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Abstract. A solution to the indeterminate parameters problem can be obtained forcing 

an asymptotic quadratic approximation of the log-likelihood to find a solution in a 

neighbourhood of the true parameter through the definition of a modified (penalized) 

log-likelihood function. The maximizing point of this function is consistent and 

asymptotically normally distributed with variance-covariance matrix approximated by 

the Moore-Penrose pseudoinverse of the information matrix. These properties allow one 

to construct a naive test in the Durbin sense which is a Wald-type test statistic with a 

Astandard@ distribution both under the null and alternative hypotheses. 

 

Key words: Naive test, Singular information matrix, Penalized log-likelihood function, 

Moore-Penrose pseudoinverse. 

 

1. Introduction 
 

Let f(x,θ) θ0Θfúk be a density function continuous on Θ, defining the 

distribution corresponding to the parameter θ in a neighbourhood of a particular point, 

θ0, say in Uδ={θ;2θ!θ02#δ} where 2.2 is the square norm and θ0 is the true, though 

unknown, parameter value. x=(x1,x2,...,xn,....) is a given sequence of independent 

 
     1 
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observations on X.  is the log-likelihood function defined on Θ 

and B(θ

∑
=

θ=θ
n

1i
i ),x(flog)(Llog

0) is the (Fisher) information matrix in an observation. 

Assume θ to be partitioned into two subvectors, θN=[ψNγN] with ψ of order m and 

γ of order q=k!m. We face an indeterminacy problem when there exist two disjoint and 

exhaustive subsets of ψ, {ψj, j0J}, {ψt, t0T} say, such that the null hypothesis H0: ψj=ψj0 

for all j0J makes the likelihood independent of γ (see Cheng and Traylor (1995) for a 

definition of indeterminacy based on a general transformation φ=φ(θ)). A common case 

is when ψj=ψj0 makes γ indeterminate. In applications the complementary subset 

{ψt,t0T} can be the null set. In this case {ψj, j0J} coincides with ψ and the null 

hypothesis involves the whole vector ψ. Consequences of indeterminacy are 

[a]- The score is a vector with a first component of order m (the first derivative of the 

log-likelihood with respect to ψ) which depends on the parameter, γ, and can depend on 

{ψt, t0T}, a second component of order q (the first derivative of the log-likelihood with 

respect to γ) which is zero. 

 [b]- The maximum likelihood estimates have an unstable behaviour due to the 

singularity of the expected information matrix which is block diagonal with all 

submatrices zeroes and a block matrix of order m x m which depends on the parameter γ 

and on {ψt,t0T}. That is, when ψj=ψj0 the (expected) information matrix generally 

assumes the following form 













 γψψ
=γψψ

ψψ

qxqmxq

qxmmxm
t0j

t0j 00

0),,(B
),,(B  

that shows both a singularity and a local orthogonality between ψ and γ. 

[c]- Let ψ0N=[ψj0Nψt0N] be the Atrue@ parameter of ψ and θ0N=[ψ0NγN]. Then, in the 

indeterminate parameters problem the submatrix Bψψ(ψ0,γ) is nonsingular.  

Given the above features of the likelihood, the score and the information matrix, 

our goal is to look for an estimator of the parameter of interest, ψ, so that a method for 

testing H0 is possible. In this regard, assume the value of γ is known and ψ=ψ0 (that is, 

the hypothesis concerns the whole vector ψ) then, under the usual regularity conditions, 
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the asymptotic distribution of the maximum likelihood estimator nψ̂  of ψ is well known 

to be normal with mean vector ψ0 and variance-covariance matrix . 

Moreover, the Wald test 

),(B 0
1 γψ−

ψψ

)ˆ)(,(B)ˆ(nW n00n 0ψ−ψγψ′ψ−ψ= ψψ  is distributed 

asymptotically as a central χ2(m). Therefore, testing H0: ψj=ψj0 for all j0J, (that is, 

testing a subset of ψ), is immediate when maximum likelihood estimates substitute the 

unknown parameters in the Wald test. Durbin (1970) called naive a test based on the 

assumption that an estimator, calculated somehow, has the same asymptotic distribution 

as . In his paper Durbin argues that the maximum likelihood estimator of ψ 

assuming γ equal to the (constrained) solution of the equation 

nψ̂

 0  =  ),L(  log  
  0 γψ
γ∂
∂  (1) 

produces a naive test if the maximum likelihood estimators of ψ and γ in the full model 

are asymptotically uncorrelated. We observe that this condition holds for the 

indeterminate parameters problem (consequence [b] above), nevertheless, in this case, 

Durbin=s approach is unfeasible because of the disappearance of the parameter γ from 

the likelihood function giving rise to a singularity in the information matrix. Then, it is 

not possible to solve equation (1), to calculate the maximum likelihood estimator of ψ 

and to derive its asymptotic properties. At best, and this is the goal of this paper, we 

could look for an estimator of ψ that will be called naive such that it has approximately 

the same asymptotic distribution as nψ̂ . 

