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Estimates of the short term effects of air pollution in Italy using
alternative modelling techniques

Abstract 

Recently serious criticism was raised about the use of standard statistical software to fit Generalized 
Additive Models (GAM) to epidemiological time series data. Inappropriate settings of convergence 
parameters in the backfitting algorithm (implemented by Splus) results in inaccurate inference about 
the effect of linear covariates. Moreover standard errors are underestimated, since only the linear 
component of the smoother(s) is included in the variance-covariance matrix computation. A Splus 
macro for approximate standard errors has been recently proposed. We analysed the association 
between PM10 and Mortality/Hospital Admissions in the Italian Meta-analysis of Short-term effects 
of Air pollutants (MISA), using GAM with penalized regression spline fitted by the direct method 
in R software (GAM-R), which correctly computes the variance-covariance matrix. A comparison 
with default GAM with smoothing spline fitted via backfitting in Splus (GAM-S) and with 
Generalized Linear Models with natural cubic spline (GLM+NS) is provided. GLM+NS and GAM-
R give similar results. For total mortality GLM+NS and GAM-R gave respectively an overall 
percent increase of 0.98 (95 percent confidence interval: 0.35,1.61; random effects model) and 1.04 
(0.41,1.67) for 10 µg/m3 of PM10, compared to the GAM-S estimate of 1.24 (0.63,1.86). The 
GLM+NS and GAM-R standard errors are consistently higher than GAM-S ones.
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Introduction

Short-term effects of air pollution on health are widely documented and several meta-analyses were 
conducted (1-7). 
Recently major concern was raised about numerical accuracy of the estimates of pollutant effect 
obtained fitting Generalized additive Models (GAM) (8). Ramsay et al. (9) and Dominici et al. (10) 
identified important critical points in the analyses of epidemiological time series using commercial 
statistical software which fits GAM by backfitting algorithm. In brief:

1. the estimated standard errors obtained fitting GAM in Splus or SAS are biased;
2. the default convergence criteria of backfitting algorithm defined in Splus (and, to a lesser 

degree, in SAS) are too lax to assure convergence and lead to biased estimates of pollutant 
effect. 

For the point 1, these statistical software provide an approximation of the variance-covariance 
matrix, which takes into account only the linear component of the variable that was fit with a 
smooth function (11). Then, a bias is expected whenever strong non-linearity and non-orthogonality 
between parametric and non-parametric terms are present, such as between the smoother for time 
and the pollutant concentration in epidemiological time series analysis (9). 
The second point is for certain aspects trivial: whenever the magnitude of the effect to be estimated 
is of the same order of the convergence criteria some degree of numerical instability is expected, 
which decreases as the effect size increases. More interestingly, if data exhibit relevant degree of 
concurvity (“collinearity” among parametric and non-parametric components of the model (9)), 
convergence of backfitting algorithm can be very slow (11-12). Dominici et al. (10) showed that, 
when a spline for time and a spline for weather are included in the model, the greater the degree of 
concurvity, the greater is the overestimation of the pollutant effect. 

The present paper analyses the data of the Italian Meta-analysis of Short-term Effects of Air 
Pollution (MISA) (13-14), using alternative modelling approaches to GAM fitted by backfitting 
algorithm: GLM with natural cubic spline(s) and GAM fitted by the gam function implemented for 
R software by Wood (15). These approaches do not have the difficulties described above. 

