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Abstract

The methods used for Small Area Estimation can be classified by the type of inference in
design based (direct domain estimators), model assisted (synthetic and composite estimators)
and model based (small area models). This paper deals the small area models and introduces
spatial dependence among the random area effects. In fact, especially in most of applications
on environmental data, it should be more reasonable to assume that the random effects
between the neighboring areas are correlated and the correlation decays to zero as distance
increases.

Considering the spatial dimension of the data, a model with spatially autocorrelated errors
has to be implemented, a modified estimator (Spatial EBLUP) is provided and the Mean
Square Error (MSE) estimator is obtained. The empirical analysis is carried out on some
simulated experiments and the results show an appreciable improvement of the statistical
properties of the small area estimators.

KEY WORDS: Small area models; spatial models; EBLUP; spatial EBLUP; mean square error
estimator.

1 Design Based, Model Assisted and Model Based Methods

Sample survey data are extensively used to provide reliable direct estimates of totals and means
for the whole population and large areas or domains.

Domains may be defined by geographic areas (state, county, municipality, school district,
etc.) or socio-demographic groups or other sub-populations (age-sex-race group within a large
geographic area). A domain is regarded as “small” if the domain-specific sample is not large
enough to support direct estimates of adequate precision; they are likely to yield large standard
errors due to the unduly small size of the sample in the area (Ghosh and Rao, 1994). The demand
of reliable statistics for small areas, when only reduced sizes of the samples are available, has
promoted the development of statistical methods from both the theoretical and empirical point of
view.

In Italy, as in many other counties, there is a growing need for current and reliable data on small
areas. This information need concerns most sample surveys realized by the National Statistical
Institute (ISTAT), especially the Labour Force Survey (LFS), which has been studied to warrant
accuracy in regional estimates (Falorsi et al., 1994) .
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In Great Britain devolution for Scotland, Wales and Northern Ireland, and the creation of nine
Regional Development Agencies in England, has stimulated demand for information for each of
these areas, as well as more detail within these.

In the United States the Census Bureau and a consortium of other Federal Agencies have
started a project to provide post-censal estimates of income and poverty for small areas during
the 1990’s.

The methods used for SAE can be classified by the type of inference:

1. Design based: they make use of survey weights and the associated inferences are based on
the probability distribution induced by the sampling design with the population values held
fixed. The design based direct domain estimators are design based.

2. Model assisted: they make use of working models and are also design based, aiming at
making the inferences “robust” to possible model misspecification. The role of the model is
to describe the finite population point scatter, even if the assumption is never made that
the population was really generated by the model. The basic property and the conclusion
about finite population parameters are therefore independent of model assumptions. These
procedures are thus model assisted, but they are not model dependent (Särdnal et al., 1992).
The generalized regression estimator (GREG), synthetic and composite estimators are model
assisted.

3. Model based: the methods start from a specification of a model for the N-dimensional
distribution of Y = (Y1, Y2, ..., YN ), where Yk is a random variable tied to the k-th element.
This model is denoted ξ and is called a superpopulation model. The actual finite population
vector, y = (y1, y2, ..., yN ), is considered to be a realization of Y . A sample s has been
drawn. A model based inference is interpreted by visualizing a long series of realizations of
the finite population vector Y for the fixed s. The inference is tied to the particular s that
was realized, and not to other samples (Särdnal et al., 1992). Small area models are model
based.

In estimation for small areas the direct survey estimates often have large sampling variability, then
it is common to borrow strength from other small areas. From this point of view the potentialities
of Geographical Information System (GIS) as a tool for the compilation of statistics, particularly
in the field of small area statistics, are large. For example, especially in most of applications
on environmental data, the land use, the quote, the slope can be used as auxiliary information
to estimate a mean in the small areas. The use of GIS is due to implicit conviction that the
data of neighboring areas are correlated and the correlation decays to zero as distance increases.
But, in the traditional small area models the random area effects are considered as independent
(Section 2). Considering the spatial dimension of the data (Section 3), the paper introduces spatial
dependence among the random area effects, then a model with spatially autocorrelated errors has
to be implemented and a modified estimator (Spatial EBLUP) is provided; moreover the Mean
Square Error (MSE) estimator is obtained (Section 4). The empirical analysis is carried out on
some simulated experiments and the results show an appreciable improvement of the statistical
properties of the small area estimators (Section 5). In Section 6 some concluding remarks are
made.

2 Small Area Models

Small area models make use of explicit linking models based on random area-specific effects that
account for between areas variation beyond that is explained by auxiliary variables included in
the model (Pfeffermann, 2002).