In the indeterminacy problem the search of a naive estimator is closely bound up 

with the presence of a singular information matrix which has the peculiarity to be block 

diagonal. This fundamental property should be (must be) maintained when a solution to 

the singularity is tackled. With this aim in mind, in Section 2 we briefly review some 

existing results on the singularity of the information matrix and in the work of Silvey 

we found a possible approach to tackle the indeterminacy problem. After we had briefly 

recalled (Section 3) the properties of the maximum likelihood estimator in the regular 

case highlighting the problem due to the singularity of the information matrix, in 
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Section 4.1 we deal with the genesis of a naive maximum likelihood estimator and in 

Section 4.2 we detect its properties and its applicability to the indeterminate parameters 

problem. Finally, in Section 5 we show a Monte Carlo simulation applied to two 

nonlinear statistical models detecting the performance of the proposed estimator in 

small samples. 

 

 

2. Previous works on the singularity of the information matrix 

 

Perhaps, the author who first tackled the problem of the singularity of B(θ0) was 

Silvey (1959). He recognized that the singularity of the information matrix is the main 

symptom of the lack of identifiability (a necessary but not sufficient condition for the 

non-identification problem) and he proposed a solution in this field. Silvey=s approach is 

based on a modification of the information matrix adding an appropriate matrix to B(θ) 

obtained by imposing some restrictions on the parameters of the model so that the 

restricted parameters are identified and the modified matrix is positive definite. Poskitt 

and Tremayne (1981) have pointed out that the inverse of this matrix is in fact a 

generalized inverse of the information matrix, El-Helbawy and Hassan (1994) further 

generalized Silvey’s results. Silvey=s approach is very simple and elegant but its 

applicability is limited to the non-identification problem. In particular it is not 

applicable when the singularity of B(θ) is caused by one or more nuisance parameters 

vanishing under the null hypothesis. 

In finite mixture models such as in the typical well-known example, 

(2π)!2[(1!ξ)exp(!x2/2)+ξexp(!(x!β)2/2)] 0#ξ#1, setting either ξ=0 or β=0 eliminates 

the other from the expression producing a singular information matrix (Cheng and 

Traylor, 1995). In a likelihood-based approach a satisfactory solution to this problem is 

still far off (Hartigan, 1985) and some authors suggest following other procedures (for 

example Wald=s approach to testing) in alleviating problems caused by the singularity of 

B(θ) (Kay, 1995, discussion of the paper by Cheng and Traylor). 
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Examples concerning hypothesis tests involving parameters not identifiable 

under the null hypothesis abound in nonlinear regression models (Seber and Wild, 

1989) and several ad hoc solutions have been proposed. Cheng and Traylor (1995) 

introduced the Aintermediate model@ between the models where parameters are missing 

and where they are present. This approach is based on suitable reparameterizations and 

its success depends on how well the reparameterization positions the Aintermediate 

model@ between the two extremes. This procedure seems to be very difficult to apply 

when the number of vanishing parameters is relatively high.  

Davies (1977, 1987) proposed an interesting approach to the problem of 

hypothesis testing when a nuisance parameter is present only under alternative. Given a 

suitable test statistic he suggested treating it as a function of the underidentified 

nuisance parameters and basing the test upon the maximum of this function. The 

asymptotic distribution of this maximum is not standard but Davies provided an upper 

bound for the significance level of his procedure. Though elegant, ADavies= method is 

quite elaborate to implement in practice and difficult to generalize@ (Cheng and Traylor, 

1995) particularly when several nuisance parameters vanish under the null hypothesis. 

Moreover, Athere is no analytically tractable solution to Davies=s maximization problem@ 

(Godfrey, 1990, p.90). 

Segmented regression is another subject where singularity of the information 

matrix may occur. For example in the two phases linear regression, the null hypothesis 

of one single segment creates difficulties with the usual asymptotic chi-square theory 

for the likelihood ratio test for one phase against two. In this subject several ad hoc 

solutions have been proposed (Smith, 1989). 

