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Abstract

The paper describes an application of a modified small area estimator to the data collected
in the Rathbun Lake Watershed in Iowa (USA). Opsomer et al. (2003) estimated the average
erosion per acre for 61 sub-watersheds within the study region using an empirical best linear
unbiased predictor (EBLUP) and a composite estimator.

The proposed methodology considers an EBLUP estimator with spatially correlated error
taking into account the information provided by neighboring areas.

KEY WORDS: Small area models; watershed erosion; spatial models; spatial EBLUP.

1 Introduction

The previous study (Opsomer et al., 2003) discussed small area models make use of explicit linking
models based on random area specific effects that account for between areas variation beyond what
is explained by auxiliary variables included in the model. The random area effects are considered
independent, but in practice, especially in most of the applications on environmental data, it
should be more reasonable to assume that the random area effects between the neighboring areas
(for instance the neighborhood could be defined by a contiguity criterium) are correlated and the
correlation decays to zero as distance increases.

The aim of this article is to estimate the average sub-watershed erosion taking into account
the spatial dimension of the soil erosion data, collected on the Rathbun Lake Watershed, adapting
a model with spatially correlated errors in the EBLUP estimator. As well the paper considers
the possible gains from modelling the spatial correlation among small area random effects used to
represent the unexplained variation of the small area target quantities are examined.

Section 2 introduces the small area models that include random area-specific effects and EBLUP
estimator is showed. Section 3 reports the Spatial EBLUP. Section 4 shows the data and the results
of the application of Spatial EBLUP to estimate the average sub-watershed erosion per acre on
the Rathbun Lake Watershed (Iowa - USA).

2 Area Level Random Effect Models

Area level random effect models are used when auxiliary information is available only at area level.
The basic area level model includes random area specific effects and the area specific auxiliary
covariates xi = (xi,1, xi,2, ..., xi,p) are related to the parameters of inferential interest θi (totals yi,
means ȳi):

θi = xiβ + ziui with i = 1...m (1)
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where zi are known positive constants, β is the regression parameters vector p × 1, ui are inde-
pendent and identically distributed random variables with mean 0 and variance σ2

u. Moreover it
assumes that direct estimators θ̂i are available and design-unbiased:

θ̂i = θi + ei (2)

where ei are independent sampling errors with mean 0 and known variance ψi. Combining (1)
and (2) the obtained model is:

θ̂i = xiβ + ziui + ei with i = 1...m (3)

that is a special case of the general linear mixed model with diagonal covariance structure. The
covariance matrices m × m of u and e are:

G = σ2
uI (4)

and
R = diag(ψi) (5)

with I is an identity matrix. Then the covariance matrix of the studied variable is:

V = R + ZGZT . (6)

The Best Linear Unbiased Predictor (BLUP) estimator of θi is:

θ̃i(σ2
v) = xiβ̂ + bT

i GZT V−1(θ̂ − Xβ̂) (7)

where bT
i is 1 × m vector (0, 0, ...0, 1, 0, ...0) with 1 referred to i-th area and β are estimated by

generalized least squares: β̂ = (XT V−1X)−1XT V−1θ̂.

The BLUP estimator is a weighted average of the design-based estimator θ̂i, and the regression-
synthetic estimator xiβ̂; it can be given by:

θ̃i(σ2
v) = γiθ̂i + (1 − γi)xiβ̂ (8)

where γi = σ2
u/σ2

u + ψi is a weight (0 ≤ γi ≤ 1), it is called shrinkage factor and it measures the
uncertainty in modelling the θi (Ghosh and Rao, 1994).

The MSE[θ̃i(σ2
u)] depends on a variance parameter σ2

u and it is:

MSE[θ̃i(σ2
u)] = g1i(σ2

u) + g2i(σ2
u) (9)

with
g1i(σ2

u) = bT
i (G − GZT V−1G)bi = σ2

uz2
i ψi(σ2

uz2
i + ψi)−1 = γiψi (10)

and
g2i(σ2

u) = (xi − bT
i GZT V−1X)(XT V−1X)−1(xi − bT

i GZT V−1X)T =

= (1 − γi)2xi

[ ∑m
i=1 xT

i xi

(σ2
uz2

i + ψi)

]−1

xT
i (11)

where g1i(σ2
u) due to the random effects and g2i(σ2

u) accounts for the variability in the estimator
β̂ (Rao, 2003).