Methods

The characteristics of epidemiological time series data require statistical methods able to control for 
nonlinear confounding effect of temporal trend. One approach to dealing with temporal trend is to 
divide the time span of the study into shorter periods and fit separate polynomials within each 
range. This does not require the same polynomial to fit different ranges. Natural cubic splines are a 
form of this approach. While flexible, they can still be sensitive to the position of break points 
between the time periods (knots). To avoid this, many air pollution studies used more flexible semi-
parametric approaches, specifying models with smoothing splines or locally weighted regressions in 
moving ranges of the data (loess). These models, belonging to the class of GAM (11), are those
implemented in Splus and SAS by backfitting algorithm. 
In the following analyses, we specified GAMs with penalized regression spline. Penalized 
regression splines use separate polynomials in each range (as natural splines do), but they reduce 
the sensitivity to knots location by using many of them and avoid excessively wiggly curves by 
constraining the coefficients not to change too much between one break point and another (16). The 
use of penalized regression splines eliminates the backfitting algorithm of GAM, while still 
providing the flexibility of smoothing splines. This approach is implemented in R.
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MISA investigated mortality for all natural causes and for cardiovascular and respiratory diseases 
and hospital admissions for cardiovascular and respiratory diseases. Health data were collected 
from Local Health Authorities and regional files. Daily pollutant concentrations were obtained from 
Regional Environmental Protection Agencies or local sources. The same procedure for collecting 
data was used in all participating cities (Turin, Milan, Verona, Ravenna, Bologna, Florence, Rome, 
Palermo). 
MISA used a common model for city specific analysis (13). The analysis was age-stratified (0-64; 
<65-74; 75+). Parametric terms for weather and only one spline for time were included in the 
model. The number of degrees of freedom for the splines was specified a priori (5 per year for 
mortality only for the third age class, since indicator variables for season were used for the first two; 
6-5-6 per year for hospital admissions for cardiac diseases for the three age classes, respectively; 7-
5-6 per year for hospital admissions for respiratory diseases). Residuals analysis and sensitivity 
analysis were performed.
This modelling strategy could apparently be reassuring given Dominici’s results apply to models 
including at least two smoothing terms (10), but, as we show, this is not true.

We evaluate the sensitivity of our results to different modelling strategies, fitting:

- GAM by backfitting algorithm using Splus with default (of the order ε<10-3) or stringent 
(ε<10-14) convergence criteria (GAM-S);

- GAM by direct method implemented in R 1.6.1 Software (17) (GAM-R); 

- GLM with natural cubic spline with fixed pre-specified knots (18) fitted by standard IRLS 
algorithm (GLM+NS).

The function gam of R allows inclusion in the model of penalized regression splines whose 
smoothing parameters are fixed to obtain the desired number of degrees of freedom or selected by 
Generalized Cross Validation method. This function maximizes the penalized likelihood  by a direct 
method which avoids the iterative process nested in the backfitting algorithm (12, pp.69-70; 15). 
The GAM implementation in R correctly calculates the variance-covariance matrix.

GLM+NS is a fully parametric alternative to GAM (10). The main drawback to using GLM+NS 
stands in the dependence of the fitted curve on the knots position (11). In this analysis knots were 
placed evenly throughout the covariate values. Comparing the two different approaches (GAM-R 
and GLM+NS) we checked the sensitivity of results obtained fitting a parametric natural spline to 
alternative specifications of the knots position.

We present below the results of the Italian Meta-analysis (MISA) on short-term effect of PM10 for 
the calendar period 1995-1999. For mortality (available data from 6 cities) lag 0-1 is used, while for 
hospital admissions (7 cities) we chose lag 0-3. The combined meta-analytic estimates were 
calculated using fixed and random effects models (19).

Results

As expected, we did find relevant disagreement between the standard GAM-S fitted by backfitting, 
with default or more stringent criteria, and the two alternative approaches, GLM+NS and GAM-R.

Figure 1 (a-b) shows the results from GAM-S with default convergence criteria (coefficient 
estimates and estimated standard errors) on the Y-axis versus the results from GLM+NS, 
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respectively, in the X-axis. Each point in the figure corresponds to a city-specific estimate; points 
marked as bold squares represent combined meta-analytic estimates (3 mortality outcomes, 2 
hospital admission outcomes). They look quite similar to those of Dominici et al. (10), even if the 
model includes only one smoothing term: the GLM+NS coefficient estimates are generally lower 
and the estimated standard errors are greater, proportionally to their magnitude, than those obtained 
from GAM-S with default convergence criteria.
Figure 1 (c-d) shows the results using GAM-R on the Y-axis versus GLM+NS on the X-axis. The 
results are consistent. However point estimates from GLM+NS are usually lower than point 
estimates obtained from GAM-R.  
Estimated standard errors by GAM-S did not change using the more stringent convergence criteria, 
while point estimates become very close to GAM-R (Fig. 1 (e-f)). 

