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Summary. In this paper we evaluate the evidence for pairs of competitive and
exhaustive hypotheses obtained considering a characteristic observed on a crime
sample and on individuals contained in a database. The subject considered here
takes into account a debate which recently appeared in the literature concerning
the appropriateness of different sets of hypotheses. First we demonstrate the
problem via a computational efficient Bayesian Network (BN) obtained trans-
forming some recognized conditional specific independencies into conditional
independencies. Moreover in the proposed BN the sets of hypotheses proposed
in the literature are included in the BN so that their role is better understood.
Our BN is first proposed for a generic dichotomous characteristic but we are
particularly interested in considering inheritable DNA traits. In this respect we
show how to use the BN to evaluate the hypotheses that some individuals, who
genetically related to the members of the database, are the donors of the crime
sample.

1. Introduction
The forensic identification problem considered in this paper arises when a crime
sample has been found but there is no clue about its origin. One possible step
is to move on consists in a search a database (DB) of identified people, in the
hope of finding suggestions about the origin of the trace.

∗email: cavallin@ds.unifi.it
†email: corradi@ds.unifi.it
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The topic has already been examined in the literature achieving surprisingly
different conclusions. Two approaches seem to appear leading to a debate about
the choice of the mutually exclusive hypotheses of interest.

To clarify the positions, consider the simple but relevant case occurring when
only one of the elements in the DB matches the crime sample.

The National Research Council I Report (NRCI, 1992), followed by a re-
vised version (NRCII, 1996), extended the standard solution to identification
provided when there is a suspect to a DB search. Their proposal is based on the
probability of a chance finding of an individual identical to the crime sample
in a population of suspects (a so-called "match"). To cope with a DB search,
NRCI and NRCII started from the true assertion that the probability of finding
a match by chance is more probable in a DB than in a single drawn from the
population; so, the probability that one person in the DB matches the crime
sample by chance is considered as the probability of the data conditional to the
defendant hypothesis. Conversely, the probability that one person in the DB
matches because he/she is the origin of the trace, is regarded as the probability
of the data conditional to the prosecutor hypothesis. From these premises the
weight of evidence (WE), i.e., the ratio between the latter and the former of
probabilities, is found to be inversely proportional to the DB size (NRCII, pag.
161). This is acceptable if the hypotheses under which the WE is evaluated are:

• Hp : "One of the people in the DB matches since he/she is the origin of
the trace, i.e., the origin of the trace is in the DB";

• Hd : "One of the people in the DB matches by chance, i.e., the origin of
the trace is not in the DB".

As a corollary, if a match is found and the DB contains almost the entire
population of suspects, P (Hp) ≈ 1 and P (Hp | Evidence) cannot be very differ-
ent. This means that nevertheless we are almost sure to have found the origin of
the trace, a single match has a very low impact on P (Hp), so the WE is small.

The second stream of contributions originated from the general approach to
forensic identification provided by Balding and Donnelly (1995) and Dawid and
Mortera (1996). In their papers, for each generic observed individual, say i, a
pair of hypotheses are considered:

• H
′
i,p : "The origin of the trace is i, a well identified person";

• H
′
i,d : "Someone else, with respect to i, is the origin of the trace".

Starting from a prior for the hypotheses for all the members of the DB a
posterior odds and a WE are derived.

This very detailed solution was apparently lost in the Balding and Donnelly
(1996) contribution which was expressly devoted to the evaluation of a WE in
a DB search. Focusing again on the single match case, they considered those
individuals who were not compatible excluded from the search. This led to a
pair of alternative hypotheses:
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• H
′
p : "The origin of the trace is the matching person".

• H
′
d : "Someone else, out of the DB, is the origin of the trace".

Their conclusions, with explicit focus on the influence of the DB size on the
WE, were exactly opposite to those reached by the NRCI and NRCII Reports.
Balding and Donnelly (1996) argued that, the greater the DB size compared to
the suspect population, the greater the number of the excluded individuals and
the greater the WE provided by only one match.

Stockmarr (1999), strongly opposed to H
′
p (and H

′
d) since he considers it

impossible to set these hypotheses in advance with respect to the data. Thus,
he considers the hypotheses Hp and Hd proposed by the NRCI and NRCII
Reports to be valid. Moreover, he extended the analysis to the case involving
more than one match, also distinguishing between finite and infinite populations.
Obviously his results are on the track of those reached by NRCI and NRCII.

This further contribution to the debate has received many reactions. Among
others, Dawid (2001) considered Hp too generic to bring before a judge, since it
refers to the possibility that the DB contains the origin of the trace and the DB is
not obviously on trial; in other words Hp does not address the problem in a useful
way. Still he proposed the detailed set of hypotheses H

′
i,p for all the observed

individuals in the DB and made a very convincing logical distinction between the
prosecutor hypotheses Hp and H

′
p. He noted that a difference between them

appears only before the evidence is available: at that stage Hp considers the
possibility that the origin of the trace may be in the DB, while H

′
p considers the

possibility that the matching person is the origin of the trace. After the evidence
has been collected, Hp collapses into H

′
p since, having excluded from suspicion

all the people in the DB but one, this latter corresponds to the individual
considered by H

′
p. Hypotheses having this behavior are called conditionally

equivalent. Obviously, also that H
′
i , p corresponding to the matching individual

in the DB is conditionally equivalent to Hp. Moreover, if the prior on Hp,
H
′
p and H

′
i,p are coherently specified by a unique set of assumptions, the same

posterior odds are obtained.
Judging by this result, one might wrongly assume that the controversy is

solved. The problem is that the evaluation of evidence is based on the WE which
is usually considered an "objective measure" and is preferred to the posterior
odds which require the elicitation of the priors. This delicate task is reserved
for the jury. In this case, however, the point is different and concerns the choice
from among the possible relevant hypotheses. Since, by definition, there is no
clue about any of the persons in the DB, a no-informative prior is acceptable,
however the prosecutor hypotheses have different priors as they refer to different
sets of individuals: just one person for H

′
p (and each H

′
i,p) and the size of the

DB for Hp.
Since a WE is derived via the relation WE = O(H|E)−1O(H), obviously

different WEs derive if we consider Hp instead of H
′
p since, for these hypotheses,

their posterior odds coincide but their corresponding priors do not.
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Starting from an intuitive BN representation of the DB search problem for a
binary characteristic, we provide a computationally efficient network obtained
transforming some recognized conditional specific independencies (Geiger and
Heckerman, 1996) into conditional independencies (Section (3)). Then, we ex-
tend the model to more complex genetic traits (Section (4)) and we exploit the
inheritance between individuals of the same lineage to extend the search to some
relatives of the individuals in the DB (Section (4)).