In practical applications σ2
u is unknown and it is replaced by an estimator σ̂2

u, a two stage
estimator θ̃(σ̂2

u) is obtained and it is called Empirical BLUP (EBLUP). It has some properties:

1. it is unbiased for θ;

2. E[θ̃(σ̂2
u)] is finite;

3. σ̂2
u is any translation invariant estimator of σ2

u (Kackar and Harville, 1984).
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The variance of random effects can be estimated either by Maximum Likelihood (ML) or
Restricted Maximum Likelihood (REML) methods, assuming normality, or by the method of
fitting constants. The MSE of EBLUP estimator appears to be insensitive to the choice of the
estimator σ̂2

u. Under normality of random effects

MSE[θ̃i(σ̂2
u)] = MSE[θ̃i(σ2

u)] + E[θ̃i(σ̂2
u) − θ̃i(σ2

u)]2 (12)

where the last term is obtained as an approximation because is generally intractable:

E[θ̃i(σ̂2
u) − θ̃i(σ2

u)]2 ≈ tr


[

∂bT
i GZT V−1

∂σ2
u

]
V

[
∂bT

i GZT V−1

∂σ2
u

]T

V̄ (σ2
u)

 = g3i(σ2
u) =

= ψ2
i z4

i (ψi + σ2
uz2

i )−3V̄ (σ2
u) (13)

with V̄ (σ2
u) denoting the asymptotic variance of σ2

u which can be approximated as V̄ (σ̂2
u). An

approximation to the MSE[θ̃i(σ̂2
u)] is

MSE[θ̃i(σ̂2
u)] ≈ g1i(σ2

u) + g2i(σ2
u) + g3i(σ2

u) (14)

with g2i(σ2
u) and g3i(σ2

u) are of lower order than the term g1i(σ2
u).

In practical application the estimator θ̃i(σ̂2
u) has to be associated with an estimator of MSE[θ̃i(σ̂2

u)].
An approximately unbiased estimator of this mean square error is computed using the following
expression:

mse[θ̃i(σ̂2
u)] ≈ g1i(σ̂2

u) + g2i(σ̂2
u) + 2g3i(σ̂2

u) (15)

when σ̂2
u is obtained by REML method. Otherwise, if a ML procedure is used

mse[θ̃i(σ̂2
u)] ≈ g1i(σ̂2

u) − bT
ML(σ̂2

u) � g1i(σ̂2
u) + g2i(σ̂2

u) + 2g3i(σ̂2
u) (16)

where bT
ML(σ̂2

u) � g1i(σ̂2
u) is an extra term due to the bias g1i(σ̂2

u) and it is of the same order as
g2i(σ2

u) and g3i(σ2
u).

The area basic model considers the random area effects as independent. In practice, it should
be more reasonable to assume that the random effects between the neighboring areas (for instance
the neighborhood could be define by a distance criterium) are correlated and the correlation decays
to zero as distance increases. Considering the spatial dimension of the data, a model with spatially
autocorrelated errors has to be implemented, as it is shown in the next section.

3 Spatial Area Level Random Effect Models

In order to take into account the correlation between neighboring areas we regarded to the spatial
models and how these models could be utilized in small area estimation (Cressie, 1991). In this
study a standard linear regression is considered and the spatial dependence has been incorporated
in the error structure (E[vi, vj ] �= 0). It can be specified in a number of different ways, and results
in a error variance covariance matrix of the form:

E[vi, vj ] = Ω(τ), (17)

where τ is a vector of parameters, such as the coefficient in a Simultaneously Autoregressive (SAR)
or Conditional Autoregressive (CAR) error process, and vi, vj are the area random effects. A SAR
error model is used:

y = Xβ + v (18)

where v = ρWv +u, ρ is the spatial autoregressive coefficient, W is the spatial weight matrix for
y, u ∼ N(0, σ2

uI) is direct area effect and

v ∼ (
0, σ2

u[(I − ρW)(I − ρWT )]−1
)
. (19)
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Spatial models are a special case of the general linear mixed model. Considering the spatial
dimensions of the data, a new model with spatially correlated errors could be implemented and
in matrix form it is:

θ = Xβ + Z(I − ρW)−1u

θ̂ = θ + e (20)

where θ is the parameter of inferential interest, X is the matrix of area auxiliary information, β
is the regression parameters vector p × 1, Z is a matrix of known positive constants, v is defined
as in (18), θ̂ is the vector of the direct estimators, e represents the sampling errors with mean
0 and known variance diag(ψi), u is a vector of independent and identically distributed random
variables with mean 0 and variance σ2

uI and m is the number of small areas. The covariance
matrices m × m of v and e are:

G = σ2
u[(I − ρW)(I − ρWT )]−1 (21)

and
R = diag(ψi). (22)

Then the covariance matrix of the studied variable is:

V = R + ZGZT = diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT (23)

with v and e independently distributed. Combining the first and the second model in formula
(20) the Spatial BLUP estimator of θi is:

θ̃S
i (σ2

u, ρ) = xiβ̂+bT
i {σ2

u[(I−ρW)(I−ρWT )]−1}ZT {diag(ψi)+σ2
u[(I−ρW)(I−ρWT )]−1}−1(θ̂−Xβ̂)

(24)
where β̂ = (XT V−1X)−1XT V−1θ̂ and bT

i is 1 × m vector (0, 0, ...0, 1, 0, ...0) with 1 in the i-th
position.

The MSE[θ̃S
i (σ2

u, ρ)], depending on two parameters (σ2
u, ρ), can be expressed as:

MSE[θ̃S
i (σ2

u, ρ)] = g1i(σ2
u, ρ) + g2i(σ2

u, ρ) (25)

with
g1i(σ2

u, ρ) = bT
i {σ2

u[(I − ρW)(I − ρWT )]−1 − σ2
u[(I − ρW)(I − ρWT )]−1ZT×

×{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1Zσ2

u[(I − ρW)(I − ρWT )]−1}bi (26)

and
g2i(σ2

u, ρ) = (xi − bT
i σ2

u[(I − ρW)(I − ρWT )]−1ZT

{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)×

×(XT {diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)−1×

(xi − bT
i σ2

u[(I − ρW)(I − ρWT )]−1ZT

{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)T . (27)

The estimator θ̃S
i (σ2

u, ρ) depends on the variance components σ2
u and ρ, but in practice they will

be unknown. Replacing the parameters with asymptotically consistent estimators σ̂2
u, ρ̂, a two

stage estimator θ̃S
i (σ̂2

u, ρ̂) is obtained and it is called Spatial EBLUP:

θ̃S
i (σ̂2

u, ρ̂) = xiβ̂+bT
i {σ̂2

u[(I−ρ̂W)(I−ρ̂WT )]−1}ZT {diag(ψi)+σ̂2
u[(I−ρ̂W)(I−ρ̂WT )]−1}−1(θ̂−Xβ̂)

(28)
with bT

i = (0, 0, ...0, 1, 0, ...0) and 1 referred to i-th area. Assuming normality, σ2
u and ρ can be

estimated both by ML and REML procedures. The ML estimators σ̂2
uML

and ρ̂ML can be obtained
iteratively using the “scoring” algorithm:[

σ2
u

ρ

](n+1)

=
[

σ2
u

ρ

](n)

+ [I(σ2(n)

u , ρ(n))]−1 · s
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

(29)
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where s
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

is the vector of the partial derivatives of log-likelihood function

with respect to σ2
u and ρ, I−1(σ2

u, ρ) is the inverse matrix of expected second derivatives minus
log-likelihood function with respect to the variance components and n indicates the number of
iteration.

The ML procedure to estimate σ2
u and ρ does not consider the loss in degrees of freedom due

to estimating β. This drawback involves the use of REML method (Cressie, 1992). The “scoring”
algorithm (29) is used and at convergence the REML estimators are obtained and the asymp-
totic covariance matrix of β̂R, σ̂2

uR
and ρ̂R has a diagonal structure diag

[
V̄(β̂R), V̄(σ̂2

uR
, ρ̂R)

]
≈

diag
[
V̄(β̂ML), V̄(σ̂2

uML
, ρ̂ML)

]
with

V̄(β̂R) ≈ V̄(β̂ML) = (XT V−1X)−1

V̄(σ̂2
uR

, ρ̂R) ≈ V̄(σ̂2
uML

, ρ̂ML) = I−1(σ2
u, ρ). (30)

The ML and REML estimators are robust, in fact they may work well even under non normal
distributions (Jiang, 1996).