Inferences from model based estimators refer to the distribution implied by the assumed model.
Model selection and validation play an important role in model based estimation, in fact if the
assumed models do not perform a good fit to the data, the estimators will be model biased and
can lead to wrong inferences.
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Some statisticians see the small area models as a methodological advantage. Optimal estima-
tors can be derived under the assumed model. Model diagnostic can be used to find suitable model
that fit the data well. Area-specific measures of precision can be associated with each small area
estimate. Some models can be considered according to the nature of the response variables and
the complexity of data structures (Rao, 2003).

Other statisticians consider wrong to carry out model based estimation because they believe
artificial to visualize repeated finite populations because actually there is only one finite population.

Small area models can be classified into two broad types:

• area level random effect models, which are used when auxiliary information is available
only at area level. They relate small area direct estimators to area-specific covariates (Fay
and Herriot, 1979);

• nested error unit level regression models, employed originally by Battese et al. (1988)
for predicting areas under corn and soybeans in 12 counties of the state of Iowa in the U.S
(Pfeffermann, 2002). These models relate the unit values of a study variable to unit-specific
covariates.

The area basic model considers the random area effects as independent. In practice, it should
be more reasonable to assume that the random effects between the neighboring areas (for instance
the neighborhood could be define by a distance criterium) are correlated and the correlation decays
to zero as distance increases. Considering the spatial dimension of the data, a model with spatially
autocorrelated errors has to be implemented, as it is shown in the next sections.

3 Spatial Models

In the simplest sense, spatial statistics is the analysis of spatial pattern in data. In spatial statistics
is necessary to do a distinction between methods that are concerned with visualizing spatial data,
those which are exploratory, summarizing and investigating map patterns and relationships, and
those which rely on the specification of a statistical spatial model and the estimation of its param-
eters. In this section, this last case will be treated, modelling spatial interaction, that, commonly
means incorporating the spatial dependence into the covariance structure via an autoregressive
model.

The spatial data can be showed as follow: the study area is given by D; it is usually a subset
of two-dimensional space. A vector s contains information on the data location such as latitude
and longitude, and at location s the observed value y is obtained: the Y(s) is a random variable
at each location. Then the general spatial model can be expressed as: {Y(s) : s ∈ D} where
D ⊂ �d and d is the dimension (usually d = 2).

The basic spatial models can be distinguished as follows:

1. geostatistical data: D is a continuous subset of �d; Y(s) is a random vector at location
s ∈ D (example of geostatistical data: temperature values taken at weather stations);

2. lattice data: D is a fixed but countable subset of �d such as a grid some representation with
nodes; Y(s) is a random vector at location s ∈ D (example of lattice data: counts of disease
in a county);

3. point patterns : D is a random subset of �d and it is called a point process; if Y(s) is a
random vector at location s ∈ D then it is a marked spatial point process; if Y(s) ≡ 1 so
that it is a degenerate random variable, then only D is random and it is called a spatial
point process (example of point pattern data: locations of trees in a forest).This model was
first formulated by Cressie (1993).

In small area estimation irregular lattice data are dealt, in fact the data collected at a given
location represent a summary for the subregion in which the location is sited. In this case two
autoregressive models are commonly employed: the simultaneously autoregressive model (SAR)
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and the conditional autoregressive model (CAR). These models produce spatial dependence in
the covariance structure as a function of a neighborhood matrix W and a fixed unknown spatial
correlation parameter (Wall, 2004).

In general the behavior of spatial phenomena is often the result of a mixture of both first order
and second order effects. First order effects relate to the variation in the mean value of the process
in the space (a global or large scale trend). Second order effects result from the spatial correlation
structure, or the spatial dependence in the process; in other words, the tendency for deviations in
value of the process from its mean to follow each other in neighboring sites (local or small scale
effects).

These two effects can be modelled using the general regression model:

y = Xβ + v (1)

with v ∼ (0,C) and C is specified by an interaction scheme including, in the model, relationships
between variables and their neighboring values usually involving a few extra parameters which
need to be estimated and which indirectly specify particular form of C. Such models need not to
assume stationarity for the second order component (Bailey and Gatrell, 1995).

The SAR model is based on the specification of how data at the various sites interact simulta-
neously and it can be expressed as:

y = Xβ + v

v = ρWv + u (2)

where Xβ is the large scale, non-spatial trend surface which depends on covariates, v is the second
order variation with mean 0 and variance-covariance matrix C = σ2

u[(I − ρW)(I − ρWT )]−1, ρ
is the spatial dependence parameter, it is called spatial autoregressive coefficient, u is a vector of
error terms which are independent with zero mean and constant variance σ2

u, W is the proximity
matrix and I is an identity matrix. The variate interaction models, as mentioned above, indirectly
imply a covariance structure C, that in this case it can be derived directly with some matrix
manipulation:

