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abstract

In this work we focus on observational data and on the use of large data sets to implement an
experimental design without additional runs, for an efficient use of these data, exploiting theory about
optimal designs. More specifically, the proposed procedure is based on several steps and is an extension
of a previous work. Furthermore, the final optimal design can be obtained discriminating between two
models or more than two models. In this last case the suggested algorithm must be revised in order
to discriminate between several equally close models assigning a weight to each one.The final goal is an
experimental design that can be assumed as optimal by the point of view of a sequential optimality.

Keywords: Experimental design, observational data, D-optimal design, Sequential designs.

1 Introduction

The aim of this paper is to improve the use of observational data directed to build an
experimental design starting from existing data. Nevertheless, the difficulties of our at-
tempt are related to the fundamental theory on which design of experiment is based.
Therefore we suggest a multi-step procedure in which each step aims for improvement
towards optimality of the selected trials, where the final set of trials constitutes an opti-
mal experimental design built through sequential plans. This work is an extension of a
previous work (Berni, 2002), where we pointed out the relevance of the use of observa-
tional data by a suggested procedure in which the final steps is made using the sequential
design approach when the models analyzed are two. In this work the extension is about a
discrimination between several models obtaining an optimal design. The paper is struc-
tured as follows: the second section is dedicated to the modified new procedure; the third
section is devoted to data and results of an empirical example, based on real data.

2 The procedure

The procedure described in this section is based on the design of experiments theory
(Atkinson and Fedorov, 1992). We emphasize that this is a first attempt for an efficient
use of observational data and we must keep in mind that there is a substantial difference
between observational and experimental data, as the latter are implemented through cri-
teria, previously recalled. Generally, a design of experiment may be built by means of
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the balance, orthogonality and randomization principles or/and optimality criteria. In
both cases we select a set of trials, constrained to specific rules or measures.
Randomization is one of the fundamental rule for a standard experimental design; the
systematic bias reduction is its main feature and the properties of the model estimates,
subsequently computed, are well known.

Optimality criteria are based on iterative algorithms intended for improvement of the
design efficiency. The main difference compared to a standard design, is that, in the
optimality case, the selection is evaluated through efficiency measures based on informa-
tion matrix; therefore, the choice of trials depends on the hypothetic model assumed.
For example, if it is easy to suppose a curvature, the theory on optimality will find an
efficient design for the research and detection of this curvature.

Regarding optimality criteria, the T-optimality is strictly connected to sequential designs,
applied in this paper, just because through sequential designs we obtain a T-optimal de-
sign. Sequential designs have a substantial element of distinction compared to the meth-
ods based on iterative algorithms. In the sequential procedure, the model parameters
are updated with the new selected trial at each sequence, using also the corresponding
known value of the response variable; while, by optimality methods based on iterative
algorithms, the selection of trials depends only on the factors’ levels.

Two main issues should be solved to use observational data to build an experimental
design: the lack of randomization and the problem of searching trials on a set, however
large, of collected data. In substance, the presence of bias. In fact, an observed variable
could retain variations not controlled by the experimenter. This problem is overcome
when data are referred to technological systems or processes, as in most of the cases
where this procedure is applied, where observational variables are however constrained
to specific values in an established range, close to operational target or operational con-
ditions, set by an operator.

Moreover, the availability of a very large data-set about a process is a resource for an
industry and an efficient use of these data could be a valid alternative to their explorative
use alone. This efficient use of the data is linked to the construction of a D-optimal de-
sign. In fact, when a design is D-optimum, the determinant of the information matrix is
maximized; therefore this directly influences the variances of parameter estimates, and,
obviously, the volume of the ellipsoid, confidence region for the parameters, which is
strictly connected to the precision of the design.

A further and not secondary reason to select a particular subset of the whole data set
resides into the need of searching points within a restricted experimental region. In fact
the dimension of the experimental region is controlled by the conditions given by the ini-
tial set of candidate points and, subsequently, the selection of following runs from a list
of candidates facilitates avoidance of considering less informative, even though complete,
experimental area, by a technical point of view. With this respect, in section (3), the
area of the experimental space is controlled by the conditions given by the initial set of
points.

The procedure here described involves three steps; each step is intended to prepare
the final experimental design as close as possible to optimality. The third step is the
new step in comparison with the previous work (Berni, 2002) and it is an extension just
because allows us to compare more than two models, assigning to each model a weight.
The steps are: 1) selection of a random sample of trials ny from the data sets;

2) use of a procedure to build up a design with n runs that maximizes | X'X]| ;
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3) starting from the n runs, building up the final experimental design using sequential
technique, involving the model specification and, obviously at this step, the response
values.

We will now show in details these three steps with particular attention to the second and
third stage.

The first step is intended for the selection of a subset of data for starting the procedure.
The choice of a random sample should avoid a further bias due to a reasoned choice; at
the same time it is beyond doubt that this step can not be a solution for the initial lack
of randomization, since we proceed to select from an existing data-set.