Finally, we propose a simulation study using a real DB (Section (5)) and
some conclusions are drawn (Section (6)).

2. Background and definitions
A BN, BU(D,P) or more succintly BU, is defined as a pair of objects: a Directed
Acyclic Graph (DAG), D, whose nodes, U, represent discrete random variables,
and a set P of Conditional Probability Tables (CPT) which define the conditional
distributions of each vertex given the parents.

Every node is independent of its non-descendants conditional to the parents,
so the joint distribution of U can be factorized as a product of CPTs (Pearl,
1988). Many other conditional independence assertions can be read from the
network using the d-separation criterion (Pearl, 1988).

One of the main advantages of codifying a probabilistic model through a BN
is the reduction of the computational efforts for calculating the conditional prob-
ability of the interesting unobserved nodes (query variables) given the observed
ones (evidence). This task can be achieved using some different Propagation Al-
gorithms such as the Junction Tree (Jensen, 2001) and the Bucket Elimination
Variable (Dechter, 1999).

In regard to notation, upper-case letters denote random variables and cor-
responding lower-case letters are used to indicate a specified event or state.
The vectors of random variables are denoted with bold upper-case letters and a
particular realization or configuration is indicated with bold lower-case letters.
Finally, lower-case Greek letters represent parameters.

In order to proceed in our formal discussion the following definitions are
needed.

DEFINITION 2.1. Let X and Z be two disjoined sets of random variables.
The BN BX∪Z(D?,P?) is Probabilistic Equivalent, (PE), to BX(D,P) with
respect to X, if and only if

P (X) =
∑

Z

P ?(X,Z). (1)

DEFINITION 2.2. Let X and Z be two disjoined sets of random variables.
The BN BX∪Z(D?,P?) is Specific Probabilistic Equivalent, (SPE), to BX(D,P)
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with respect to X and a configuration e of E ⊂ X, if and only if1

P (X\E, e) ∝
∑

Z

P ?(X\E, e,Z). (2)

DEFINITION 2.3. Let X, T, Y and Z be four disjoined sets of random vari-
ables. The BN BU?(D?,P?), where U? = X ∪T ∪Z, is Artificial Probabilistic
Equivalent, (APE), to BX∪Y(D,P) with respect to X and a configuration y, if
and only if there exists a realization z such that

P (X,y) ∝
∑

T

P ?(X,T, z). (3)

The above definitions establish some probabilistic relations among the BNs
defined on different domains. The relevance of these concepts concerns the
probability of updating of a set of shared query variables when a set of nodes,
that is fixed in advance, receives evidence. In fact, if (1) holds, then for any
evidence on a subset of X, the posterior probability of the unobserved nodes of
X can be obtained indifferently using the BNs BX or BX∪Z. Instead, condition
(2) provides a milder relation; the result of the propagation, with respect to the
set X\E, on the two BNs BX and BX∪Z is the same if and only if the evidence
on E is e. Obviously, (1) implies (2) but the opposite is not true. Finally, a
more sophisticated scenario is proposed in DEFINITION (2.3). There, the
set X is the intersection between the domains on which the two BNs, BX∪Y and
BU? , are built. Given a piece of evidence y, the propagation on BX∪Y and on
BU? provides the same posterior distribution on X if a particular configuration
z exists such that (3) holds.

3. BN and forensic identification in a simplified setting
3.1 The Island problem

The evaluation of generic evidence in the forensic setting has received con-
siderable attention in the last ten years. A very careful analysis is provided
by Dawid (1994) and Dawid and Mortera (1996) with respect to the so-called
Island problem originally proposed by Egglestone (1983): there, a certain bi-
nary characteristic or attribute, X, is observed on the crime scene (Xc) and the
population of the possible donors is restricted to the N + 1 persons, the Island
inhabitants.

For the j-th individual of the Island population a random variable Xj , with
j ∈ I = {1, 2, . . . , N + 1}, is defined and the main focus of the analysis is to
evaluate the probability that each inhabitant is the origin of the trace, given
the evidence on X = {Xj : j ∈ I} or a subset of it.

The most natural way to proceed is to define a discrete random variable H
with N + 1 states, representing the originator status of each single inhabitant
and to calculate its posterior distribution.

1The symbol \ denotes the topological subtraction operator among the sets.
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Figure 1. A DAG for the Island problem with only three inhabitants.

Moreover, the following assumptions are taken:

i. among the individuals, the characteristics distributions are independent
given θ = P (X = 1), i.e., ∀j 6= t, Xj ⊥⊥ Xt | θ;

ii. the characteristic is pure, i.e. is stochastically independent of the origina-
tor status of each inhabitant, ∀j, Xj ⊥⊥ H | θ;

iii. for H = j the characteristics of the rest of the inhabitants, X−j , are
independent of the attribute observed on the crime scene, ∀j, Xc ⊥⊥ X−j |
H = j where X−j = {Xi : i ∈ I\ {j}};

iv. the observations are symmetric error free, ∀j, Pr(Xc = 1 | Xj = 1,H =
j) = Pr(Xc = 0 | Xj = 0,H = j) = 1;

v. no other clue is available in advance, so the prior probability on H is no
informative, ∀j, Pr(H = j) = 1/(N + 1);

Note that (iii) is a whole set of N + 1 independence statements: for each
value of H a different assertion of independence holds. This form of indepen-
dence is known as Conditional Specific Independence (CSI) (Geiger and Hecker-
man, 1996), which differs from the usual definition of conditional independence
(Dawid, 1979), since, in the latter, the independence assertions between vari-
ables do not vary according to the values of the conditioning sets.

