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Summary. In this paper we evaluate the evidence for pairs of competitive and exhaustive
hypotheses derived from a characteristic observed on a crime sample and on individuals con-
tained in a database. The subject considered here takes into account a debate which has
recently appeared in the literature concerning the appropriateness of different sets of hypothe-
ses. First we demonstrate the problem via a computational efficient Bayesian Network ob-
tained by transforming some recognized conditional specific independencies into conditional
independencies. Then an Object Oriented Bayesian Network representation is proposed first
for a generic characteristic, then considering inheritable DNA traits. In this respect we show
how to use the Object Oriented Bayesian Network to evaluate the hypotheses that some indi-
viduals genetically related to the database members are the donors of the crime sample.

1. Introduction

Bayesian Networks (BN) are a powerful and compact representation of complex statistical
models that exploit some recognized conditional independencies among random variables.

One of the reasons to represent a statistical model as a BN is the possibility to use
well-established and effective algorithms to solve the inferential issue, i.e. to compute the
distribution of some variables of interest conditionally to the available evidence.

A limit in the use of a BN arises when the number of random variables in the model
increases according to some features of the problem.

Typically, this happens for time series models where a certain structure, a time slice,
is replicated over time, and links between random variables in different time slices are
established. This behavior also occurs when we are interested in the relations between
members of a set of random variables and when some specified relations between the sets
must be taken into account. In the former case the model increases its dimensions over
time, in the latter the growth depends on the number of sets involved.

A solution to the problem can be found through the Object Oriented Bayesian Networks
(OOBN) approach. Tt essentially consists in considering classes of objects related to one
other at different levels in a well specified hierarchy. The subject is developed in Koller and
Pfeffer (1997) and Bangso and Wuillemin (2000) and the goal of this paper is to show how
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a dimension dependent problem, almost intractable by making use of a simple BN, can be
tackled once it is reformulated as an OOBN.

We consider, specifically, the forensic identification problem arising when a crime sample
has been found but there is no clue about its origin. A search in a database (DB) is in
order and the scope of the analysis is to evaluate the probability for each member of the
database to be the origin of the trace. The problem has found a considerable attention
in the literature (see e.g. Donnelly and Friedman, 1999 for a comprehensive and critical
review). Here, starting from an intuitive BN representation of the DB search problem
for a not inheritable characteristic, we provide a solution in an OOBN form transforming
some recognized conditional specific independencies (Geiger and Hackerman, 1996) into
conditional independencies, section (3). The OOBN representation proves useful especially
when we consider more complex genetic traits and when the relations between individuals
of the same lineage is represented via a BN (Dawid et al. 2002). This allows to extend
the search to the relatives of the individuals in the database, providing hints also when
no-match between the crime sample and one (or more) of the database members is found,
section (4). Then we provide the results of a simulation study based on a real database,
section (5) and finally we drawn some conclusions.

2. Background

A BN, By (D, P) or more succinctly By, is defined as a pair of objects: a Directed Acyclic
Graph (DAG), D, whose nodes, U, represent discrete random variables, and a set, P, of
Conditional Probability Tables (CPT) which defines the conditional distributions of each
vertex given the parents.

Each node is independent of its non-descendants conditional to the parents, so the joint
distribution of U can be factorized as a product of CPTs (Pearl, 1988).

One of the main advantages of codifying a probabilistic model through a BN is the
reduction of the computational efforts for calculating the conditional probability of the
interesting unobserved nodes (query variables) given the observed ones (evidence). This
task can be achieved by using one of the available propagation algorithms (e.g. Jensen,
2001).

In many real world applications, as in forensic science, the domain is formed by a
large number of variables and often the complexity of the related network does not allow
a compact representation. In this respect, a new approach, stemmed from the Object
Oriented language, has been introduced in the last few years. This modelling tool, called
Object Oriented Bayesian Network, provides a useful technique capable of building a BN by
merging pieces of simple BNs. Each item is an instantiation of a well-defined class which
can be modified in order to accomplish the maintenance requirements. An update in the
structure or in the CPTs of a class is automatically extended to all instantiations of that
class.

