem 1 above, one
gets a recursive filter for states of the Markov chain from

Ẑt ≡ E
[
Zt

∣∣IY
t

]
=
E∗
[
Λ∗

tZt

∣∣IY
t

]

E∗
[
Λ∗

t

∣∣IY
t

] t = 1, 2, ..τ . (18)

The recursive unnormalized estimator for the state, under P ∗

Ẑ∗
t ≡ E∗

[
Λ∗

tZt

∣∣IY
t

]

is given by

E∗
[
Λ∗

tZt

∣∣IY
t

]
= E∗

[
Λ∗

t (MZt−1 + Vt)
∣∣IY

t

]

= E∗
[
Λ∗

tE
∗
[
MZt−1 + Vt

∣∣IZt−1, I
Y
t

] ∣∣IY
t

]
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The last equality is due to following result

E∗
[
Vt

∣∣IZt−1, I
Y
t

]
= E∗

[
Vt

∣∣IZt−1

]
= 0.

Therefore,

Ẑ∗
t = E∗

[
Λ∗

tMZt−1

∣∣IY
t

]

= E∗

[
Λ∗

t−1

φ
[(
Yt − µt−1

)
/σ (Zt−1)

]

σ (Zt−1)φ (Yt)
MZt−1

∣∣IY
t

]
.

Setting

pi (Yt) ≡
φ
(

Yt−µt−1

σi

)

σiφ (Yt)
ei (19)

and summing over the number of the states 1 ≤ i ≤ N , we get

Ẑ∗
t =

N∑

i=1

[
pi (Yt)

′ Ẑ∗
t−1

]
Mei. (20)

Furthermore, letting 1 ≡ (1, 1, .., 1)′ ∈ RN , we have 1′Zt = 1.Hence

1′E∗
[
Λ∗

tZt

∣∣IY
t

]
= E∗

[
Λ∗

t1
′Zt

∣∣IY
t

]
= E∗

[
Λ∗

t

∣∣IY
t

]

Then, applying (18), a recursive estimator for the state Ẑt, under P , is
obtained by dividing the unnormalized estimator Ẑ∗

t by the sum of its com-
ponents

Ẑt =
Ẑ∗

t

1′Ẑ∗
t

(21)

A.2 Filtered estimates for the number of jumps, occupation
time and observation processes

The following theorem gives filtered estimates of the number of jumps of the
chain, occupation time and observation processes. These are later used to
estimate the model parameters using the EM approach.

Theorem 4 Let Ht be a scalar It −measurable process of the form: H0

is IZ
0 −measurable and Ht+1 = Ht +αt+1 +β

′

t+1Vt+1 + δt+1f (Yt+1) ,
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where f is a scalar valued real function, and αt,βt, δt are It−1 −
measurable processes. Then

γt+1 (Ht+1Zt+1) := E∗
[
Λ∗

t+1Ht+1Zt+1

∣∣I Y
t+1

]

=
N∑

i=1

[
pi (Yt+1)

′

γt (HtZt)
]
Mei

+γt

(
αt+1pi (Yt+1)

′

Zt

)
Mei

+γt

(
δt+1pi (Yt+1)

′

Zt

)
f (Yt+1)Mei

+γt

(
βt+1pi (Yt+1)

′

Zt

) [
diag (Mei) − Mei (Mei)

′
]

Proof. See Elliott et al. (1995) on pages 64-65.

Note that, a recursive filter for γt+1 (Ht+1Zt+1) is introduced because, unlike
γt+1 (Ht+1), closed-form recursive estimates are obtained. However, once
γt+1 (Ht+1Zt+1) is known, one computes the unnormalized estimator for
γt+1 (Ht+1) by summing the components of γt+1 (Ht+1Zt+1) .

Now, suppose Jsr
t to be the number of jumps of the chain from er to es

at time t, i.e.

Jsr
t =

t∑

k=1

e
′

rZk−1e
′

sZk.