C = E[vvT ] = E
[
(I − ρW)−1uuT

(
(I − ρW)−1

)T
]

=

= (I − ρW)−1E[uuT ]
(
(I − ρW)−1

)T
=

= (I − ρW)−1σ2
uI

(
(I − ρW)−1

)T
=

= σ2
u(I − ρW)−1

(
(I − ρW)T

)−1
=

= σ2
u[(I − ρW)(I − ρWT )]−1. (3)

The CAR model is very different from SAR model: the conditional model assumes that the
probability of observing a particular value at a given site is a conditional probability, i.e. it depends
on the value of Y in the neighborhood of the site. The SAR model states that the probability is
a product of functions which can not be interpreted as conditional probabilities. The CAR model
can be written as:

y = Xβ + v

v ∼ (0, σ2
u(I − ρW)−1). (4)

Then the most difference between SAR and CAR model is in the covariance structure. In CAR
model W needs to be symmetrical and (I − ρW) needs to be strictly positive definite to ensure
the existence and symmetry of σ2

u(I − ρW)−1 in the conditional scheme (Upton and Fingleton,
1985).

The proximity matrix W indicates whether the areas are neighbor or not. One common way
to do this is to define wij = 1 if region i shares a common edge or border with region j or 0
otherwise. There are other ways to define W as restricting rows of the neighborhood matrix to
sum to 1 or creating more elaborate weights as functions of the length of borders (Wall, 2004).
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4 Spatial Area Level Random Effect Models

In order to take into account the correlation between neighboring areas we regarded to the spatial
models and how these models could be utilized in small area estimation (Cressie, 1991). In the
standard linear regression model, spatial dependence can be incorporated in two distinct ways: it
can be specified a regression which has autoregressive terms, or it can be formulated a regression
model with spatially autocorrelated residuals (Anselin, 1992). In this study a standard linear
regression is considered and the spatial dependence has been incorporated in the error structure
(E[vi, vj ] �= 0). It can be specified in a number of different ways, and results in a error variance
covariance matrix of the form:

E[vi, vj ] = Ω(τ ), (5)

where τ is a vector of parameters, such as the coefficient in a Simultaneously Autoregressive (SAR)
or Conditional Autoregressive (CAR) error process, and vi, vj are the area random effects.

4.1 SAR Model

A SAR error model (2) includes random area effects and the area specific auxiliary covariates
xi = (xi,1, xi,2, ..., xi,p) are related to the parameters of inferential interest θi (totals yi, means ȳi);
in matrix form it is:

θ = Xβ + Zv (6)

where β is the regression parameters vector p×1, Z is a matrix of known positive constants, v is the
second order variation (2) with mean 0 and variance-covariance matrix
C = σ2

u[(I − ρW)(I − ρWT )]−1; ρ, u and W are defined as in above section. Moreover it
assumes that direct estimators θ̂i are available and design-unbiased:

θ̂i = θi + ei (7)

where ei are independent sampling errors with mean 0 and known variance ψi. Combining (6)
and (7) a new model with spatially correlated errors could be implemented and in matrix form it
is:

θ̂ = Xβ + Z(I − ρW)−1u + e (8)

Spatial models are a special case of the general linear mixed model. The covariance matrices
m × m of v and e are:

G = σ2
u[(I − ρW)(I − ρWT )]−1 (9)

and
R = diag(ψi). (10)

Then the covariance matrix of the studied variable is:

V = R + ZGZT = diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT (11)

with v and e independently distributed. The Spatial Best Linear Unbiased Predictor (Spatial
BLUP) estimator of θi is:

θ̃S
i (σ2

u, ρ) = xiβ̂+bT
i {σ2

u[(I−ρW)(I−ρWT )]−1}ZT {diag(ψi)+σ2
u[(I−ρW)(I−ρWT )]−1}−1(θ̂−Xβ̂)

(12)
where β̂ = (XT V−1X)−1XT V−1θ̂ and bT

i is 1 × m vector (0, 0, ...0, 1, 0, ...0) with 1 in the i-th
position.

The MSE[θ̃S
i (σ2

u, ρ)], depending on two parameters (σ2
u, ρ), can be expressed as:

MSE[θ̃S
i (σ2

u, ρ)] = g1i(σ2
u, ρ) + g2i(σ2

u, ρ) (13)
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with

g1i(σ2
u, ρ) = bT

i {σ2
u[(I − ρW)(I − ρWT )]−1 − σ2

u[(I − ρW)(I − ρWT )]−1ZT×

×{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1Zσ2

u[(I − ρW)(I − ρWT )]−1}bi (14)

and
g2i(σ2

u, ρ) = (xi − bT
i σ2

u[(I − ρW)(I − ρWT )]−1ZT

{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)×

×(XT {diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)−1×

(xi − bT
i σ2

u[(I − ρW)(I − ρWT )]−1ZT

{diag(ψi) + Zσ2
u[(I − ρW)(I − ρWT )]−1ZT }−1X)T . (15)

where the first term g1i(σ2
u, ρ) is due to the estimation of random effects and the second term

g2i(σ2
u, ρ) is due to the estimation of β (Rao, 2003).