Rotnitzky et al. (2000) provided an asymptotic distribution of the maximum 

likelihood estimator and of the likelihood ratio test statistic when the model is identified 

and the information matrix has rank one less than full. This approach is based on a 

suitable reparameterization of the model and was motivated by models with selection-

bias but it seems quite complex and difficult to apply to models where the rank of B(θ) 

is arbitrary. 
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In the above brief survey the solutions proposed are generally based on suitable 

reparameterizations of the model to remove the causes of singularity and to obtain 

(asymptotic) stable parameters. As a consequence of this approach the solutions 

proposed are often difficult to generalize because they usually depend on the particular 

issue being investigated. 

From a thorough analysis of the above works the mathematical aspect of 

singularity emerges. It affects the asymptotic approximating quadratic model of the log-

likelihood function which may have a whole linear sub-space of maxima. In that case 

we can say that we are faced by (asymptotic) unstable parameters (Ross, 1990), in the 

sense that in a neighbourhood of the true parameter the asymptotic log-likelihood 

function cannot be approximated by a quadratic form using the second-order term in the 

Taylor series expansion about θ0. Therefore, a possible solution to the problem of 

singularity could be passed through a modification of  the curvature of this quadratic 

model. 

In our opinion, the author who first tackled the problem of singularity following 

this approach was Silvey (1959), who proposed, through a constrained procedure, to 

replace the inverse of B(θ) with a generalized inverse introducing some restrictions on 

θ. As we pointed out, Silvey=s idea is very simple and gives an elegant solution to the 

problem, but it is of limited applicability. Nevertheless, we think that a constrained 

approach could be used to solve the singularity of B(θ0) in an indeterminacy problem. 

More precisely, we suggest modifying the information matrix forcing the asymptotic 

quadratic approximation to find a solution in a neighbourhood of θ0. This procedure can 

be used to define a modified (penalized) log-likelihood function, and inferences on the 

non-vanishing parameters can be based on the maximizing point of this function. Under 

usual regularity conditions, the estimator so obtained is consistent and asymptotically 

normally distributed with a variance-covariance matrix approximated by the Moore-

Penrose pseudoinverse of the information matrix, which always exists and is unique 

(Rao and Mitra, 1971). In an indeterminacy problem this result allows us to construct a 

naive test in the Durbin sense. 
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3. The regular case 

 

We assume the following conditions (Aitchison and Silvey, 1958). ö1- Θ is a 

compact subset of the Euclidian k-space and the true parameter, θ0, is an interior point. 

ö2- For every θ0Θ, z(θ)=E0[log f(x,θ)] that is, the expected value of log f(x;θ) taken 

with respect to a density function characterized by the parameter vector θ0, exists. ö3- 

For every θ0Uδ (and for almost all x0ú) first, second and third order derivatives with 

respect to θ of log f(x,θ) exist and are bounded by functions independent of θ whose 

expected values are finite. ö4- The information matrix in an observation, B(θ0), is 

positive definite (local identifiability condition). 

In the regular case the classical proof of the consistency of a solution of the 

likelihood equations, DlogL(θ)=0, is based on the analysis in Uδ of the behaviour of the 

maximizing point of the quadratic model obtained from a Taylor series expansion of 

n!1logL(θ) about θ0 

 

)V(x;h 
6
1+)h( L  log Dh 

2n
1+)h( L  log D 

n
1+)( L  log 

n
1  =  )( L  log 

n
1

0
2

00 θ′θ′θ′θθ  (2) 

 
where h=θ!θ0, D=[M/Mθi] i=1,...,k is the column vector of a differential operator; 

D2=[M2/MθiMθj] i,j=1,...,k is the matrix of second derivatives, V(x;θ) is a vector whose 

i!th component may be expressed in the form n!1(θ!θ0)N∆i(θ*)(θ!θ0), ∆i(θ*) being a 

matrix whose i!th element is , j,m=1,...,k bounded in U),x(flog)/( *
tmj

n

1t
i

3 θθ∂θ∂θ∂∂∑
=

δ 

and θ* a point such that 2θ*!θ02<2θ!θ02. By imposing the first order necessary 

conditions for a maximum to the function (2), or by expanding the likelihood equations 

about θ0 after rescaling by n!1, we have: 

 

 0 = )V(x;
2
1  +)h  ( L  log D n

1  +  )( L  log D 
n
1

0
2

0 θθθ  (3) 
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Conditions ö1-ö4 ensure that n!1DlogL(θ0) converges in probability to 00úk; 

n!1D2logL(θ0) converges in probability to !B(θ0), and the elements of n!1∆i(θ*) are 

bounded for θ0Uδ. Therefore, for large enough n, and δ sufficiently small, the equation 