Let us focus on Ĵsr
τ ≡ E

[
Jsr

τ

∣∣I Y
τ

]
. Working under P ∗ and applying the

Conditional Bayes theorem

Ĵsr
τ =

E∗
[
Λ∗

τJ
sr
τ

∣∣I Y
τ

]

E∗ [Λ∗
τ |I Y

τ ]

where Λ∗
τ is defined in (17). The numerator, can now be easily computed

by applying the previous theorem and setting Ht+1 = Ĵsr
t+1, H0 = 0, αt+1 =(

e
′

rZt

)
msr,βt+1 =

(
e
′

rZt

)
e
′

s and δt+1 = 0. Then,

γt+1

(
Jsr

t+1Zt+1

)
=

N∑

i=1

[
pi (Yt+1)

′

γt (Jsr
t Zt)

]
Mei +

[
pr (Yt+1)

′

Ẑ∗
t

]
msres

26



The unnormalized recursive estimator of number of jumps, γt+1

(
Jsr

t+1

)
,

follows, using the fact10 γt+1

(
Jsr

t+1

)
= 1

′
γt+1

(
Jsr

t+1Zt+1

)
. Thus, in or-

der to obtain the normalized recursive estimator under the original mea-
sure P , it is necessary to normalize this last expression by dividing it by
E∗
[
Λ∗

τ

∣∣I Y
τ

]
= 1

′
Ẑ∗

t+1. We get

Ĵsr
t+1 =

γt+1

(
Jsr

t+1

)

1′Ẑ∗
t+1

. (22)

The same arguments lead to filtered estimates of

• the occupation time in state er, Ô
r
t+1 ≡ E

[
Or

t+1

∣∣I Y
t+1

]
, where Or

t is
given by

Or
t =

t∑

k=1

e
′

rZk−1

• the observation process Ĝr
t+1 (f) ≡ E

[
Gr

t+1 (f)
∣∣I Y

t+1

]
, where Gr

t (f)
is defined by

Gr
t (f) =

t∑

k=1

[
e
′

rZk−1

]
f (Yk)

and f (Y ) is some function of the observations.

A.3 Expectation Maximization approach

We are now in a condition to apply the EM approach to this context. As
well known, the EM algorithm provides an approximate solution to compute
the MLE when the maximization of the sample likelihood function is not
feasible or difficult. Its main steps are as follows.

1. Choose an initial value, θ0, for θ and and a threshold ε > 0.

2. (E-step) At each step k (k=0, 1,. . . ), set θ = θk. Compute E
θ

[
ln
(

dPθ

dP
θ

) ∣∣I Y
τ

]

10Since 1
′

Zt = 1, for each scalar sequence H, It−adapted, we have

1
′

γt (HtZt) = γt

(
1

′

(HtZt)
)

= γt

(
Ht

(
1

′

Zt

))
= γt (Ht)
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3. (M-step) Find θk+1 = arg max
θ∈Θ

E
θ

[
ln
(

dPθ

dP
θ

) ∣∣I Y
τ

]

4. Replace k with k+1, and come back to step 2 until L (θk+1)−L (θk) <
ε.

The algorithm main feature is to generate a non-decreasing sequence of
likelihood values L (θk+1) ≥ L (θk) , ensuring the convergence towards a
local maximum. We begin by updating the value of µ, keeping the rest
of the parameters fixed. We consider only the case where µt is constant
µt = c′Zt = µ, since the case c1 6= c2 6= ... 6= cN , is simpler and is dealt
with in Elliott et al. (1995).

Let us write

Λt =
t∏

k=1

exp

{
(Yk − µ)2 − (Yk − µ)2

2 (σ′Zk−1)
2

}
.

Let us define a new measure Pµ so the restriction of its Radon-Nikodym
derivative dPµ/dPµ conditional on It is given by dPµ/dPµ |It = Λt. Now

log Λt =

t∑

k=1

(
2Ykµ− µ2

2 (σ′Zk−1)
2

)
+ f (µ)

=
t∑

k=1

N∑

i=1

2Ykµ− µ2

2σ2
i

e
′

iZk−1 + f (µ)

=
N∑

i=1

2 µGi
k (Y ) − µ2Oi

k

2σ2
i

+ f (µ)

where f (µ) does not depend on µ. The E-step follows

E
[
log Λτ

∣∣I Y
τ

]
=

N∑

i=1

2 µĜi
τ (Y ) − µ2Ôi

τ

2σ2
i

+ f̂ (µ) (23)

Upon differentiating E
[
log Λτ

∣∣I Y
τ

]
with respect to µ, and equating the

derivative to zero, the M-step gives the updated value

µ̂ =

∑N
i=1

Ĝi
τ (Y )
σ2

i∑N
i=1

Ôi
τ

σ2
i

. (24)
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Using similar arguments, one can derive new estimates of the parameters
mij and σi, given the available information I Y