The MSE of Spatial EBLUP θ̃S
i (σ̂2

u, ρ̂) is:

MSE[θ̃S
i (σ̂2

u, ρ̂)] ≈ g1i(σ2
u, ρ) + g2i(σ2

u, ρ) + g3i(σ2
u, ρ) (31)

where g3i(σ2
u, ρ) is approximately

tr

{[
bT

i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

) ]
V×

×
[
bT

i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

) ]T

V̄(σ̂2
u, ρ̂)

}
(32)

with C = [(I − ρW)(I − ρWT )] and A = σ2
u[−C−1(2ρWWT − 2W)C−1]. An estimator of

MSE[θ̃S
i (σ̂2

u, ρ̂)] can be expressed as:

mse[θ̃S
i (σ̂2

u, ρ̂)] ≈ g1i(σ̂2
u, ρ̂) + g2i(σ̂2

u, ρ̂) + 2g3i(σ̂2
u, ρ̂) (33)

if σ̂2
u and ρ̂ are REML estimators. Otherwise, if ML procedure is used, the mse[θ̃S

i (σ̂2
u, ρ̂)] is given

by
mse[θ̃S

i (σ̂2
u, ρ̂)] ≈ g1i(σ̂2

u, ρ̂) − bT
ML(σ̂2

u, ρ̂) � g1i(σ̂2
u, ρ̂) + g2i(σ̂2

u, ρ̂) + 2g3i(σ̂2
u, ρ̂) (34)

with

�g1i(σ2
u, ρ) = bT

i

{
(C−1 − [C−1ZT V−1Zσ2

uC
−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)Zσ2

uC
−1+

(A − [AZT V−1Zσ2
uC

−1 + σ2
uC

−1ZT (−V−1ZAZT V−1)Zσ2
uC

−1+

+σ2
uC

−1ZT V−1ZC−1])
+σ2

uC
−1ZT V−1ZA])

}
bi (35)

and

bT
ML(σ2

u, ρ) =
1

2m

{
I−1(σ2

u, ρ)
[

tr[(XT V−1X)−1XT (−V−1ZC−1ZT V−1)X]
tr[(XT V−1X)−1XT (−V−1ZAZT V−1)X]

]}
. (36)

If the term bT
ML(σ̂2

u, ρ̂)�g1i(σ̂2
u) is ignored, the use of ML estimators could lead to underestimation

of MSE approximation.
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4 Data and results

In 2000 a survey designed to estimate the amount of erosion delivered to the streams in the
Rathbun Lake watershed was completed. The watershed, located in southern Iowa (USA), covers
more than 365000 acres (147715 ha) in six counties and is divided into 61 sub-watersheds.

The main sources of agricultural erosion are sheet and rill, ephemeral gullies, gullies, and
streambanks. The sheet and rill erosion was expected to be a major contributor to total erosion.

In the application the data are the result of this design: each small area (domain) has been
divided in plots (total 2146), each plot has been sequentially labelled and a systematic sampling
of plots has been selected. The fractional interval has been fixed in order to select four units from
each small area (domain). Not all these 4× 61 units have been included in the sample. From each
domain a simple random sample of 3 units has been selected. Then within each sub-watershed,
three 160-acre (64 ha) plots were selected, as is showed in Figure 1, and a sample of 183 units
was obtained. The final sample can be reasonably assimilated to a simple random sample from
the domains and the sampling variance ψi at the domain level can be estimated by

{
(1 − ni

Ni
) σ̂2

i

ni

}
,

where ni = 3 and Ni is the number of plots in the i-th area (for details Opsomer et al., 2003). The
estimated variance ψ̂i is then treated as a proxy to ψi. As result the mse[θ̃S

i (σ̂2
u, ρ̂, ψ̂i)] is greater

than mse[θ̃S
i (σ̂2

u, ρ̂, ψi)].