(3) has a solution 0n
~h~ θ−θ=  such that 2h~h~ δ≤′  if (and only if) h~  satisfies a certain 

equation of the form 

 0  (4)  = )m(x;  +)h  B(- 2
0 δθθ

 
where m(x;θ) is a continuous function on Uδ (Aitchison and Silvey, 1958) and 2m(x;θ)2 

is bounded for θ0Uδ by a positive number τ, say. Because of condition ö4, the latent 

roots µ1#µ2#...#µk of the information matrix are all positive. Using an equivalent of 

Brower=s fixed point theorem as in Aitchison and Silvey (1958), δ<µ1/τ  is a sufficient 

condition for equation (4) to have a solution h~  such that 2h~h~ δ≤′  . 

 Taking the probability limit of both sides of (2) and using the above 

assumptions, we have  

δθ′θ′θθ 2
00 )m(x;  h  +h   )B( h  

2
1  -  )z(  =  )z(  

Equation (4) may be seen as the first order necessary conditions for the 

unconstrained maximum of the function z(θ). Then, the crucial point of the consistency 

of a solution to the likelihood equations is that for δ sufficiently small (in fact for 

δ<µ1/τ), z(θ) has a unique maximizing point in Uδ. 

As to the asymptotic distribution of the maximum likelihood estimator we have 

 
 ( ) η′θ -  =h  n Rh  +  )L(   Dn   plim 1/2*

0
2-1 ~~log  (5) 

 

where η-N(0,B(θ0)) is the asymptotic distribution of the score scaled by n!1/2 and R* is 

a vector whose i-th component may be expressed as (2n)!1∆i(θ*) and θ* a point such that 

2θ*!θ02<2θ!θ02. In the regular case, plim[n!1D2logL(θ0)]=!B(θ0) and because of the 
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consistency of the estimator, plim )1(o)Rh~( P

* =′  so that  plim ηθ= −1
0

2/1 )(B)h~n(  and 

h~n 2/1 -N(0,B(θ0)─1 ). 

We point out that in the regular case a solution of the likelihood equation has the 

same limiting distribution as the (unfeasible) linearized estimator 

)(LlogD
n
1)(LlogD

n
1S 0

1

0
2

0n θ





 θ−θ=

−

 

obtained by maximizing the quadratic approximation to n!1logL(θ0) given by (2) with 

approximation error of order o(2θ!θ02
2) in Uδ. As known, Sn is the basis of several 

numerical procedures used to obtain a maximum likelihood estimator. 

 

 

4.- The Indeterminate parameters problem 

 

4.1- An unfeasible solution to the singularity of B(θ0) 

 

Suppose that the conditions ö1-ö3 are satisfied for any γ. Then, when γ 

vanishes the information matrix is singular and the asymptotic approximation, z(θ), will 

not have a unique maximizing point in a neighbourhood of θ0 but a whole (linear) sub-

space of maxima. The demands that z(θ) should have a maximum in Uδ and that B(θ0) 

should be positive definite are, clearly, related. In fact, if B(θ0) is singular, (4) may or 

may not be a consistent system of equations. If it is consistent, nothing guarantees the 

existence of a solution h~  which maximizes z(θ) and such that 2h~h~ δ≤′  choosing a δ 

sufficiently small. 

A way to solve the problem of the singularity of B(θ0) is to modify the 

information matrix directly forcing the function z(θ) to find a solution in Uδ through a 

constrained procedure. Using the Lagrange multiplier method, we can proceed to 

maximize z(θ) subject to the constraint 2θ!θ02#δ. As known, a solution to this 
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constrained problem,  say, must satisfy the following equation (Dennis and 

Schnabel, 1983, p.131) 

0
)n(ˆĥ θ−θ= λ

  (6) 
( )

2
0

1

2
0

2
0

);x(m)(Aĥ
0);x(mh)(A);x(mhI)(B

δθθ=⇒
=δθ+θ−=δθ+λ+θ−

−
λ

λ

 
where I is the identity matrix of an appropriate dimension and λ>0 (strictly positive) a 

scalar determined so that δ=θ−θλ 0
)n(ˆ . That is, the constrained maximum of z(θ) 

occurs on the boundary of the region 2θ!θ02#δ fixing appropriately λ. 

If we compare equation (6) with that obtained in the regular case given by (4) 

we can observe the (fundamental) difference between them. The information matrix is 

now modified by adding a scalar diagonal matrix giving rise to a Anew@ matrix Aλ(θ0) 

which is positive definite. 