Table 1 reports the results of meta-analyses. Overall the main conclusions do not change using the 
different approaches. For most of the outcomes considered, effects are statistically significant, 
although using GLM+NS and GAM-R their magnitude is lower and confidence intervals are wider 
than using GAM-S with default convergence criteria. Greater uncertainty emerged with regard to 
the association with respiratory diseases. 
Using GLM+NS, the overall estimated percent increase of total mortality for natural causes for 10 
µg/m3 increase of PM10 was 0.98 (95 percent confidence interval: 0.35,1.61; random effects model) 
in the calendar period 1995-1999, for a lag time of 0-1 day. Using GAM-R, the overall estimated 
percent increase was 1.04  (0.41,1.67). These compare with the biased estimate of 1.24 (0.63,1.86) 
from GAM-S with default convergence criteria. 

Discussion

Modelling epidemiological time series presents difficulties due to: (a) the small order of magnitude 
of the effects; (b) the strong confounding effect of seasonality/time trend and weather.  
Since the 1990s, the use of GAM became common, allowing flexible and local non-parametric 
modelling of confounders (20). The statistical software commonly used to fit GAMs is based on 
backfitting algorithm, which could be affected by problems of convergence and produce biased 
effect estimates, depending on the degree of concurvity in data (10-12).
Moreover, coherently with Ramsay et al. (9) we found that estimated standard errors from GAM 
fitted by Splus (and SAS), even with stringent convergence criteria, are invalid. The reason lies in 
the fact that the calculated variance-covariance matrix does not take into account the non-linear 
components of the smoother(s). 

A possible alternative to GAM via backfitting is to specify GLM with parametric natural spline(s) 
(10). This solution is exempt of problems of convergence, but the number and position of knots 
must be specified a priori. This could be a limit for applicability of such approach to many 
situations (11-12). To reduce this problem we used only one spline for time. Since time is an 
equally spaced covariate (it indexes days under study) and the number of knots is not small 
(between 5 to 7 per years), we do not expect relevant differences from different knots 
specifications, but we do not exclude that, in presence of particular local variations of seasonality, 
results could be sensitive to knots placement. Moreover, the choice of knots positions could be a 
more important problem for other covariates like temperature. 

A second alternative to GAM-S consists in fitting GAM by the direct method implemented for R by 
Wood (15). After fixing appropriate convergence criteria, the backfitting algorithm and the direct 
method provide similar point estimates of pollutant effect. However, the direct method is not 
affected by convergence problems and, being the smoothing terms penalized regression splines, 
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offers significant computational efficiencies over smoothing splines in large datasets and requires
less computation for standard errors (16, 21). Here we found that standard errors of particles effect 
estimates are consistently estimated by GLM+NS and by GAM-R.

Conclusion

On the one hand GAMs with penalized regression spline(s) provides a more flexible approach in 
modelling epidemiological time series data than Generalized Linear Models with natural spline(s). 
On the other hand inference based on GAMs suffers disadvantage to be not well established. In our 
context the most relevant issue is the choice of the appropriate amount of smoothing for non-
parametric function(s) or degrees of freedom for the parametric splines. Different formal and 
informal selection strategies have been proposed (7, 22-23), but further investigations are necessary. 
Asymptotic results about consistency of estimates in Additive Models indicates that the amount of 
smoothing appropriate for good estimation of parametric coefficients may be less than the amount 
appropriate for the optimal estimation of non-parametric part of model (24-26). Pursuing the 
optimal curve in adjusting for non-linear confounders could lead to biased estimate of pollutant 
effect, while a certain degree of undersmoothing could assure better inference. As a strictly related 
problem, robustness of inference based on GAM to alternative choices of smoothing parameter 
should be investigated (27, personal communication).