Figure 1: The Rathbun Lake

Auxiliary data at the sub-watershed level were the land use and the topography that are
considered major determinants of the erosion. Data related to these factor were available for
the study region in the form of digital elevation and land use classification coverages. Hence,
the Spatial EBLUP method is implemented to this data to estimate the average of watershed
erosion in each of the 61 small area within the study region using SAR model. The neighborhood
structure W is defined as follows: spatial weight, wij , is 1 if area i shares an edge with area j and
0 otherwise. The value of the estimated spatial autoregressive coefficient ρ̂ is 0.132 (s.e. = 0.0258)
with ML procedure and 0.136 (s.e. = 0.0288) with REML method, which suggests a moderate
spatial relationship. To summarize, Figure 2 displays the map of the Rathbun Lake Watershed
with the Spatial EBLUP estimates for the average erosion per acre in only 17 small areas, which
are an aggregation of sub-watersheds.

In order to asses the achieved results with the introduction of the spatial information in the
small area estimation, the EBLUP estimator and the direct estimator are also calculated. In
Table 1 are reported the average estimated standard errors and its variability per acre of Direct,
EBLUP and Spatial EBLUP estimators. Table 1 shows also the average estimated of MSE and
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Figure 2: The 17 HUC of Rathbun Lake

Estimator A.E.Se. V[A.E.Se.] A.E.MSE A.E.(g1) A.E.(g2) A.E.(g3)
θ̃S(σ̂2

uML
, ρ̂ML) 0.501 0.025 44.33 36.03 5.49 1.38

θ̃S(σ̂2
uR

, ρ̂R) 0.510 0.027 45.96 36.92 5.65 1.68
θ̃(σ̂2

uML
) 0.545 0.034 52.76 45.21 5.66 0.92

θ̃(σ̂2
uR

) 0.554 0.036 54.84 47.09 5.75 1.00
DIRECT θ 0.886 0.321

Table 1: Average Estimated Standard Errors (A.E.Se.) of Direct, EBLUP and Spatial EBLUP
estimators.

its decomposition in g1, due to the random effects, g2, which accounts for the variability in the
estimator β̂, g3 due to estimate ρ and σ2

u.
The Spatial EBLUP method provides estimates with smaller average estimated standard errors

than the direct and the EBLUP estimators. Moreover the Spatial EBLUP presents the smallest
variability. The estimate of the total watershed erosion in each of the 61 small area is reported in
Annex A.

An evaluation of the resulting model is performed by treating the standard residuals
r = θ̃

S
(σ̂2

u, ρ̂) − Xβ/(diag(V))1/2 as iid N(0, 1). In particular, to check the normality of the
standardized residuals r and to detect outlier r, a normal q-q plot is examined (Figure 3). It can
be noted that the outliers r are few, which correspond to neighboring areas in the north-west of
the watershed; they can be originated from a particular micro-climate which characterizes that
region. Nothing else significant departures from the assumed model are observed.

−2 −1 0 1 2

−
1

0
1

2

Normal Q−Q Plot Spatial EBLUP

Theoretical Quantiles
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s

Figure 3: Normal q-q plot to check the normality of the standardized residuals r
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In conclusion, considering the case study, the use of Spatial EBLUP methodology, which takes
into account the SAR spatial model in the small area estimation, reduces the confidence interval.

Acknowledgements: the author thanks Jean Opsomer for the support providing the data
and Prof. Chambers and Dr. Saei for their suggestions.
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A Annex

Area Code θ̃S(σ̂2
uR

, ρ̂R) ̂s.q.m. θ̃(σ̂2
uR

) ̂s.q.m. θ̂ ̂s.q.m.