Therefore, Aλ(θ0) could be used to tackle the problem of singularity of the 

information matrix. But how to introduce and justify its use? With regard to this 

problem an interpretation of  when λ is fixed arbitrarily and not restricted to the 

choice of δ, appears crucial. The following results are well known in numerical analysis 

(Goldfeld et al., 1966). 

)n(ˆ
λθ

[1]- Given λ,  is the maximizing point of the function P(θ) = z(θ) ─ (λ/2)2 θ─θ)n(ˆ
λθ 0 22 

obtained by penalizing the asymptotic approximation z(θ) with a quadratic penalty term. 

Because Aλ(θ0) is positive definite, P(θ) has a global maximum at θ . )n(ˆ
λ

[2]- From [1], P( )=z( )─(λ/2)2θ ─θ)n(ˆ
λθ

)n(ˆ
λθ

)n(ˆ
λ

)n(ˆ
λ 02

2$z(θ)─(λ/2)2θ─θ02
2 and z( )$z(θ) for 

all θ such that 2θ!θ

)n(ˆ
λθ

02=2θ !θ02=δλ. That is, if we define a region consisting of all θ 

such that 2θ!θ02#δλ then the maximum of z(θ) occurs on the boundary of this region. 

[3]- 0#δλ = 2 (B(θ0)+λI)─1m(x;θ) 2δ2 =3i ci
2(µi+λ)!2#δ2τ/λ where ci are certain constants. 

This means that as λ64, δλ is a decreasing function of λ. When λ64, δλ60 and 6θ)n(ˆ
λθ 0. 

Moreover, as λ60 δλ is an increasing function of λ. 
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[4]- When δ is sufficiently small, in particular if δ<λ/τ then δλ#δ2τ/λ#δ, that is, δλ is 

bounded, 0#δλ#δ and, because δλ is an increasing function of λ as λ60 then δλ converges 

to δ and the maximum of z(θ) occurs on the boundary of Uδ. 

The above remarks suggest a way to use Aλ(θ0). Define the following 

(penalized) log-likelihood function 

 

 2
0n 2

)(Llog)(P θ−θ
λ

−θ=θ  (7) 

 
and let  be a solution of the (penalized) likelihood equations )n(ˆ

λθ

0)()(LlogD 0 =θ−θλ−θ  

then, we have the following theorem 

Theorem: Given λ>0, under the conditions ö1-ö3, as n64, with probability tending 

to 1, a solution of the (penalized) likelihood equations θ  is near θ)n(ˆ
λ 0 and 

 

 ( ) ( )   )(A )B(  )(A0,    N ~     -ˆ  n -1
00

-1
00

)n(1/2 θθθθθ λλλ  (8) 
 
Proof. It is a straightforward generalization of Cramér=s proof. Here we will only trace a 

sketch of the proof. By expanding the (penalized) likelihood equations about θ0 after 

rescaling the score by n!1, we obtain (3) with the matrix of second derivatives modified, 

0 = )V(x;
2
1  +]h    I-)( L  log D n

1  [  +  )( L  log D 
n
1

0
2

0 θλθθ  

 

Then, under conditions ö1-ö3, as n64, we have (6). Because the eigenvalues of 

Aλ(θ0)=(B(θ0)+λI) are µi+λ with µi$0, then given λ>0, using an equivalent of Brower=s 

fixed point theorem as in the regular case, δ<λ/τ is a sufficient condition for θ  being 

in U

)n(ˆ
λ

δ. 



 12 
 

The probability limit of a Taylor series expansion of 

n!1DlogL(θ )!λ(θ !θ)n(ˆ
λ

)n(ˆ
λ 0)=0 about θ0 gives 

 

( ) η−=′+λ−θ− ĥnRĥI)(LlogDnlimp 2/1o
0

21  

 

where R° is a vector calculated at some point in Uδ and bounded in Uδ,  

and η-N(0,B(θ

0
)n(ˆĥ θ−θ= λ

)1(o) P
o =

0)) is the asymptotic distribution of the score scaled by n!1/2. Under the 

regularity conditions above, plim[n!1D2logL(θ0)]=!B(θ0) and, plim (  so 

that  plim ( . That is, for any λ>0, we have (8).  “ 

Rĥ′

ηθ= −1
0

2/1 )(A)ĥn

 

 

 

4.2- The Naive maximum likelihood estimator 

The definition and the use of the (penalized) log-likelihood function, Pn(θ), 

given in the previous section, leads to the following observations. 

i)- Pn(θ) can be interpreted as a penalty function where the penalty term is expressed in 

quadratic form. In the field of a non-regular theory, the approach based on a modified 

log-likelihood function is certainly not new. The logarithmic barrier function has been 

used in recent times to overcome the boundary problem and the non-identifiability in 

mixture models (Chen et al., 2001). 

ii)- Pn(θ) can be motivated by a Bayesian procedure or by incorporating a stochastic 

constraint. In the Bayesian motivation, let θ have the prior density proportional to 

exp[(!λ/2)2θ!θ02
2] so that  exp[Pn(θ)] is proportional to the posterior density. 