3.2 A BN for the Island problem
A BN for the Island problem can be built in a simple way. The domain U

is comprised of X, Xc and H. The graphical structure, which derives from the
assumptions (i) and (ii), is summarized in the following four statements and by
way of example in Figure (1).

A. ∀j 6= t,Xj 6∼ Xt. B. ∀j, Xj 6∼ H.

C. ∀j, Xj → Xc. D. H → Xc.

A Bernoulli distribution with parameter θ determines the marginal proba-
bility table of each node Xj and the distribution of H is defined with respect
to the assumption (v). Furthermore, the CPT for Xc has a repetitive structure
according to the CSI assumptions (iii) and the symmetric error free hypothesis
(iv). The proposed naive network for the Island problem does not feature any
conditional independence, so, for some evidence, the probability updating does

6
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Figure 2. The augmented DAG obtained from Figure (1).

not take advantage of the graphical representation. Moreover, the size of the
CPT of Xc increases exponentially with respect to the number of inhabitants
so that the propagation becomes rapidly unfeasible. To improve the efficiency
of the algorithm, some modifications are required. The task is achieved by in-
troducing a set of instrumental nodes in such way that the new structure, built
on the augmented domain, is APE to BU.

The result is attained in three steps.
Step 1. First, a set of binary random variables H = {Hj : j ∈ I} is added

and a new network, B?
U? , is defined on the augmented domain U? = U ∪H.

The new DAG, D?, is built considering the graph-theoretical statements
(A)-(C) and on the following:

E. H 6∼ Xc. F. ∀j,H → Hj .

G. ∀j 6= i,Hj 6∼ Hi. H. ∀j and i,Hj 6∼ Xi.

I. ∀j, Hj → Xc.

The augmented network derived from Figure (1) is illustrated in Figure (2).
The marginal distribution of the variables Xj and H are the same as in the

original network and the remaining CPTs are defined as follows:

a. ∀j, P ?(Hj = 1 | H = i) is equal to 1 when i = j, otherwise is 0;

b. ∀j, P ?(Xc | X,H = 0j) = P (Xc | X,H = j) and P ?(Xc | X,H 6= 0j) 6= 0
where 0j is a vector with dimension N + 1, whose i-th element is 0 for
i 6= j and 1 for i = j.

Finally, the following proposition (Appendix A) holds:

PROPOSITION 3.1. The BN B?
U? is PE to BU with respect to U.

The CPTs attached to each node Hj , specified as in (a), is the probabilistic
translation of the deterministic logical if-then relation, i.e., ∀j if H = j then
Hj = 1 and ∀i 6= j, Hi = 0. Thus, each variable Hj represents the originator
status for the j-th inhabitant and the deterministic relation is a consequence of
the assumption that the characteristic observed on the crime scene was left by
only one individual.
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Figure 3. The augmented DAG of Figure (2) after the divorce.

Remark 1. This step has to be interpreted as preparatory because there are no
computational motivations to use B?

U? . The dimension of CPT attached to Xc,
2(3+2N), is larger than the original one, 2(N+2) · (N +1), so that the calculation
of the posterior probability of H given the evidence becomes more demanding.

Step 2. Here a divorcing technique (Jensen, 2001) is applied. The idea is
to introduce a set of mediating variables between the parents and their child
of a large converging connection. The role of the mediating variables is to lead
some parents to divorce. The main advantage of this method is the reduction
of the computational efforts because the original clique, {X, Xc,H}, is broken
into a tree of smaller cliques.

In the Island problem, a reasonable way to divorce the parents of node Xc

in the network B?
U? , is to add N + 1 mediating variables Z = {Zj : j ∈ I}, so

that each pair of variables Xj and Hj are married.
More formally, the new DAG, D+, is built on the set of nodes U+ = U? ∪

Z and is formulated according to the statements (A)-(B), (E)-(H) and to the
following ones:

L. ∀j, Zj 6∼ H. M. ∀j 6= i, Zj 6∼ Zi.

N. ∀j, Hj → Zj and Xj → Zj . O. ∀j 6= i and ∀j 6= t, Zj 6∼ Xi and Zj 6∼ Ht.

P. ∀j, Zj → Xc.

In Figure (3), the network of Figure (2) is divorced.
Concerning the CPTs, the marginal distributions of the variables Xj and H

are unchanged with respect to the previous BN, the probabilistic assertion (a)
still holds as well as the following:

c. ∀j, Zj is binary,

d. ∀j, P+(Zj = 1 | Xj = 1,Hj = 1) = P+(Zj = 0 | Xj = 0,Hj = 1) = 1,

e. ∀j, Zj ⊥⊥ Xj | Hj = 0 and P+(Zj = {0, 1} | Hj = 0) 6= 0.

Finally, the CPT related to Xc has two different specifications:

8



f1. P a(Xc = 1 | Z = 1) = 1 and P a(Xc = 1 | Z 6= 1) = 0 where 1 is the
unitary vector with dimension N + 1;

f2. P o(Xc = 0 | Z = 0) = 1 and P o(Xc = 0 | Z 6= 0) = 0 where 0 is a vector
with dimension N + 1 whose elements are zero.

The symbols Ba
U+ and Bo

U+ are used for denoting respectively the BN built
in accordance with the constraints (f1) and (f2). Note that (f1) is the proba-
bilistic translation of the deterministic and relation and (f2) is a probabilistic
representation of the logical or relation.