10280201040010 2.831 0.217 2.779 0.218 2.796 0.225
10280201040020 4.167 0.249 4.166 0.253 4.364 0.264
10280201040030 3.228 0.368 3.122 0.379 3.306 0.419
10280201040040 4.306 0.494 4.074 0.541 5.085 0.701
10280201040050 4.144 0.606 3.540 0.654 3.572 0.992
10280201040060 4.436 0.188 4.404 0.189 4.512 0.193
10280201040070 4.035 0.633 2.713 0.766 3.404 2.525
10280201040080 2.711 0.496 2.213 0.546 1.939 0.714
10280201040090 3.258 0.467 3.345 0.496 3.882 0.605
10280201040100 2.037 0.373 1.977 0.388 1.786 0.434
10280201040110 2.562 0.516 2.357 0.565 2.148 0.761
10280201040120 2.098 0.530 2.109 0.586 1.754 0.809
10280201040130 3.625 0.512 3.497 0.547 3.680 0.712
10280201040140 3.033 0.687 2.806 0.722 3.765 1.542
10280201040150 3.584 0.388 3.560 0.396 3.704 0.441
10280201040160 2.001 0.444 1.968 0.475 1.656 0.569
10280201040170 2.732 0.610 2.961 0.723 4.455 1.565
10280201040180 5.141 0.652 5.178 0.650 4.953 0.700
10280201040190 3.241 0.429 3.300 0.448 3.543 0.525
10280201040200 2.234 0.377 2.419 0.393 2.408 0.439
10280201040210 2.307 0.512 2.413 0.574 2.154 0.779
10280201040220 1.267 0.300 1.230 0.307 1.016 0.327
10280201040230 1.868 0.543 2.021 0.596 1.489 0.841
10280201040240 2.486 0.606 2.598 0.650 2.668 1.043
10280201040250 2.076 0.509 2.383 0.546 2.009 0.710
10280201040260 1.816 0.441 1.766 0.463 1.437 0.547
10280201040270 1.815 0.551 1.808 0.586 1.160 0.806
10280201040280 3.006 0.306 3.133 0.311 3.221 0.332
10280201040290 2.184 0.529 2.409 0.577 2.313 0.790
10280201050010 2.760 0.606 2.927 0.699 2.766 1.273
10280201050020 2.583 0.559 2.851 0.629 3.183 0.959

Table A-1: Estimate of the total watershed in each small area and estimated Standard Errors
(E.Se.) of Spatial EBLUP, EBLUP and Direct estimators. REML estimators
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(Continued)
Area Code θ̃S(σ̂2

uR
, ρ̂R) ̂s.q.m. θ̃(σ̂2

uR
) ̂s.q.m. θ̂ ̂s.q.m.

10280201060010 3.166 0.666 2.951 0.747 4.366 1.961
10280201060020 2.738 0.492 2.695 0.524 2.721 0.666
10280201060030 3.656 0.350 3.603 0.351 3.615 0.366
10280201060040 3.281 0.501 3.167 0.523 2.801 0.644
10280201060050 4.197 0.584 4.358 0.617 4.500 0.787
10280201060060 3.012 0.600 3.118 0.690 3.462 1.257
10280201060070 3.098 0.665 3.117 0.747 4.498 1.865
10280201060080 3.028 0.430 2.974 0.438 2.985 0.504
10280201060090 3.236 0.671 3.531 0.777 4.780 1.608
10280201060100 2.801 0.586 2.710 0.659 2.316 1.091
10280201060110 2.566 0.523 2.659 0.551 2.556 0.726
10280201060120 2.510 0.642 2.801 0.702 3.447 1.359
10280201060130 2.132 0.256 2.117 0.259 2.044 0.270
10280201060140 2.271 0.618 2.761 0.666 2.939 1.130
10280201060150 3.107 0.572 3.097 0.632 2.819 0.952
10280201060160 2.727 0.642 2.869 0.745 4.093 1.903
10280201060170 3.916 0.664 4.264 0.750 5.931 1.518
10280201060180 2.275 0.428 2.338 0.447 2.121 0.521
10280201060190 1.849 0.394 1.777 0.410 1.423 0.464
10280201060200 2.300 0.564 2.491 0.619 2.421 0.911
10280201060210 4.584 1.311 4.927 1.407 6.024 3.131
10280201060220 2.802 0.245 2.877 0.248 2.870 0.257
10280201060230 1.900 0.549 2.130 0.617 1.633 0.910
10280201060240 1.971 0.426 1.999 0.453 1.728 0.533
10280201060250 1.758 0.270 1.750 0.274 1.621 0.288
10280201070010 2.274 0.457 2.313 0.476 2.083 0.571
10280201070020 3.161 0.552 3.308 0.606 3.836 0.878
10280201070030 2.786 0.616 2.689 0.703 2.776 1.376
10280201070040 2.635 0.566 2.618 0.625 2.800 0.937
10280201070050 2.415 0.594 2.542 0.670 2.391 1.134
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Figure A-1: Map of the area code in the Rathbun Lake Wathershed
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