4.1.1 Spatial EBLUP.

The estimator θ̃S
i (σ2

u, ρ) depends on the variance components σ2
u and ρ, but in practice they will

be unknown. Replacing the parameters with asymptotically consistent estimators σ̂2
u, ρ̂, a two

stage estimator θ̃S
i (σ̂2

u, ρ̂) is obtained and it is called Spatial EBLUP:

θ̃S
i (σ̂2

u, ρ̂) = xiβ̂+bT
i {σ̂2

u[(I−ρ̂W)(I−ρ̂WT )]−1}ZT {diag(ψi)+σ̂2
u[(I−ρ̂W)(I−ρ̂WT )]−1}−1(θ̂−Xβ̂)

(16)
with bT

i = (0, 0, ...0, 1, 0, ...0) and 1 referred to i-th area. It has some properties:

1. it is unbiased for θ;

2. E[θ̃(σ̂2
u, ρ̂)] is finite;

3. σ̂2
u, ρ̂ are any translation invariant estimators of σ2

u and ρ (Kackar and Harville, 1984).

Assuming normality, σ2
u and ρ can be estimated both by ML and REML procedures. The

log-likelihood function is:

l(β, σ2
u, ρ) = −1

2
m log 2π − 1

2
log |V| − 1

2
(θ̂ − Xβ)T V−1(θ̂ − Xβ) (17)

with V as represented in (11) and the partial derivatives of l(β, σ2
u, ρ) with respect to σ2

u and ρ
are given by

sσ2
u
(β, σ2

u, ρ) = ∂l
∂σ2

u
= − 1

2 tr{V−1ZC−1ZT } − 1
2 (θ̂ − Xβ)T (−V−1ZC−1ZT V−1)(θ̂ − Xβ)

sρ(β, σ2
u, ρ) = ∂l

∂ρ = − 1
2 tr{V−1Zσ2

u[−C−1(2ρWWT − 2W)C−1]ZT }−
− 1

2 (θ̂ − Xβ)T (−V−1Zσ2
u[−C−1(2ρWWT − 2W)C−1]ZT V−1)(θ̂ − Xβ)

(18)
with C = [(I − ρW)(I − ρWT )]. The matrix of expected second derivatives of −l(β, σ2

u, ρ) with
respect to σ2

u and ρ is given by

I(σ2
u, ρ) =

[ 1
2 tr{V−1ZC−1ZT V−1ZC−1ZT } 1

2 tr{V−1ZC−1ZT V−1ZAZT }
1
2 tr{V−1ZAZT V −1ZC−1ZT } 1

2 tr{V−1ZAZT V−1ZAZT }
]

(19)

with A = σ2
u[−C−1(2ρWWT − 2W)C−1]. The ML estimators σ̂2

uML
and ρ̂ML can be obtained

iteratively using the “scoring” algorithm:

[
σ2

u

ρ

](n+1)

=
[

σ2
u

ρ

](n)

+ [I(σ2(n)

u , ρ(n))]−1 · s
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

(20)
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where n indicates the number of iteration.
The ML procedure to estimate σ2

u and ρ does not consider the loss in degrees of freedom due
to estimating β. This drawback involves the use of REML method. The partial derivatives of the
restricted log-likelihood function lR(σ2

u, ρ) with respect to variance components are:

sR
σ2

u
(σ2

u, ρ) = ∂lR
∂σ2

u
= − 1

2 tr{PZC−1ZT } + 1
2 θ̂T PZC−1ZT Pθ̂

sRρ
(σ2

u, ρ) = ∂lR
∂ρ = − 1

2 tr{PZσ2
u[−C−1(2ρWWT − 2W)C−1]ZT }+

+ 1
2 θ̂

T
PZσ2

u[−C−1(2ρWWT − 2W)C−1]ZT Pθ̂

(21)

with P = V−1 −V−1X(XT V−1X)−1XT V−1 and C = [(I− ρW)(I− ρWT )]. The loss in degrees
of freedom are taken into account in the REML method by using the transformed data θ∗ = FT θ̂,
where F is any n × (m − p) matrix of full rank orthogonal to the m× p matrix X. The IR(σ2

u, ρ)
matrix assumes the form:

IR(σ2
u, ρ) =

[ 1
2 tr{PZC−1ZT PZC−1ZT } 1

2 tr{PZC−1ZT PZAZT }
1
2 tr{PZAZT PZC−1ZT } 1

2 tr{PZAZT PZAZT }
]

(22)

with A = σ2
u[−C−1(2ρWWT − 2W)C−1]. Then the “scoring” algorithm (20) is used and at

convergence the REML estimators are obtained and the asymptotic covariance matrix of β̂R, σ̂2
uR

and ρ̂R has a diagonal structure diag
[
V̄(β̂R), V̄(σ̂2

uR
, ρ̂R)

]
≈ diag

[
V̄(β̂ML), V̄(σ̂2

uML
, ρ̂ML)

]
with

V̄(β̂R) ≈ V̄(β̂ML) = (XT V−1X)−1

V̄(σ̂2
uR

, ρ̂R) ≈ V̄(σ̂2
uML

, ρ̂ML) = I−1(σ2
u, ρ) (23)

The ML and REML estimators are robust, in fact they may work well even under non normal
distributions (Jiang, 1996).

The ML estimators can be calculated by the Newton Raphson algorithm:

[
σ2

u

ρ

](n+1)

=
[

σ2
u

ρ

](n)

−
{

∂2l
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]}−1

� l
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

(24)

where �l
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

is a 2 × 1 vector of partial derivatives and

∂2l
[
β̂(σ2(n)

u , ρ(n)), σ2(n)

u , ρ(n)
]

is the Hessian matrix.

4.1.2 MSE of Spatial EBLUP.

The MSE of Spatial EBLUP estimator appears to be insensitive to the choice of the estimator σ̂2
u

and ρ̂. Under normality of random effects

MSE[θ̃i(σ̂2
u)] = MSE[θ̃i(σ2

u)] + E[θ̃i(σ̂2
u) − θ̃i(σ2

u)]2 (25)

where the last term is obtained as an approximation because is generally intractable. Then an
approximation to the MSE[θ̃S

i (σ̂2
u, ρ̂)] is:

MSE[θ̃S
i (σ̂2

u, ρ̂)] ≈ g1i(σ2
u, ρ) + g2i(σ2

u, ρ) + g3i(σ2
u, ρ) (26)

where g3i(σ2
u, ρ) is approximately

tr

{[
bT

i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

) ]
V×

×
[
bT

i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

) ]T

V̄(σ̂2
u, ρ̂)

}
(27)
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In practical application the estimator θ̃S
i (σ̂2

u, ρ̂) has to be associated with an estimator of
MSE[θ̃S

i (σ̂2
u, ρ̂)]. An approximately unbiased estimator of this mean square error is computed

using the following expression:

mse[θ̃S
i (σ̂2

u, ρ̂)] ≈ g1i(σ̂2
u, ρ̂) + g2i(σ̂2

u, ρ̂) + 2g3i(σ̂2
u, ρ̂) (28)

if σ̂2
u and ρ̂ are REML estimators. Otherwise, if ML procedure is used, the mse[θ̃S

i (σ̂2
u, ρ̂)] is given

by
mse[θ̃S

i (σ̂2
u, ρ̂)] ≈ g1i(σ̂2

u, ρ̂) − bT
ML(σ̂2

u, ρ̂) � g1i(σ̂2
u, ρ̂) + g2i(σ̂2

u, ρ̂) + 2g3i(σ̂2
u, ρ̂) (29)

with

�g1i(σ2
u, ρ) = bT

i

{
(C−1 − [C−1ZT V−1Zσ2

uC
−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)Zσ2

uC
−1+

(A − [AZT V−1Zσ2
uC

−1 + σ2
uC

−1ZT (−V−1ZAZT V−1)Zσ2
uC

−1+

+σ2
uC

−1ZT V−1ZC−1])
+σ2

uC
−1ZT V−1ZA])

}
bi (30)

and

bT
ML(σ2

u, ρ) =
1

2m

{
I−1(σ2

u, ρ)
[

tr[(XT V−1X)−1XT (−V−1ZC−1ZT V−1)X]
tr[(XT V−1X)−1XT (−V−1ZAZT V−1)X]

]}
(31)

where I(σ2
u, ρ) is given by (19). If the term bT

ML(σ̂2
u, ρ̂) � g1i(σ̂2

u) is ignored, the use of ML
estimators could lead to underestimation of MSE approximation.

Sampling variances, ψi, may not be known in practice. Two possible situations are distinguish-
able:

1. the sampling design selects elementary units in all the small areas of interest (domains);

2. the sampling design does not control the selection in all of the domains, as a result of the
random selection of the sample, some domains could be empty.

In case (1) the sampling variability of the direct sampling estimate can be estimated by an appro-
priate estimator induced by sampling design. The statistical properties of the estimator depends
also on the sample size at the area level.