The following proposition (Appendix B) establishes the probabilistic relation
between the pair of BNs (Ba

U+ , Bo
U+) and the network B?

U? .

PROPOSITION 3.2. The BN Ba
U+ (Bo

U+) is SPE to B?
U? with respect to U?

and the evidence Xc = 1 (Xc = 0).

At this point the task of building a network able to perform local computations
is achieved but the result is unwieldy since the BN to be used depends on the
evidence on Xc. This drawback is overcome in the next step.

Step 3. In both networks, Ba
U+ and Bo

U+ , when an evidence on Xc is en-
tered, the relative reduced CPT can be written as a product of N +1 potentials,
that is,

P a(Xc = 1 | Z) =
N+1∏

j=1

φa(Zj) (4)

P o(Xc = 0 | Z) =
N+1∏

j=1

φo(Zj) (5)

where, ∀j,

φa(Zj) =

{
1 if Zj = 1

0 if Zj = 0
(6)

φo(Zj) =

{
0 if Zj = 1

1 if Zj = 0.
(7)

The potentials (6) and (7) can be interpreted as findings, i.e., tables whose
elements are zeros or ones. Relations (6) and (7) establish that each variable
Zj takes values one or zero with probability 1. In other words, during the
propagation, the evidence on Xc is transferred to each mediating variable Zj .

The new DAG, D−, is defined from D+ simply by dropping the variable
Xc and its incidental arcs. More formally, D− is built on the domain U− =
U? ∪ Z considering the graph-theoretical statements (A)-(B), (E)-(H) and (L)-
(O). Finally, the CPTs of the related network, B−

U− , are specified with respect
to the assumptions (a) and (c)-(e). As usual, the marginal distributions of the
variables Xj and H remain unchanged.
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Figure 4. The network obtained after dropping the Xc node and the related inci-
dental arcs from the DAG in Figure (3).

Figure (4) depicts the network of Figure (3) after the node Xc and the related
incidental arcs have been dropped.

Finally, the next proposition (Appendix C) holds:

PROPOSITION 3.3. For any evidence on Xc = {0, 1} there exists only one
correspondent realization of Z = {0,1} such that

P (X,H, Xc = {0, 1}) ∝
∑

Y

P−(X,H,Y,Z = {0,1}). (8)

In other words, for every evidence on Xc, B−
U− is APE to BU with respect to

{X,H}.
The PROPOSITION 3.3 assures that, for any possible evidence on X and

an observation on Xc (0 or 1) only one configuration of Z (0 or 1) exists such
that the posterior distribution of the variable H obtained using the networks
BU and B−

U− is the same.
The graph D− is featured by a repetitive structure with respect to the inhab-

itants of the Island. For each of them the same BN is built and all the networks
are mixed by the hypothesis variable H which is the only parent of every Hj .
Therefore, in the resulting network B−

U− , a set of conditional independence as-
sertions appears, i.e., given H, each triple (Zj , Hj , Xj) is independent of the
rest of the variables and so, for calculating the posterior distributions of H, local
computations are allowed.

Finally, in the next proposition (Appendix D) the marginal distributions of
the mediating variables are found.

PROPOSITION 3.4. The marginal distribution of each variable Zj is

P (Zj | θ) =
1

N + 1
· [N · P (Zj | Hj = 0) + θ · P (Zj | Xj = 1, Hj = 1)

+(1− θ) · P (Zj | Xj = 0,Hj = 0)] . (9)
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Table 1
Posterior probabilities for the identification hypothesis and implied WEs for some

piece of evidence.

Evidence Posterior WE

Xi = 1 (1 + N · θ)−1 θ−1

Xi = Xj = 1 (2 + (N − 1) · θ)−1 N/(1 + (N − 1) · θ)

Xi = 1, Xj 6=i∈I = 0 (1 + θ · (N − k + 1))−1 N/(N − k + 1) · θ

From (9) it is clear that the marginal distribution of each variable Zj depends on
P (Zj | Hj = 0) which, according to the condition (e), needs only to be greater
than 0. Under the hypothesis of symmetric error free, if P (Zj = 1 | Hj = 0) = θ
then P (Zj = 1 | θ) = θ, that is, the marginal distribution of each mediating
variable is a Bernoulli with parameter θ. So, in this context, considering that
the evidence on the vertex Zj is set equal to the characteristic observed on the
crime scene, the mediating nodes can be interpreted as a replication of Xc, but
this interpretation is valid only if the symmetric error free assumption holds.

3.3 First applications of the proposed BN to the Island problem
In the Island problem, Xc is always observed but several different scenarios

can arise with regards to the availability of the observed individuals forming a
subset I ⊆ I, so that {Xc, XI} is the evidence.

To illustrate some preliminary uses of the BN derived in Section (3.2), we
consider three possibilities.

1. Only one individual is observed, I = {i} and he/she is found to have the
characteristic under consideration. This possibility arises if the DB has
only one element or a clue suggests that individual i be investigated, or i
is drawn randomly from I.

2. Two individuals are observed, I = {i, j}. Both of them are found to have
the characteristic under consideration and the observation mechanism fol-
lows one of the schemes depicted above.

3. Among k observed individuals only one of them matches the characteristic
under consideration.

The posteriors for the identification hypothesis concerning individual i are
provided in Dawid and Mortera (1996) and summarized in Table (1).

The same results can be obtained using the proposed network B−
U− which

can be used to process every other possible piece of evidence.
Since sometimes the crime sample is observed with error, the assumption (iv)

could not be valid, so more generally, instead of assumption (iv), we consider

iv?. ∀j, Pr(Xc = 1 | Xj = 1,H = j) = Pr(Xc = 0 | Xj = 0,H = j) = β < 1,

11



where symmetry is maintained. This scenario can be easily accommodated in
the proposed BN, modifying (d) as follows:

d?. ∀j, P+(Zj = 1 | Xj = 1,Hj = 1) = P+(Zj = 1 | Xj = 1,Hj = 1) = β.