In conclusion, we could consider many epidemiological analyses of epidemiological time series as 
mainly exploratory analyses. Indeed, strong model selection and the use of semi-parametric models 
with substantial concurvity among pollutant and weather/time resulted in unstable estimates and 
underestimated standard errors, when standard software was used.
Major recent meta-analyses used a priori choices of smoothing parameters and more uniform 
criteria of model specification for city-specific analyses than single published studies. This reduced 
the risk of “multiple looks” at the data. Provided GLM+NS or GAM fitted by direct method have 
been used, point and interval estimates are valid.
Finally, the uncertainty about the size of the effects is not small. We are looking to extremely small 
effects, even if very important from a Public Health point of view, and some instability in the city-
specific estimates has to be expected, and cannot be avoided. Combined meta-analytic estimates 
showed no major inconsistencies and retained statistical significance. 
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Figure 1. Italian Meta-analysis of Short-term Effects of Air Pollution. MISA 1995-1999. 
(a) City specific and Meta-analytic (in square bold) Effect Estimates (log Relative Risk) for PM10 
(increase of 10 µg/m3) by fitting GAM-default settings (Y-axis) vs GLM-NS (X-axis).
(b) City specific and Meta-analytic (in square bold) Standard Error Estimates for PM10 effects by 
fitting GAM-default settings (Y-axis) and GLM-NS (X-axis).
(c) City specific and Meta-analytic (in square bold) Effect Estimates (log Relative Risk) for PM10 
(increase of 10 µg/m3) by fitting GAM-direct method in R Language (Y-axis) vs GLM-NS (X-axis).
(d) City specific and Meta-analytic (in square bold) Standard Error Estimates for PM10 effects by 
fitting GAM-direct method in R Language (Y-axis) and GLM-NS (X-axis).
(e) City specific and Meta-analytic (in square bold) Effect Estimates (log Relative Risk) for PM10 
(increase of 10 µg/m3) by fitting GAM-direct method in R Language (Y-axis) vs GAM-stringent 
convergence criteria (X-axis).
(f) City specific and Meta-analytic (in square bold) Standard Error Estimates for PM10 effects by 
fitting GAM-direct method in R Language (Y-axis) and GAM-stringent convergence criteria (X-
axis).
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 Mortality Hospital Admissions
 All Natural Causes Cardiovascular Respiratory Cardiac Respiratory

Method fixed random fixed random fixed random fixed random fixed random
GAM-S 
default 

1.12 1.24 1.23 1.43 2.24 1.96 1.23 1.30 2.13 2.35
0.82;1.42 0.63;1.86 0.76;1.69 0.62;2.25 1.09;3.41 -0.69;4.68 0.93;1.53 0.83;1.78 1.76;2.50 1.52;3.18

GAM-S 
stringent

0.92 1.06 1.03 1.24 1.96 1.69 0.99 1.02 1.26 1.42
0.62;1.22 0.46;1.66 0.57;1.50 0.43;2.06 0.81;3.13 -0.97;4.42 0.69;1.29 0.64;1.39 0.89;1.63 0.66;2.20

GAM-R 
0.90 1.04 1.05 1.26 1.92 1.70 0.95 0.95 1.34 1.34
0.55;1.25 0.41;1.67 0.52;1.58 0.41;2.12 0.64;3.21 -0.96;4.43 0.50;1.40 0.50;1.40 0.84;1.86 0.64;2.03

GLM+NS
0.85 0.98 0.97 1.21 1.74 1.41 0.77 0.82 0.73 0.91
0.52;1.18 0.35;1.61 0.45;1.50 0.32;2.10 0.44;3.05 -1.41;4.32 0.40;1.15 0.32;1.32 0.27;1.20 -0.04;1.86

Table 1. Italian Meta-analysis of Short-term Effects of Air Pollution. MISA 1995-1999.
Combined meta-analytic estimates of percentage increase in outcome (95% CI) associated to a 
PM10 increase of 10 µg/m3 by fixed and random effects models. City specific estimates obtained by 
GAM via backfitting with default convergence criteria of Splus 2000, GAM via backfitting with 
stringent convergence criteria, GAM via direct method in R Software, GLM with natural cubic 
spline.
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Abbreviations used in the text

MISA: Meta-analysis of Italian studies on Short-term effects of Air pollution
GAM: Generalized Additive Models
GAM-R: Generalized Additive Models fitted using the direct method
GLM+NS: Generalized Linear Models with natural cubic spline(s)
GAM-S: Generalized Additive Models fitted using the backfitting algorithm
ICD 9: International Classification of Diseases, Ninth Revision
IRLS: Iterative Re-weighted Least Squares
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