In case (2) Rao (1998) proposes to smooth the sampling error associated to population level
estimator in order to estimate the sampling variability at the small area level.

The estimated variance ψ̂i is then treated as a proxy to ψi. As result the mse[θ̃S
i (σ̂2

u, ρ̂, ψ̂i)] is
greater than mse[θ̃S

i (σ̂2
u, ρ̂, ψi)].

4.2 CAR Model

An alternative to the SAR error model is the Conditional Autoregressive error model that intro-
duces a new specification of spatially autocorrelated errors. The covariance matrix is set equal
to σ2

u(I − ρW)−1. Hence W needs to be symmetrical and (I − ρW) needs to be strictly positive
definite to ensure the existence and symmetry of σ2

u(I− ρW)−1 in the conditional scheme (Upton
and Fingleton, 1985).

The Spatial BLUP with CAR covariance matrix is:

θ̃C
i (σ2

u, ρ) = xiβ̂ + bT
i {σ2

u(I − ρW)−1}ZT {diag(ψi) + σ2
u(I − ρW)−1}−1(θ̂ − Xβ̂) (32)

with bT
i is as above. Following the same way conducted for SAR error model both ML and REML

procedures are showed to estimate the variance components σ2
u and ρ, and the Spatial EBLUP is

achieved:

θ̃C
i (σ̂2

u, ρ̂) = xiβ̂ + bT
i {σ̂2

u(I − ρ̂W)−1}ZT {diag(ψi) + σ̂2
u(I − ρ̂W)−1}−1(θ̂ − Xβ̂). (33)
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4.2.1 Estimation of σ2
u and ρ.

The log-likelihood function is equal to the (17) and the partial derivatives of l(β, σ2
u, ρ) with respect

to σ2
u and ρ are given by

sσ2
u
(β, σ2

u, ρ) = ∂l
∂σ2

u
= − 1

2 tr{V−1ZD−1ZT } + 1
2 (θ̂ − Xβ)T (V−1ZD−1ZT V−1)(θ̂ − Xβ)

sρ(β, σ2
u, ρ) = ∂l

∂ρ = − 1
2 tr{V−1Zσ2

u[D−1WD−1]ZT }+
+ 1

2 (θ̂ − Xβ)T (V−1Zσ2
u[D−1WD−1]ZT V−1)(θ̂ − Xβ)

(34)
with D = (I − ρW) and V = diag(ψi) + σ2

u(I − ρW)−1. The I(σ2
u, ρ) matrix is

I(σ2
u, ρ) =

[ 1
2 tr{V−1ZD−1ZT V−1ZD−1ZT } 1

2 tr{V−1ZC−1ZT V−1Zσ2
uD

−1WD−1ZT }
1
2 tr{V−1Zσ2

uD
−1WD−1ZT V−1ZD−1ZT } 1

2 tr{V−1Zσ2
uD

−1WD−1ZT V−1Zσ2
uD

−1WD−1ZT }
]

.

(35)
The ML estimators σ̂2

uML
and ρ̂ML can be obtained iteratively using the “scoring” algorithm

(20). To overcome the drawback of ML procedure, that does not consider the loss of degrees of
freedom, the REML method can be used and the partial derivatives and the IR(σ2

u, ρ) are given
by

sR
σ2

u
(σ2

u, ρ) = ∂lR
∂σ2

u
= − 1

2 tr{PZD−1ZT } + 1
2 θ̂

T
PZD−1ZT Pθ̂

sRρ
(σ2

u, ρ) = ∂lR
∂ρ = − 1

2 tr{PZσ2
u[D−1WD−1]ZT }+

+ 1
2 θ̂

T
PZσ2

u[D−1WC−1]ZT Pθ̂

(36)

IR(σ2
u, ρ) =

[ 1
2 tr{PZD−1ZT PZD−1ZT } 1

2 tr{PZD−1ZT PZσ2
uD

−1WD−1ZT }
1
2 tr{PZσ2

uD
−1WD−1ZT PZD−1ZT } 1

2 tr{PZσ2
uD

−1WD−1ZT PZσ2
uD

−1WD−1ZT }
]

(37)
with P = V−1−V−1X(XT V−1X)−1XT V−1 as above. Then the “scoring” algorithm (20) is used
and at convergence the REML estimators are obtained.