However, two points could be positively evaluated: this initial selection is only performed
at the beginning of the proposed algorithm and, in addition, if the data-set is very
large, the bias can be reduced by means of the large size of available observations. This
last remark is connected to the experimental region on which the data are collected.
Furthermore, it is not irrelevant that, at this level of the procedure, we only use the
factors’ values while not considering response values.

The second step is based on the sample previously extracted (first step). At this stage
we refer to Dykstra (1971) for building an optimal design by means of augmentation of
experimental data. The aim of this stage is to create an initial optimal design starting
from a number ny of candidate points, while the response value are not yet involved.
In fact, at this point, the optimal design is built exploiting only the factors value. The
method here applied maximizes | X’ X| starting from the sets of candidate points. We
know (section 2.2) that the | X’X| maximization is equivalent to minimize the generalized
variance, obtaining a D-optimal design. For more details on this approach we refer to
Dykstra (1971). Here we turn our attention to those points of interest for us. First of all,
as stated previously, this algorithm exploits existing data to add, at each step, a new trial
maximizing | X’ X|. In substance, given ng, we compute (X’X)~!. Afterwards, Var(g) is
calculated for each candidate point and, as next trial, we choose that candidate point for
which Var(g) is greatest. We point out that, given an existing data-set, in our case the
random sample of the first step, the new trials are selected within an area (experimental
region) based on the list of candidate points and they are evaluated by a ratio so defined:

X'X|,
| : | o+1 (1)
[ XX,

A general drawback of this procedure is its dependence on specification of the model
(which is also the general common run when an optimal design is built); in fact, the
selection of new trials is performed according to the kind of model: linear, quadratic
or cubic model. A further limit of this approach when applied in our setting, is the
constrained selection onto the remaining data-set, after the first step. The n experimental
runs selected through the second step are used in the following step.

2.1 The new third step

This final stage is based on the theory described in Atkinson e Fedorov (1975), concerning
sequential designs and T-optimality. More precisely we base our approach on sequential
designs, that should lead to an asymptotically T-optimal design. The algorithm applied
at this step is lightly modified compared to the algorithm described in Atkinson e Fedorov
(1975). The modification is concerned with the area where the research of the new trial
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ZTne1 is performed, for each sequence; this change is due to the observational data and
therefore the subsequent added new trials are selected within the residual data-set and
not on a continuous set x € x. At this final stage, once the new trial is selected, the
available response value is used to update the parameters estimate of the models, re-
computed on the new set. The algorithm for the third step is described in the following.
This algorithm could be useful when the discrimination is made between more than two
models. The approach can be equal to the algorithm showed in Berni(2002) if the rival
models are reduced to only one model by means of ranking criteria.

With this respect, when we consider several models, the research of an optimal design
by a sequential designs approach starts with a ranking of the Residual Sum of Squares
(RSS), computed for each model. Assuming as k the number of considered models, the
strictly ranking is:

R1<€1) < Rz(gz) < Rg(fg) < ... < Rk(gk)

where R is for RSS.
The x 41 observation is added if the following expression is verified:

raraléaf({m(% élN) — 1(m, é2N)}2 (2)

where él ~ and égN are OLS estimates of the model number 1 and number 2, respec-
tively. In this simple case, we consider, after ranking, only the first two models, which
have the best fit.
Unfortunately, a problem rises when two or more models are equidistant from the true
model (assuming as true model the first model). This occurs because there is an experi-
mental error that can affect the RSS, giving different values of this quantity, but, at the
same time, these rival models should have the same value of the RSS in presence of a
null experimental error.
The solution to this problem is performed using a new algorithm where the optimization
is made by a two stage search and the best design is found for a particular combination
of weights. The design selected is that design which minimizes the following:

min max Z Pj[ﬂ1($,91)—77j(3779j(§s))]2 (3)

pj  TEX |
! JEJ(&s)

with
> pi=1 (4)
JeJ(&s)

This algorithm is based on a first selection onto a set J of chosen models, where
the distance between model number 2 and the others is < NJ where ¢§ is equal to an
arbitrary percentage of the maximum distance between the true model and the worst
model belonging to J.

Therefore, the final algorithm for the third step of the procedure is:

1. Regarding N observations, obtained at the II step, we rank the models, where the
true model is assumed as model number 1;
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2. we found a set J of models where:

3. the z,,, observation is added if:

minmax Y p;lm(z,01) =05z, 0;(&))] (6)

Pj  TEX |
! JEJ(&s)

If the set Js holds only the model number 2 then the procedure is reduced to the
simple algorithm without weights. In this approach one practical problem is the choice
of §, in general it is preferable an initial high value of 4. In addition it is relevant to point
out that the selection of the best design is tied to the weights and the number of the
iterations to be performed.

3 An empirical example

The data applied in this section are about a foaming process for the door of a home
refrigerator. The day-to-day observations regard the values of variables involved with the
production of polyurethanic foam and they are collected during the first 82 days of 2000.