Remark 2. Dawid and Mortera (1996)) address the Island problem allowing for
error-prone observations via Pr(Xj = 1 | Xc = 1,Hj = 1) = P ? < 1. It is not
hard to establish a probabilistic connection between the two approaches, in fact,
with respect to the BN proposed in this paper, the results obtained by Dawid
and Mortera (1996) can be derived easily posing P ? = β ·θ/(β ·θ+(1−θ)·(1−β)).

3.4 From the Island problem to a generic reference population
The representation of all the inhabitants in the BN has illustrative purposes

but it is not compulsory when the number of individuals for which the evidence is
available is k < N+1. Without loss of generality, we assume to have observations
for the first k individuals. Let I = {1, 2, . . . , k}.

Since ∀i 6= j, with i, j ∈ I\I

P (H = i | Xc, XI) = P (H = j | Xc, XI), (10)

a more parsimonious representation can be obtained by dropping the sub-
networks related to the unobserved individuals and collapsing their correspon-
dent H states in a residual one, which represents the hypothesis that the orig-
inator of the trace is in I\I. In keeping with the assumption (v) the prior for
the new state is equal to 1− k/(N + 1).

Remark 3. The BN just obtained is able to embed the two different set of
hypotheses (Hp,Hd) and (H

′
i,p, H

′
i,d). Also, looking at the matching person

(H
′
p,H

′
d) can be monitored. In fact the first k states of H contains the whole

set of hypotheses suggested by Dawid (2001), moreover the k + 1-th residual
state is exactly the Stockmarr Hd hypothesis, so that, P (Hp) = 1 − P (Hd) =
1− P (H = k + 1).

A reference population is always difficult to define since the number of potential
donors varies from case to case. When we are dealing with a DB search, usually,
the extension of the reference population is not well-defined. Nevertheless, the
introduction of a new node N and a directed arc N → H, permits this kind of
uncertainty to be taken into account. The CPT of H still follows condition (v)
while the states of N and their prior probabilities depend on the specific case.

With regard to the uncertainty of the population characteristic, Corradi
et al. (2003) show that if the sample from which the inference about θ is
derived is large (> 300) then the effect on the hypothesis posteriors and the
related WE is negligible, but care must be taken with regard to the possible
heterogeneity of the examined characteristic. Note that the sample, drawn from
the reference population, must not be confused with the DB, since the former
has to be collected (approximately) at random and, typically, the identity of the
contributors is not recorded.
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4. BN and forensic identification through a search of DNA profiles
in a DB

In Section (1) we introduced the DB search theme by means of the one-match-
case. Actually, this outcome is especially valuable when the characteristic of
interest is rare and the DB size is some order of magnitude smaller than the
number of individuals in the population, since it is most usual to find no matches
and there is only a very small probability of finding more than one match. This
comment is still true when, instead of considering a generic dichotomous char-
acteristic, the crime sample is a DNA profile. It follows that, depending on the
set of assumed hypotheses, the proposals of Stockmarr (1999) and Balding and
Donnelly (1996) solve the problem in the DNA setting as well. The possibility
to recover these results as shown in section (3) does not seem essential, even
if some assumptions adopted in those solutions could be easily relaxed making
use of the modular BN structure.

To become effective, the detailed representation of all the individuals in the
DB and the related hypotheses H

′
i,p need to be considered jointly with the trans-

mission of genetic information among relatives in a pedigree. This inheritance
allows us to consider, as the possible donors of the crime sample, also individuals
never typed but genetically related to the members of the DB. In this way, the
most common but unfortunately also the last useful outcome of the DB search
(the no-match case) could produce WEs different from zero for some compati-
ble individuals. Compatible individuals are defined as those having a positive
probability for the characteristic observed on the crime sample, conditional to
all the available evidence. For instance, a member of a DB not matching the
crime sample has a compatible child if he/she has an allele in common with the
crime sample at each locus. Following this track, an augmented DB is defined
and explored with respect to the set of hypotheses that one of its members is
the origin of the crime sample.

4.1 Background and notation for DNA evidence
A DNA profile concerns measurements on several well specified locations of

the DNA, called loci. At each locus we observe two alleles, one inherited from
the father and the other from the mother, even if their origin is not recoverable.
In this paper we assume independence of the alleles within each locus and be-
tween the loci, i.e., we assume Hardy Weinberg and linkage equilibrium. These
assumptions are a simplification of reality but are also commonly assumed as
an acceptable approximation.

For each individual i ∈ I, we consider a pedigree constituted by the parents
(i0 and i1), a child (ic), a partner (ip) and a brother (ib). Here, the labels
0 and 1 are referred to a generic parent and not specifically to the mother or
father because the information concerning inheritance is not available. Since
this pedigree is built around i, we call it a one-generation-around pedigree and
will be denoted with i?. A traditional pedigree representation of the outlined
family is in Figure (5)

For a generic locus and for each j ∈ i? we define two random variables A0
j

and A1
j whose states, a1, a2, . . . , am, are the inheritable alleles. In addition,
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Figure 5. The one-generation-around pedigree.

∀j ∈ i? we consider a further random variable Xj whose states represent the
genotypes, i.e., order pairs of alleles (at, au) with t ≤ u.

Then, the one-generation-around DAG, pictured in Figure (6), is built ex-
plicitly considering the alleles transmitted from parents to children.

In order to obtain a full specification of the BN we need to specify three
different kinds of CPTs.