Alternatively, we can think of equation (7) as a constrained log-likelihood where the 

constraint is of the form θ=θ0+v, v-(0,λ!1 I) where I is the identity matrix of an 

appropriate dimension. The stochastic constraint is introduced into the log-likelihood 

function through the penalty function approach. 
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iii)- The parameter λ acts on the principal diagonal of the information matrix and plays a 

fundamental role in pursuing the asymptotic properties of the estimator. Therefore, the 

consistency of the estimator can be attained at a cost given by the loss of information we 

incur when a value of λ is fixed. 

iv)-The maximization of Pn(θ) is not a feasible procedure because, given λ, the 

procedure depends on the unknown Atrue@ parameter θ0 and the problem of how λ 

should be fixed arises. 

The problem (iv) is closely bound up with the goal of our paper and it can be 

solved if we can answer to the following question. Given the (unfeasible) estimator θ  

how can we construct a naive test in the Durbin sense? In other words, when ψ , the 

first component of θ , could have (approximately) the asymptotic distribution of the 

maximum likelihood estimator , given γ? 

)n(ˆ
λ

)n(ˆ λ

)n(ˆ
λ

nψ̂

With respect to this problem we observe firstly that letting λ60 in (8), we obtain 

( ) ( )  )(A )B( )(A lim,  0  N  ~   )(A lim=   -ˆ  n plim lim 1-
00

1-
0

0

1-
0

0
0

)n(1/2

0
θθθηθθθ λλ

→λ
λ

→λλ→λ
 

 

where (Barnabani, 1997) 

( ) ( )   ),(B  =    I+),(  B  ),(  B  I+),(  B   lim 0
+

0
-1

00
-1

0
γψλγψγψλγψ

→λ
 

is the Moore-Penrose pseudoinverse of B(ψ0,γ) which always exists and is unique (Rao 

et al., 1971). For the indeterminate parameters problem given the particular form 

assumed by the information matrix, the pseudoinverse of B(ψ0,γ) is 








 γψ
=γψ

−
ψψ+

00
0),(B

),(B 0
1

0  
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]

This result suggests that when n is sufficiently large, and δ sufficiently small, a 

solution of the following (penalized) likelihood equations, 

 [   0 = )-(   -  )L( log  D     lim 0
0

θθλθ
→λ

 (9) 

could be used to construct a naive test in the Durbin sense. In fact, as a consequence of 

Theorem and above considerations, we have the following result 

Corollary: Under the conditions ö1-ö3, as n64, with probability tending to 1, a 

solution of (9), θ ,  is near θ)n(
0

ˆ
λ 0 and 

 


















 γψ






















γγ

ψψ −
ψψ

λ

λ
   

00
0),(B

,
0

0
  N ~ 

  -ˆ 

 -ˆ  
  n 0

1

)n(
0

0
)n(

0
1/2  (10) 

where ψ  and  are two components of . )n(
0ˆ λ

)n(
0ˆ λγ

)n(
0

ˆ
λθ

From (10), Wλ0=n(ψ !ψ)n(
0ˆ λ

)n(
0

ˆ
λθ

0)Bψψ(ψ0,γ)( !ψ)n(
0ˆ λψ 0) is distributed as χ2(m).  will 

be called naive maximum likelihood estimator. Let B

)n(
0

ˆ
λθ

ψψ
!1(ψ0,γ) be partitioned in four 

blocks, B11, B12, B21, B22 and call ψj and ψt respectively the first and the second (block) 

component of the vector ψ. Then, we can test a subset of parameters H0:ψj=ψj0 through 

the statistic n( !ψjψ̂ j0)(B11)!1( !ψjψ̂

n

j0) which is distributed as χ2(rank(B11)). It is 

immediate to observe that !
~
θ =o(λ!0) and Wλ0!W=o(λ!0) with 0>0. 

 

 

5. Some examples 

 

Applications of the naive test, Wλ0, are closely associated with the possibility of 

obtaining a solution of the naive maximum likelihood estimator through equation (9). 