4.2.2 MSE of Spatial EBLUP.

The MSE of the Spatial BLUP θ̃C
i (σ2

u, ρ) can be easily obtained from the general result (Saei and
Chambers, 2003)

MSE[θ̃C
i (σ2

u, ρ)] = g1i(σ2
u, ρ) + g2i(σ2

u, ρ) (38)

with
g1i(σ2

u, ρ) = bT
i {σ2

u(I − ρW)−1 − σ2
u(I − ρW)−1ZT×

×{diag(ψi) + Zσ2
u(I − ρW)−1Z−1}−1Zσ2

u(I − ρW)−1}bi (39)

and
g2i(σ2

u, ρ) = (xi − bT
i σ2

u(I − ρW)−1ZT {diag(ψi) + Zσ2
u(I − ρW)−1Z−1}−1X)×

×(XT {diag(ψi) + Zσ2
u(I − ρW)−1Z−1}−1X)−1×

×(xi − bT
i σ2

u(I − ρW)−1ZT {diag(ψi) + Zσ2
u(I − ρW)−1Z−1}−1X)T . (40)

The second order approximation of the Spatial EBLUP θ̃C
i (σ2

u, ρ), under normality of the
errors, reduces to

MSE[θ̃C
i (σ̂2

u, ρ̂)] ≈ g1i(σ2
u, ρ) + g2i(σ2

u, ρ) + g3i(σ2
u, ρ) (41)

where g3i(σ2
u, ρ) is approximately

tr

{[
bT

i

(
D−1ZT V−1 + σ2

uD
−1ZT (−V−1ZD−1ZT V−1)

)
bT

i

(
σ2

uD
−1WD−1ZT V−1 + σ2

uD
−1ZT (−V−1Zσ2

uD
−1WD−1ZT V−1)

) ]
V×

×
[

bT
i

(
D−1ZT V−1 + σ2

uD
−1ZT (−V−1ZD−1ZT V−1)

)
bT

i

(
σ2

uD
−1WD−1ZT V−1 + σ2

uD
−1ZT (−V−1Zσ2

uD
−1WD−1ZT V−1)

) ]T

V̄(σ̂2
u, ρ̂)

}
. (42)
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In practical application σ2
u and ρ are substituted with asymptotically consistent estimators σ̂2

u,
ρ̂. An approximately unbiased estimator of MSE[θ̃C

i (σ2
u, ρ)], similar to (28) is given by

mse[θ̃S
i (σ̂2

u, ρ̂)] ≈ g1i(σ̂2
u, ρ̂) + g2i(σ̂2

u, ρ̂) + 2g3i(σ̂2
u, ρ̂) (43)

if σ̂2
u and ρ̂ are obtained by REML method. Otherwise, if σ̂2

u and ρ̂ are ML estimators, the
mse[θ̃S

i (σ̂2
u, ρ̂)] is given by

mse[θ̃C
i (σ̂2

u, ρ̂)] ≈ g1i(σ̂2
u, ρ̂) − bT

ML(σ̂2
u, ρ̂) � g1i(σ̂2

u, ρ̂) + g2i(σ̂2
u, ρ̂) + 2g3i(σ̂2

u, ρ̂) (44)

with �g1i(σ2
u, ρ) expressed as

bT
i

{
(D−1 − [D−1ZT V−1Zσ2

uD
−1 + σ2

uD
−1ZT (−V−1ZD−1ZT V−1)Zσ2

uD
−1+

(σ2
uD

−1WD−1 − [σ2
uD

−1WD−1ZT V−1Zσ2
uD

−1 + σ2
uD

−1ZT (−V−1Zσ2
uD

−1WD−1ZT V−1)Zσ2
uD

−1+

+σ2
uD

−1ZT V −1ZD−1])
+σ2

uD
−1ZT V−1Zσ2

uD
−1WD−1])

}
bi (45)

and

bT
ML(σ2

u, ρ) =
1

2m

{
I−1(σ2

u, ρ)
[

tr[(XT V−1X)−1XT (−V−1ZD−1ZT V−1)X]
tr[(XT V−1X)−1XT (−V−1Zσ2

uD
−1WD−1ZT V−1)X]

]}
(46)

where I(σ2
u, ρ) is given by (35).

5 Simulation Study

In order to asses the use of the developed methodology, simulated experiments were carried out
according to the following rules:

1. the true small area means Ȳi were obtained by a regression model with SAR dispersion
matrix with a established spatial autoregressive coefficient (ρ) and neighborhood structures
(W ) obtained as follows: fixed m, the number of small areas, the value 1 is assigned to
the spatial weight wij if the value drawn from an uniform distribution [0,1] is greater than
0.5, 0 otherwise. The simulations are performed with ρ equal to ±0.75, ±0.5, ±0.25 and
m = 25, 50. Combining the selected spatial autoregressive coefficient and the number of
small areas, 12 spatial populations are carried out.

2. For each combination of ρ and m a synthetic population was generated assuming a normal
distribution model in each small area with mean Ȳi and variance drawn from a uniform
distribution.

3. For each synthetic population 500 simple random samples of variable size were drawn with
an only constraint: there have to be at least two sample units in each small area.