1. The marginal distribution of the root nodes A0
j and A1

j with j ∈ i?. The
probability of a generic allele at is estimated by means of the relative fre-
quency of alleles observed in a sample taken from a specified reference
population. The sample is often not random, nevertheless, the observa-
tions are considered to be exchangeable if weak information on the genetic
structure of the population does not allow further structuring of observa-
tions. Anyway, care is typically taken to avoid the selection of strictly
related individuals in the sample, such as siblings who are excluded from
the sample in order to avoid the over-representation of highly correlated
genotypes (Evett and Weir, 1998).

2. The conditional distribution of each no root node, A0
j and A1

j , with j ∈ i?,
given its parents in the graph, i.e., a pair of variables (A0

v, A1
v) with v ∈ i?

and v 6= j. By the first Mendelian, the related CPT is defined as follows

Pr(As
j = ar | A0

v = at, A
1
v = au) =





1 if r = t = u

0.5 if r = t and r 6= u

0.5 if r = u and r 6= t

0 otherwise.

(11)

3. The conditional probability distribution of each variable Xj given A0
j and

A1
j with j ∈ i?. This CPT is specified considering the deterministic rela-

tion between genotype and alleles, such that

Pr(Xj = (ar, au) | A0
j = ah, A1

j = at) =





1 if h = r and t = u

1 if h = u and t = r

0 otherwise.
(12)

14



?>=<89:;A0
i0

76540123Xi0

?>=<89:;A1
i0

?>=<89:;A0
ib

76540123Xib

?>=<89:;A1
ib

76540123A0
i

/.-,()*+Xi

76540123A1
i

?>=<89:;A1
i1

76540123Xi1

?>=<89:;A0
i1

?>=<89:;A0
ic

76540123Xic

?>=<89:;A1
ic

?>=<89:;A1
ip

?>=<89:;Xip

?>=<89:;A0
ip

xxrrrrr

44hhhhhhhhhhh

!!CCCCCCCCCCCCCCC

ffLLLLL

=={{{{{{{{{{{{{{{

**VVVVVVVVVVV

**VVVVVVVVVVV

44hhhhhhhhhhh

**VVVVVVVVVVVV

44hhhhhhhhhhhhxxrrrrr

=={{{{{{{{{{{{{{{

**VVVVVVVVVVV

ffLLLLL

DDªªªªªªªªªªªªªªªªªªªªª
44hhhhhhhhhhh

&&LLLLL

88rrrrr

&&LLLLL
»»1

11
11

11
11

11

&&LLL
LL

xxrrr
rr

88rrrrr
ffLLLLL

Figure 6. The one-generation-around network.

The one-generation-around pedigree can be represented as BN in yet two
other ways. The first one, called Segregation Network, provides a more detailed
representation of the genetic mechanism since a segregation indicator is intro-
duced as the parent of each genotype node. The other possibility, Genotype
Network, considers only the genotypes (Xj); the topology of the graph is very
similar to the parents-child biological relationships depicted in Figure (5). Like
Dawid et al. (2002), our choice to consider the BN of Figure (6) is motivated by
computational considerations and by the fact that the loci used for identification
purposes have codominant alleles. For more details and further comments about
possible alternatives see Jensen (1997) and Lauritzen and Sheehan (2002).

4.2 A search on the augmented DB
To provide a one-generation-around search an augmented network, as shown

in Figure (6), is built for each i ∈ I not recently related with other individuals in
the DB. Then, in accord with the theory developed in Section (3) the genotype
node of each individual in I∗ = {i? : i ∈ I} is linked to a mediating node and a
dichotomous hypothesis variable is added.

In Figure (7) we represent the network, providing details only for the generic
i-th family. Obviously, every node Hj with j ∈ i? must be connected to the
general hypothesis variable H (not represented in the figure) that also includes
the possibility that the origin of the trace is outside I∗.

For each individual in I∗, the result of the search is the computation of the
WE supporting the hypothesis that he/she is the origin of the trace. Under
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Figure 7. The extended network of Figure (6) with a related hypothesis system.
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the H-W assumption, the product of the single WEs evaluated for each locus
constitutes an overall measure of the genetic evidence. A WE cannot be read
directly by the net, but it is a simple matter to derive it from the prior and
posterior probabilities of the dichotomous hypotheses variables.

Some comments are in order. First, the adoption of the one-generation-
around pedigree for each of the I members is a compromise between the inclu-
sion of only direct descendants or ancestors (i.e., relatives for which an exclusion
is possible) and to choose a more extensive search. A further concern arises with
regard to apparent rigidity of the one-generation-around pedigree choice. This
decision could not absorb some pieces of information available for some of the
individuals in I∗. This is a general problem concerning the relation between the
elements in the DB and the population of possible donors of the crime sample.
In fact, the DB is acquired independently of each single investigative case and,
in the comparison with a crime sample originating from a specific case, we must
ask if there are some pieces of information acts to discard some of the members
of the DB as members of the donor population. This consideration held, either
we consider the set I or its augmented version I∗. In fact, considering I, some
of its members could remain excluded from the donor population; this exclusion
could be reversible (e.g., they were in jail when the crime was perpetrated) or
permanent (e.g. they are dead). The advantage to consider I∗ is that we are
in the position to discard i because he is out of suspect but not his relatives
if they are considered belonging to the donors population. This refined state
of information can be easily incorporated in the proposed BN simply working
on the H node’s CPT. If we want to exclude someone from the search we set
to zero his corresponding prior probability. In this case, independently of the
evidence, his posterior is also zero and the WE takes an undetermined form.

There are several ways to refine the analysis making use of the detailed and
modular BN structure. One is to replace the uniform prior probabilities for each
of the states of H linked to the I∗ with some specific probabilities concerning
the existence of each not observed individual, (e.g. the probability that a man
has a child). Another possible refinement should be the introduction of more
specific allele probabilities in a family for which we have information about the
ethnicity of some of its members. Finally, we have assumed all the members of
the DB to be not recently related: obviously if we know that some of them are
in a well specified relative relation, instead of considering two or more different
networks as specified in Figure (7), we instantiate the only one identified family
network with all the available evidence.