With respect to this problem, we first observe that for any λ, the estimator θ  has the 

same limiting distribution as the (unfeasible) linearized estimator 

)n(ˆ
λ
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)L( log D  
n
1    I   -  )L(  logD  

n
1    -   = T 00

2
-1

0n θ





 λθθ  (11) 

in the sense that n1/2( !θ)n(ˆ
λθ 0)=n1/2(Tn!θ0)+op(1). We underline that in the indeterminacy 

problem Tn plays the same role as the (unfeasible) linearized estimator Sn given for the 

regular case. Then, we can use (11) to obtain a solution to equation (9) through an 

iterative algorithm equating Tn to Tn
(s+1), θ0 to θ(s) (s is for step) and fixing a sequence of 

λ converging to zero in advance. More specifically in the subsequent examples we 

computed Tn following these steps: 

i)- Fix a sequence {λi}, typically {1, 10─1, 10─2,...} and choose a starting point, θ(s). 

ii)- Check the termination condition. When a sufficiently small value of λi has been 

reached the algorithm terminates. 

iii)- Compute an analytical Hessian matrix, J(θ(s)), and the matrix Aλ=J(θ(s))+λiI. 

iv)- Find iteratively a solution to (11). 

v)- Take the best estimate obtained at step (s) (a solution of (iv)) as a new starting value. 

Set i=i+1 and return to (ii). 

This algorithm works quite well in the examples discussed in this paper. 

Example 1 (Gallant, 1987): Let Y1, Y2,...,Yn be a sequence of independent normal 

random variables with (known) variance σ2 and expectations given by 







 γψψψ ∑ z  exp    +  x    +  x    =  )YE( iji

q

1=i
3i22i11i  

 

The inputs correspond to a one way Atreatment-control@ design that uses experimental 

variables that affect the response exponentially. Suppose we want to test the hypothesis 

H0: ψ3=0. Then, under H0, logL(ψ,γ)%2!1'i(yi!vi)2, vi=ψ1xi1+ψ2xi2 is independent on the 

q nuisance parameters γj j=1,...,q but depends on two parameters, ψ1 and ψ2 to be 

estimated. The elements of the score vector are 
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where ai=exp(3jγjzij). The information matrix on n observations is given by 
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σγψψψ  
aaxax
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axxx  x  

    =  ),,0,=(B
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0

0

0
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1xq

2
iiii2ii1i

1xq
ii2i

2
i2ii2i1i

1xq
ii1ii2i1i

2
i1i

2-
213n  

 

which shows both a singularity and a local orthogonality between γ and ψ. 

For simulation purposes we construct independent variables following Gallant 

(1987, p. 19). The first two coordinates consist of the replication of a fixed set of design 

points determined by the design structure 

( )






even is i if(0,1)

odd is i if(1,1)
   =   x    ,x  i2i1  

 

As to the q variables zij we limited these to q=2 and generated zij, j=1,2 by random 

selections from the uniform distribution in the interval [0,10]. Results are based on 5000 

replications of samples of different sizes with ψ1=!0.05, ψ2=1, ψ3=0 and σ2=0.001. The 

model is very sensitive to the choice of the functional form of the distributions of zij, 
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which must be positive everywhere on some known interval. Moreover, the initial point 

for the iterative process is crucial to be successful in the simulation. Therefore, a 

particular care with these aspects is required (Gallant, 1987). The naive test is given by 
2
3

33
0 ˆ)ˆ(bW ψγ=λ -χ2(1) where  is the inverse of the third element of the principal 

diagonal of the pseudoinverse of B

)ˆ(b33 γ

n(ψ3=0,ψ1,ψ2,γ). Proportion of rejections of H0 for 

different sample sizes are shown in Tab.1. 

 
 

Table 1. Proportion of H0: ψ3=0 rejections for  
the nonlinear model 

 
 
 

 
Sample size 

 
ψ3 

 
n=30 

 
n=50 

 
n=70 

 
n=80 

 
0 

 
0.57 

 
0.28 

 
0.105 

 
0.057 

 

The table shows that the proportion of rejections reaches the 0.05-significance 

level when the sample size is about 80. 