Independent variables:

A — Charge of cyclopentane (parts on total);

B — Calibration;

C — MDI? Temperature (Centigrade degree);

D — MDI Pressure (bar);

TP — Polyol temperature (Centigrade degree);

PP — Polyol pressure plus expanding material (bar);

Response variables:

Y1 — Time of thread (second);
Y2 — Free density (Kg/mc).

Table 1: Independent variables - Range and step size

Variable | min | max | range | step size
A 10.7 | 11.2 | 0.5 0.1
B 0.76 | 0.79 | 0.3 0.1
C 16 22 6 1
D 135 | 165 30 D
TP 16 21 5 1
PP 130 | 165 35 >

2MDI means Methyl Diphenyl Isocyanate.



The empirical example?® here illustrated is based on the procedure of section 2. We
proceed considering the 3 steps? but we turn our attention, above all, to the third step.
We consider only two independent variables: MDI temperature (C) and Polyol temper-
ature (TP), with only one response variable: Y; (table 1). The intervals of interest for
this two variables are: TP 19-21; C 20-22.

The selected n = 4 observations for the initial experimental design are:

Table 2: Experimental design - step 2

obs C TP
1 20 19
2 20 20
3 22 19
4 22 20

The four chosen models are the following:

Yi=0+e (7)
Yi=00+ TP +e¢ (8)
Yi=0+06C+e¢ (9)
and
Yi =00+ 5C+ TP +e (10)

Where (3 denotes in general the unknown parameter for that effect. We don’t know which
of the four models is true, but we assume that the true model is model (10). In table (3)
we show the results for the initial models, with the RSS and the OLS estimates.

Table 3: Initial results for the III step

Mod. || RSS G |TP| C
(7) 875 (3) 4375 | - -
(8) [ 250 (2) | -5.00 [ 250 | -
9) | 6.550(2) | 595 | - |-0.75
(10) | 0.25 (1) | 10.75 | 2.50 | -0.75

The model ranking is:

Ri0(&10) < Ro(&9) < Rs(&s) < R7(&7)

3The application is computed using the Fortran language and the Statistical Analysis System (SAS)

software.
4random sample selection, evaluation of n observations that maximize |X’X| and, finally, sequential

designs approach




Table 4: Iterations of the III step by weights and observation added (record number)

Iter. || weights (8);(9) | obs.no

1 0.9;0.1 1

2 0.1;0.9 76

3 0.1;0.9 45

4 0.1;0.9 75

5 0.9;0.1 62

6 0.9;0.1 24

7 0.9;0.1 2

Table 5: Final results for models- I1I step

Iter. | Gy | TP | RSSs| fo C |RSSy| By | TP | C | RSS| SS
1 50.81 | -0.35 | 11.46 || 54.2 | -0.50 | 6.80 | 45.53 | 1.21 | -1.21 | 2.91 9781
2 52.73 | -0.44 | 13.29 || 51.19 | -0.33 | 12.53 || 52.60 | -0.15 | -0.26 | 12.41 || 11897
3 50.33 | -0.31 | 13.73 || 51.27 | -0.33 | 12.60 | 52.26 | -0.12 | -0.27 | 12.42 | 13833
4 51.34 | -0.36 | 14.96 || 49.54 | -0.24 | 16.17 || 52.55 | -0.30 | -0.11 | 14.71 | 15949
5 52.33 | -0.41 | 16.32 || 50.76 | -0.30 | 17.03 || 53.76 | -0.30 | -0.17 | 15.57 | 17798
6 51.94 | -0.39 | 16.41 || 50.75 | -0.30 | 17.18 || 53.65 | -0.28 | -0.18 | 15.59 || 19734
7 52.46 | -0.41 | 16.48 || 51.41 | -0.34 | 17.29 || 53.57 | -0.28 | -0.17 | 15.59 | 21850

and (Ryo — R7) is equal to 8.50; regarding a percentage of a 20%, we obtain a value
of 6 = 1.7 and therefore N§ = 6.8. This choice implies the elimination of model (7) from
the set Js, which holds model (9) and model (8).

In table (4) we show the results of the third step of the procedure, according to the
combination of weights for the two models and the observation added (record number).

Observing table (4) we can see that the final design have 11 observations.

In table (5) we show the final results® obtained during each iteration, with number of
iteration, parameter estimates, residual sum of squares (RSS) value for each model and
the total sum of squares .

At each iteration, starting from the initial experimental plan, we have updated the
parameter estimates for the three models, after adding the selected point (table 4) maxi-
mizing the (3).The final results for this example are satisfactory. As we can see in tables
(3-5), we obtained, after only seven iterations, good results and we must stress that the
estimates may be considered steady right from the iteration no.5; nevertheless the seven
iteration allows us to obtain a significative value for estimate effect related to TP vari-
able, even though only at level of @ = 0.10. In addition, we must observe that the final
combination of weight gives more importance towards model (8), confirming the relevance
of variable T'P.

A final remark is about the choice of weights. Undoubtedly a further extension of this
work must consider weights not arbitrarily defined, for example based on the likelihood

®in bold type the significative values by t-student test (P-value < 0.10).
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of the related model.
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