τ

m̂ij =
Ĵ ij

τ

Ôj
τ

i = 1, 2, .., N, j = 1, 2, .., N − 1 (25)

and

σ̂i =

(
Ĝi

τ

(
Y 2
)

− 2µĜi
τ (Y ) + µ2Ôi

τ

Ôi
τ

) 1
2

. i = 1, 2, .., N (26)

The quantities Ẑt, Ĵ
ij
τ , Ôi

τ and Ĝi
τ are then reevaluated on the basis of the

updated values µ̂, σ̂i and m̂ij . This iterative scheme proceeds until conver-
gence is achieved.

B Recursive filter for the states with leverage ef-
fect

Let us assume θ as known. Again, we use reference probability method to
find the optimal recursive filter of the states. For this, let us consider a
probability measure P ∗, as defined in appendix A (equation (16)), under
which Y is an IIN (0, 1) sequence of random variables. First, we see that

P ∗
(
Zt+1 = ei

∣∣IZt , IY
t+1

)
= E∗

[
e
′

iZt+1

∣∣IZt , IY
t+1

]

Using theorem A.1

E∗
[
e
′

iZt+1

∣∣IZt , IY
t+1

]
=

E
[
e
′

iZt+1Λt+1

∣∣IZt , IY
t+1

]

E
[
Λt+1

∣∣IZt , IY
t+1

]

= E
[
e
′

iZt+1

∣∣IZt , IY
t+1

]

= P
(
Zt+1 = ei

∣∣IZt , IY
t+1

)

Hence, under P ∗, the process Z is consistent with (9). Second, write

Ẑt+1 ≡ E
[
Zt+1

∣∣IY
t+1

]

Using similar arguments as those in appendix A, we prove the following
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Lemma 5 Under the assumption of model (9), a recursive filter for the
state is given by

Ẑt+1 =
Ẑ∗

t+1

1′Ẑ∗
t+1

being

Ẑ∗
t+1 =

2∑

k=1

N∑

i=1

[
pi (Yt+1)

′

Ẑ∗
t

] [
f
′

kUt+1

] (
M̃f

′

k

)
ei

where pi (Yt+1) is defined in (19).

Proof : from the Bayes theorem

E
[
Zt+1

∣∣IY
t+1

]
=
E∗
[
Zt+1Λ

∗
t+1

∣∣IY
t+1

]

E∗
[
Λ∗

t+1

∣∣IY
t+1

]

The numerator of the above equation is equal to

E∗
[
Zt+1Λ

∗
t+1

∣∣IY
t+1

]
= E∗

[
Λ∗

t

φ [(Yt+1 − µt) /σ (Zt)]

σ (Zt)φ (Yt+1)
E∗
[
Zt+1

∣∣IZt , IY
t+1

] ∣∣IY
t+1

]

= E∗

[
Λ∗

t

φ [(Yt+1 − µt) /σ (Zt)]

σ (Zt)φ (Yt+1)

(
M̃Ut+1

)
Zt

∣∣IY
t+1

]

=
2∑

k=1

N∑

i=1

[
pi (Yt+1)

′

Z̃∗
t

] [
f
′

kUt+1

] (
M̃f

′

k

)
ei

The result follows noting that E∗
[
Λ∗

t+1

∣∣IY
t+1

]
= 1

′
Z̃∗

t+1.
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C Monte Carlo analysis

We invoked large-sample theory both to compute parameter standard errors
and to derive the asymptotic distribution of likelihood ratio test. However,
there are no guidelines to verify the adequacy of the asymptotic approxi-
mation in our framework. In other words, it is not clear for which order of
magnitude of the sample size we should trust standard errors and critical
values of tests based on limit considerations. For this reason, we investigated
the finite-sample properties of the MLE when the HM model is assumed to
be the true DGP. We set N = 5, φ = 0.01, α = −5, δ = 1 and µ = 7× 10−4.
Setting α = −5 and δ = 1 implies (annualized) volatility levels ranging from
4% to 29%, which are typical values in applications. The value of φ was
chosen near its lower boundary for two reasons: first, analysis of real (daily)
time series returns displays a similar value; second, we expect the asymp-
totic properties to the MLE be violated, in ”small” sample, especially when
there are corner conditions. One thousand of Monte Carlo replications from
samples of size τ = 500, τ = 1000 and τ = 2000 were generated. The pres-
ence of multiple local maxima of the sample likelihood function may cause
same problems in detecting the global one, especially for small values of τ ,
when SIMP is used11. Conversely, we are better off using the SA algorithm.
Table 7 exhibits the results of this exercise.