5. An application using a real DB
Now we give account of some results obtained simulating a search on a real
DB. The DB contains 100 observations on 13 loci. The members of the DB are
assumed to be unrelated and we also assume that all the one-generation-around
individuals belong to the donor population.

The size of the donor population was set to one million and the prior on H
is assumed to be uniform.

For each observed individual, we generated two crime samples obtained re-
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spectively from the posterior marginal distribution of the child’s and the sibling’s
genotypes. We call them the child-crime-samples and the sibling-crime-samples.

For every child-crime-sample, we evaluate two hypotheses: one strictly re-
lated to the identification of the child for each member of the DB, the other
related to the possibility that the crime sample comes from a generic member
of each one-generation-around family. Similar computations are provided if the
sibling-crime-samples are used.

Results are stored in 100× 100 matrices, where the columns label the crime
samples and the rows the hypotheses. The matrices are shown as images (Fig-
ures 8(a)-8(b) and 9(a)-9(b)) on the gray scale of 65,535 levels. Darker gray
levels correspond to higher WE values.

Another way to summarize the results is to provide for the main diagonal
elements of the matrices, the ranks computed for each column (Table 2). The
higher the rank, the higher the relative position of the correct identification
hypothesis.

Concerning the identification of a child 98 out of 100 of the WEs supporting
the correct identification hypothesis have the highest values; the remaining 2
have the second highest values. Identification of the family was a slightly less
successful which was also the case for the identification of a sibling and the
related family. In Table (2) we report the distribution of the ranks for the
diagonal elements of each matrix. The first two columns concern the child-crime-
sample with respect to the child hypothesis and to the more generic familiar
hypothesis; the third and fourth columns concern the sibling-crime-sample and
the appropriate hypotheses.

Whatever the evaluation of these results, it must be noted that our simu-
lation is conservative in nature since, for instance, in sampling sibling-crime-
sample we do not know the relatives’ genotypes but we sample from their pos-
terior distribution conditional to the genotype of just one of their children. In
real cases where the "nature" knows the relatives’ genotypes, brothers’ geno-
types are often very similar: for each locus, it suffices that only one of the
parents is homozygote that the probability they share one allele is 1 and the
probability they are identical is 0.5.

6. Conclusions
The use of BN to provide an evaluation of the weight of evidence for forensic
identification purposes is a new but already well established approach. The
consideration of several mutation models in paternity identification (Dawid and
Pueschel, 1999), the possibility of considering mixtures of traces despite un-
certainty as to the number of contributors, (Mortera et al., 2003), and the
possibility to retain uncertainty on population parameters (Corradi et al., 2003
) are just a few important examples of the potential of the techniques based on
graphical models for solving the forensic identification issue.

Here, the BN technology is invoked when there is no clue about the origin
of the trace so that a suspect, or a group of suspects, is not available. When
this occurs two approaches can be followed.

One, not considered here, consists in constructing a classification of the ref-
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(a) (b)

Figure 8. WEs supporting the identification of a child: on the main diagonal the
child-crime-sample is compared with the correct identification hypothesis, darker levels
of gray correspond to higher WE values.

(a) (b)

Figure 9. WEs supporting the identification of a sibling: on the main diagonal the
child crime sample is compared with the correct identification hypothesis, darker levels
of gray correspond to higher WE values.
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Table 2
The rank distributions of the WE supporting the correct identification hypothesis.

Child-Crime-Sample Brother-Crime-Sample
Rank Child Family Brother Family
100 0.98 0.9 0.91 0.9
99 0.02 0.05 0.04 0.05
98 0 0.03 0.01 0.01
97 0 0.02 0.01 0.01
96 0 0 0.01 0.01
95 0 0 0 0.01
94 0 0 0.01 0
93 0 0 0.01 0.01

erence population in sub-groups and providing the probability that the crime
sample belongs to each of them and can be considered the last resort of forensic
identification, since only a geographical/ethnical response is expected. Experi-
ence in deconvolving a population making use of genetic data is provided, with
different aims, by (Roeder et al., 1998, Dawid and Pueschel, 1999 and Pritchard
et al., 2000).

A more favorable situation arises when there is the availability of a list of
well identified individuals, the DB, not apparently related to the crime. This is
the issue we have considered here and among the different positions held in the
literature and summarized in the introduction. The first result we achieved was
to embed the different hypotheses characterizing each of the approaches in only
one model.

This result becomes effective when an augmented DB is introduced, having
assumed that all its members belong to the population of possible donors of the
crime sample, even if some of them are not observed. In this new perspective,
and even if the one-match-case holds, Hp and H

′
p are no longer conditionally

equivalent since, in addition to the matching person, other unobserved indi-
viduals could have the same characteristic expressed by the crime sample; in
other words, the posterior probability of finding the donor of the trace in the
(augmented) DB is not, a posteriori, concentrated on only one person. This is a
fortiori true if no match is found. Here, a posteriori, Hp concerns the possibility
that, in the augmented database, one of the individuals is the origin of the trace
but this (now perhaps interesting) probability does not coincide with any of the
H
′
i,p.
Meester and Sjerps (2003) recently made a distinction between the evalua-

tion of the case, measured by the posterior odds, and the pure evaluation of the
evidence, provided by the WE. Since, for different sets of conditionally equiva-
lent hypotheses, the evaluation of the case is not sensitive to a choice between
members of that class but the WE is, they prefer the former result to the lat-
ter. These conclusions are formulated keeping in mind the one-match-case and
a no-augmented DB. In that setting there is a clear indication towards a well
identified person and the hypothesis of legal interest concerns this individual.
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In the zero-match-case we do not expect to find strong evidence against a single
member of the augmented DB but rather many different people having a positive
WE. If the population size is much greater than the size of the DB, this produce
very small priors for each of the considered individuals that finally leads to non-
relevant posteriors. But nevertheless, if few WEs are considerably greater than
one, this stimulates the acquisition of new evidence in a well-defined direction.