4. For each sample drawn the mean of each small area has been calculated by BLUP, EBLUP,
Spatial BLUP (12), Spatial EBLUP (16) and the estimates of the parameters σ2

v , σ2
u and

ρ have been obtained both by ML and REML methods. Moreover the MSE of BLUP esti-
mator (MSE[θ̃i(σ2

v)]), the MSE of Spatial BLUP estimator (MSE[θ̃S
i (σ2

u, ρ)]), the MSE of
EBLUP estimator (MSE[θ̃i(σ̂2

v)]), the MSE of Spatial EBLUP estimator (MSE[θ̃S
i (σ̂2

u, ρ̂)]),
the estimated MSE of EBLUP estimator (mse[θ̃i(σ̂2

v)]) and the estimated MSE of Spatial
EBLUP estimator (mse[θ̃S

i (σ̂2
u, ρ̂)]) have been computed.

5. To asses the relative efficiencies for selected numbers of areas the ratio among the Average
Estimated Mean Square Error (A.E.MSE) of Spatial EBLUP estimator and the Average
Estimated Mean Square Error of EBLUP estimator has been determined (Table 1); so the
ratio among the Average Mean Square Error (A.MSE) of Spatial BLUP estimator and the
A.MSE of BLUP estimator and the ratio among the A.MSE of Spatial EBLUP estimator
and the A.MSE of EBLUP estimator have been calculated (Table 1).
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ρ Number of Areas mse[θ̃S
i (σ̂2

u,ρ̂)]

mse[θ̃i(σ̂2
v)]

MSE[θ̃S
i (σ2

u,ρ)]

MSE[θ̃i(σ2
v)]

MSE[θ̃S
i (σ̂2

u,ρ̂)]

MSE[θ̃i(σ̂2
v)]

mse[θ̃S
i (σ̂2

u,ρ̂)]

mse[θ̃i(σ̂2
v)] REML

ρ = −0.75 25 0.89 0.95 0.95 0.95
50 0.77 0.89 0.89 0.86

ρ = −0.5 25 1.00 0.99 0.99 1.02
50 0.86 0.95 0.95 0.87

ρ = −0.25 25 1.03 1.01 1.02 1.05
50 1.02 0.99 0.99 1.03

ρ = 0.25 25 1.01 0.98 0.98 1.01
50 0.96 0.96 0.96 0.94

ρ = 0.5 25 0.94 0.89 0.89 0.97
50 0.88 0.83 0.83 0.90

ρ = 0.75 25 0.86 0.74 0.75 0.97
50 0.82 0.71 0.72 0.77

Table 1: The efficiency ratio among Spatial BLUP-EBLUP estimators and BLUP-EBLUP esti-
mators.

The columns (3) and (6) are the most interesting because they show the gain from modelling
the spatial correlation among small area random effects. If the spatial autoregressive coefficient
increases, weather in positive term or in negative term, the improvement in the accuracy of the
estimation is high. This benefit is bigger as much as the number of small areas increase. In Figure
1 is reported the distribution of Spatial EBLUP for 16 of 25 areas; it can be note that the estimator
is distributed around the true value (line blue) almost in each area.
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Figure 1: The distribution of the Spatial EBLUP estimator for 16 of 25 areas.
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6 Final remarks

The results of this study suggest that the proposed Spatial small area estimator, which takes
into account the spatial dimensions of the data modelling the spatial correlation among small
area random effects, allows to obtain an appreciable improvement of the small area estimates. In
practical application some of the areas are much smaller than the others and it may occur that
these areas of interest are not represented in the sample. Even in this case the Spatial EBLUP
can be employed: it can be used the neighborhood structure of those areas which are represented
in the sample to estimate the parameters σ2

u and ρ. For the area i-th with sample observation the
Spatial EBLUP (16) is applied; for the area i-th with no sample observation the Spatial EBLUP of
θi can be seen as xiβ̂. Then the estimated parameters are employed to the complete neighborhood
structure, that is, both with areas that are represented in the sample and with areas that are not
represented in the sample, to measure the Mean Square Error estimator for the estimated value
in each small areas. The missing data methodology could be another solution to this problem.

The Modifiable Areal Unit Problem (MAUP) is a potential source of error that can affect spatial
studies which utilize aggregate data sources. Large amounts of source data require a careful choice
of aggregate zones to display the spatial variation of the data in a comprehensible manner. It is this
variation in acceptable areal solution that generates the term modifiable (Openshaw and Taylor,
1981).

The developments of Spatial EBLUP can regard either neighborhood structures which consider
a function of the distance, or, if unit-specific covariates are available, the introduction of spatial
dimension in the nested error unit level regression models.
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