Example 2: (Davies, 1987). Let Y1,....Yn be a sequence of independent normal 

random variables with a unit variance and expectations given by 





γ≥γ
γ

    x  if)-x( c  +  x  b  +  a 
  <  x  ifx b  +  a 

 = )  Y  E(
iii

ii
i  

 

where xi denotes the time and γ the unknown time, at which the change in a slope 

occurs. We want to test the null hypothesis H0: c=0 against the alternative that c…0. We 

use simulation to investigate how rapidly the finite-sample performance of the test 

statistic based on the naive maximum likelihood estimator approaches its asymptotic 
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limit. For simulation purposes we construct an X matrix which has one in the first 

column, time such that 'i xi=0 in the second column, zero if xi<γ or (xi─γ) if xi$γ in the 

third. Then, we generated samples of different sizes starting from n=20 using the 

following model yi=1+3xi+c(xi!1)+ui, ui-N(0,1), giving several values to the parameter 

c. Under H0, one immediately observes that when the null hypothesis is true γ vanishes 

from the model and the expected information matrix becomes singular 























γ∑γ∑γ∑

γ∑∑∑

γ∑∑

γ  

0000

0)-x()-x(x)-x(

0)-x(xx  x

0)-x(x  n  

  =  )b,a,0,=(cB
2

i2iii2ii2i

ii2i
2
iiii

i2iii

n  

 

32i denotes the summation over xi$γ.  

In small samples, the application of the naive test to the two-phase model leads 

to define the test statistic, -χ233
0 ĉ)ˆ(bW γ=λ

2(1) where  is the inverse of the third 

element of the principal diagonal of the pseudoinverse of B

)ˆ(b33 γ

n(c=0,a,b,γ). 

Proportion of rejections of a null hypothesis for some value of c and different 

sample sizes are shown in Table 2. Results are based on 1000 simulation runs at a 5% 

level of confidence. 
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Table 2. Proportion of H0: c=0 rejections for  

a continuous two-phase model 
 

 
 

 
Sample size 

 
c 

 
n=20 

 
n=30 

 
n=40 

 
n=50 

 
0 

 
0.134 

 
0.124 

 
0.053 

 
0.037 

 
0.1 

 
0.142 

 
0.144 

 
0.154 

 
0.145 

 
0.2 

 
0.265 

 
0.33 

 
0.387 

 
0.773 

 
0.3 

 
0.42 

 
0.64 

 
0.942 

 
1 

 
0.4 

 
0.651 

 
0.85 

 
1 

 
- 

 

The table shows that there are differences in the performance of the test when 

we move from samples of size 20 to 50. In particular, under the null hypothesis H0: c=0 

the proportion of rejections reaches the 0.05-significance level with a 95% confidence 

interval [36,64] when the sample size is 40. Moreover, when data are generated with 

c=0.1 (we also tried with different values of 0#c#0.1) the proportion of rejections is 

nearly constant at about 14-16 per cent. We have an increase of this percentage when n 

is raised from 50 to 100 as shown in Table 3. 
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Table 3. Proportion of H0:c=0 rejections for  

a continuous two-phase model 
 

 
 

 
Sample size 

 
c 

 
n=60 

 
n=70 

 
n=80 

 
n=90 

 
n=100 

 
0.1 

 
0.174 

 
0.221 

 
0.412 

 
0.584 

 
0.645 

 

Because the two-phase model is taken from Davies (1987), a brief comment may 

be appropriate. Our remarks concern the approach used rather than the results obtained. 

The test based on the naive maximum likelihood estimator proposed in this paper may 

be considered Astandard@ because asymptotically the test statistic has a known 

distribution. Moreover, it is relatively simple to apply as it emerges from the above 

application. Davies= approach, though elegant, is quite elaborate to implement in 

practice and it is difficult to generalize when more than one parameter vanishes under 

the null hypothesis. In models more complex than those described in this paper, the 

asymptotic distribution of the test statistic constructed following Davies= method is 

unknown. Approximated distributions using simulation techniques are necessary and 

tabulation of critical values is impossible. Recent works that follow Davies= approach 

are Andrews and Ploberger (1994) and Hansen (1996). 
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7. Conclusions 

 

In this paper we proposed a way to solve the indeterminate parameter model 

modifying the information matrix directly, forcing an asymptotic  approximation of the 

log-likelihood function to find a solution in a neighbourhood of the true parameter 

through a constrained procedure. 

This approach leads to the definition of a modified (penalized) log-likelihood 

function setting a penalty parameter close to zero in order to sacrifice as little 

information as possible. The maximizing point of this function has attractive statistical 

properties. It is consistent and asymptotically normally distributed with variance-

covariance matrix approximated by the Moore-Penrose pseudoinverse of the 

information matrix. These properties allow one to construct a naive test in the Durbin 

sense which is a Wald-type test statistic with a Astandard@ distribution both under the 

null and alternative hypotheses. This test is relatively simply to apply to the 

indeterminacy problem. The performance in small samples of the proposed test statistic 

is detected on two nonlinear regression models. 
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