The extension of the DB search to inherited traits on an augmented DB was
motivated by a real case study provided by the Raggruppamento Carabinieri
Investigazioni Scientifiche (Italy). There, no match was found in the available
DB but a striking similarity between the crime sample and one of the elements
in the DB motivated the proposed extension. Incidentally, the results in terms
of the obtained weights of evidence indicating the right track to carry on the
investigative work.

A final remark concerns the fact that all the results are obtained in closed
form, a compulsory requirement when the number of elements in the DB be-
comes in the order of thousands or more.

Appendix A
PROPOSITION 3.1

Proof. Showing that the following equation

∑

H

P ?(Xc | X,H) ·
N+1∏
j=1

P ?(Hj | H = i) = P (Xc | X, H = i) (A.1)

holds ∀i, is equivalent to prove PROPOSITION 3.1 because the marginal distribu-
tions of the variables Xj and H are the same in the two BNs, BU and B?

U? .
Furthermore, for the condition (a) the following result is straightforward

∑
Ht

P ?(Xc | X,H) ·
N+1∏
j=1

P ?(Hj | H = i) =

∏

j 6=t

P ?(Hj | H = i) ·




P ?(Xc | X,H−t, Yt = 1) for t = i

P ?(Xc | X,H−t, Yt = 0) for t 6= i
(A.2)

where H−t = {Hj : j ∈ I and j 6= t}. So performing the marginalization of equation
(A.1) in a recursive way with respect to each Ht we obtain that

P ?(Xc | X,H = 0i) = P (Xc | X, H = i). (A.3)

The proof is complete because equation (A.3) is true for condition (b).

Appendix B
PROPOSITION 3.2

Proof. Since the joint marginal distribution of the variables Xj , Hj and H is un-
changed with respect to B?

U? then, considering the evidence Xc = 1, PROPOSI-
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TION 3.2 is proved if and only if the following proportional equation holds:

P ?(Xc = 1 | X,H) ∝
∑

Z

P+(Xc = 1 | Z) ·
N+1∏
j=1

P+(Zj | Xj , Hj) (B.4)

Since the table P+(Xc = 1 | Z), for condition (f1), can be expressed as the product
of the following N + 1 potentials

φ(Zj) =





1 if Zj = 1

0 if Zj = 0,
(B.5)

equation (B.4) can also be written in this way

P ?(Xc = 1 | X,H) ∝
N+1∏
j=1

∑
Zj

P+(Zj | Xj , Hj) · φ(Zj)

∝
N+1∏
j=1

P+(Zj = 1 | Xj , Hj). (B.6)

Given a valid configuration (0i) for the H vector, for assumptions (b) and (iii),
the left side of (B.6) is equal to P (Xc | Xi, H = i), so, considering hypothesis (e),
(B.6) becomes

P (Xc | Xi, H = i) ∝
∏

j 6=i

P+(Zj = 1 | Hj = 0) · P+(Zj = 1 | Xi, Hi = 1). (B.7)

Finally, since the first term of the right side of (B.7) is a constant, for condition
(e), comparing hypotheses (d) and (iv) the proof is complete. With similar arguments
PROPOSITION 3.2 can be proved if the network Bo

U+ and evidence Xc = 0 are
considered.

Appendix C
PROPOSITION 3.3

Proof. From the comparison between the networks Ba
U+ and B−

U− the derivation of
the next equation is straightforward,

P a(X, H,H,Z, Xc) = P a(Xc | Z) · P−(X, H,H,Z). (C.8)

Posing Xc = 1, from (4) and (6), (C.8) can be written in this way

P a(X, H,H,Z, Xc = 1) =

N+1∏
j=1

φa(Zj) · P−(X, H,H,Z)

= P−(X, H,H,Z = 1).

(C.9)

Note that, in the second equation of (C.9) all variables Zj are set to 1 as each
potential φa(Zj) is a finding representing the evidence Zj = 1.

Marginalizing both terms of (C.9) with respect to Z, from PROPOSITION 3.2,
the following proportional equation holds,

P ?(X, H,H, Xc = 1) ∝ P−(X, H,H,Z = 1). (C.10)
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So, considering PROPOSITION 3.1, the marginalization of (C.10) with respect
to H completes the proof, that is, (8) is obtained. With similar arguments PROPO-
SITION 3.3 can be proved when Xc = 0, simply using the network Bo

U+ instead of
Ba

U+ .

Appendix D
PROPOSITION 3.4

Proof. In order to obtain the marginal distribution of Zj P−(X,Z,H, H | θ) must be
marginalized with respect to Z−j = {Zi : j ∈ I and i 6= j}, X, H and H.

As each variable in Z−j is a sink of D−, the marginalization with respect to those
variables is equal to one. For similar arguments every node Xi and Hi with i 6= j
disappears, so

P−(Zj | θ) =
∑
H

∑
Xj

∑
Hj

P−(Zj | Xj , Hj) · P+(Hj | H) · P (Xj | θ) · P (H) (D.11)

Marginalizing (D.11) with respect to H and Yj , for hypothesis (v), the following
equation holds

P−(Zj | θ) =
1

N + 1
·
∑
Xj

P (Xj | θ)·
[
P−(Zj | Xj , Hj = 1) ·

N+1∑
i=1

P+(Hj = 1 | H = i)

+P−(Zj | Xj , Hj = 0) ·
N+1∑
i=1

P+(Hj = 0 | H = i)

]
. (D.12)

Considering conditions (a) and (e), (D.11) becomes

P−(Zj | θ) =
1

N + 1
·
∑
Xj

P (Xj | θ) ·
[
P−(Zj | Xj , Hj = 1)

+P−(Zj | Hj = 0) ·N]
. (D.13)

Finally, (9) is obtained marginalizing (D.13) with respect to variable Xj .
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