11We stress that this problem is not dramatic as in the case of the EM algorithm applied
to the unrestricted model, starting the maximization procedure with the true parameter
vector. When τ is chosen to be greater than 300, the procedure is quite robust with
respect to the choice of the starting values.
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Table 7: MLE’s finite-sample distributional properties based on 500, 1000
and 2000 replications from the HM model

DGP φ = 0.01 α = −5 δ = 1 µ = 7 × 10−4

τ = 500
Mean 0.0112 -4.9988 0.9893 9.66×10−4

Median 0.0108 -5.0009 0.9960 8.81×10−4

Std.Err. 0.0065 0.0610 0.1102 5.09×10−4

Skewness 4.4704 0.2186 -1.8484 1.615
Kurtosis 52.9731 13.8710 21.0299 9.273
τ = 1000
Mean 0.0109 -5.0012 0.9978 8.60×10−4

Median 0.0107 -5.0020 0.9991 8.15×10−4

Std.Err. 0.0035 0.0296 0.0433 2.85×10−4

Skewness 0.3025 0.0058 -0.3242 1.089
Kurtosis 3.1099 4.0332 4.0980 5.776
τ = 2000
Mean 0.0105 -5.0033 1.0004 7.97×10−4

Median 0.0104 -5.0032 1.0009 7.90×10−4

Std.Err. 0.0025 0.0177 0.0272 1.50×10−4

Skewness 0.1285 -0.1137 -0.0357 0.494
Kurtosis 3.0254 3.2821 2.9165 4.144

It is clear from the table above that estimation of the mean-reverting pa-
rameter φ must rely on a sufficiently large number of observations if volatil-
ity is highly persistent. With τ = 500 the distribution of the MLE cannot
be thought as drown from a normal variate. As a matter of fact, kurtosis
and skewness are definitely different from respective normal typical values.
Better when τ = 1000. The MLE asymptotic normal distribution hypoth-
esis is almost satisfied in the last panel of Table 7 in correspondence of
τ = 2000, albeit a relatively large bias is still present in the estimation of
the (constant) drift. However, for purposes of valuating derivative assets,
the volatility parameters (φ, α, δ) are those that really matter.

In the previous exercise, estimation of volatility parameters relied on a
correct specification the drift term µt. In principle, a misspecification of the
drift, could introduce a bias in the estimator of the parameters of interest
(φ, α, δ) . To investigate this possibility, we performed another Monte Carlo
simulation based on one thousand samples of daily returns generated from
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Table 8: MLE finite-sample distributional properties of the HM model when
a misspecified constant drift is estimated (τ = 1000)

DGP φ = 0.01 α = −5 δ = 1 µt = 7 × 10−4

+20 × σ2 (Zt)

Mean 0.0106 -4.9897 1.0257 1.34×10−3

Median 0.0105 -4.9889 1.0253 1.20×10−3

Std. Err. 0.0038 0.0298 0.0468 4.97×10−4

Skewness 0.2846 -0.1420 -0.1702 2.192
Kurtosis 3.1723 3.9246 4.2929 10.704

the restricted model (1) where

µt = µ + λσ2 (Zt)

= µ + λ exp {2α+ 2δg (Zt)}

τ = 1000, N = 5, φ = 0.01, α = −5.0, δ = 1.0 and µ = 7 × 10−4. The risk
premium λ was set such that µt was, on average 34% per year. Using these
replications we estimated, for each sample, a constant drift. Table 8 sums
up the results.

Monte Carlo analysis confirms that there are no biases in volatility pa-
rameter estimates, even when a misspecified model of the drift term is as-
sumed, although, some higher moments are slightly worse (in the sense that
estimators display a greater departure from normality) if compared with
the second panel (τ = 1000) of Table 7. The only marked difference can be
found comparing the last column of the two tables. A higher standard devi-
ation, skewness and kurtosis are reported in Table 8, exhibiting a stronger
departure from normality. These results were in same way expected since,
on small intervals, the magnitude of the drift term is of the same order of
the conditional variance, hence, effects of the conditional mean on squared
returns should be negligible.
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