As regards notation, the upper-case letters stand for random variables and correspond-
ing lower-case letters are used to indicate a specified event or state. The vectors of random
variables are denoted with bold upper-case letters and a particular realization or config-
uration is indicated with bold lower-case letters. Last, lower-case Greek letters represent
parameters.
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3. The Database Search Problem: BN vs OOBN

Let X the population characteristic (or attribute) considered for the forensic identification
problem. With & we indicate the set of the m states of X. The parameter 0,, with z € X,
is the probability that X is in state x, that is P(X = z) = 0,. Obviously, the following

condition holds
> 0, =1. (1)
reX

Let N the (finite) size of the reference population and n the number of the individuals
in the DB. For each of them we define a random variable X; with j € I= {1,2,...,n}.
Moreover, we define X, the characteristic related to the crime scene, and the hypotheses
random variable H which has n 4+ 1 states. The first n of them represent the originator
status of each single individual, that is, H = j, with j € I, means that the origin of the
trace is the j-th individual in the DB while the last, H = rest, is referred to the hypothesis
that the donor of the trace is outside the DB.

The basic assumptions of the model are:

i. the individuals in the DB are not stochastically related, i.e., Vj # ¢, X; 1L Xy;

i1. the characteristic of the individuals in the DB is pure, i.e. is independent of hypotheses
variable H, Vj, X; 1L H;

i11. for H = j the characteristics of the rest of the individuals, X_j;, are independent X,
ie,Vj, Xo 1L X_; | H=j where X_; = {X;:ie\{j}}

iv. for H = rest the set of attributes of the individuals, X = {X;j € I}, is independent
of X., that is, X 1l X, | H =rest and P(X,= z| H = rest) =0, withz € X;

v. for H = j the trace observed on the crime scene is left with error and this error is
symmetric, Vj,

ife=2=
PX.=z|X;=2,H=j)= (2)
ifx#£2

n =D
|

3
L

with 2,2 € X and 3 € (0, 1];

vi. no other clue is available in advance, so the prior probability on H is not informative
P(H= j) = 1/N and P(H =rest) =1—n/N.

Note that (4i) and (iv) is a whole set of n + 1 independence statements: for each value
of H a different assertion of independence holds. This form of independence is known
as Conditional Specific Independence (CSI) (Geinger and Heckerman, 1996), which differs
from the usual definition of conditional independence (Dawid, 1979), since, in the latter,
the independence assertions between variables do not vary according to the values of the
conditioning sets.

The graphical structure, which derives from the assumptions (i) and (i), is depicted in
Figure (1) and the CPTs attached to the nodes are specified according to the assumptions
(4id)-(vi).

The proposed naive network does not feature any conditional independence, so, for some
evidence, the probability updating does not take advantage of the graphical representation.
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Fig. 1. A DAG for the DB search problem.

Fig. 2. The augmented DAG obtained from Figure (1).

Moreover, the size of the CPT of X, increases exponentially with respect to the number of
individuals in the DB, so that the propagation becomes rapidly unfeasible. As we will make
further, this problem becomes relevant when an inheritance characteristic is considered and
some unobserved individuals related to any member of the DB are considered for the forensic
identification problem.

Our goal is to provide a more efficient solution by introducing a set of instrumental
nodes in order to allow local computations.

The result is attained in three steps.

Step 1. First, a set of binary random variables H = {H jiJ€ H} is added and a new

network, By, is defined on the augmented domain U = UUH as in Figure (2).
The marginal distribution of the variables X; and H does not change with respect to
the original network and the remaining CPTs are defined as follows:

o 1 ifj=3q
P(H;=1|H=1i)= 3)
0 otherwise
P(X.|X;,H=j) ifh=1;
P(X.|X,H=h)={ P(X.,|H =rest) ifh=0 (4)
m~1 otherwise

where 0 and 1; are vectors of size n. Each element of 0 is 0 while the ¢-th element of
1;is 0 Vi # j and 1 for i = j.

The CPTs attached to each node H ;» specified as in (3), is the probabilistic translation
of the deterministic logical if-then relation, i.e., Vj if H = j then H; = 1 and Vi # j,
H; = 0. Thus, each variable H; represents the originator status for the j-th individual
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Fig. 3. The augmented DAG of Figure (2) after the divorce.

and the deterministic relation is a consequence of the assumption that the characteristic
observed on the crime scene was left by only one individual belonging to the reference
population.

It is easy to prove that:

Y P(Xe, X, H,H) =Y P(X,X,H=1;,H)+P(X.,X,H=0,H) = P(X;, X, H). (5)
H j=1

Since the hypotheses are mutually exclusive, all configurations of H not equal to the
1;s and 0 have a probability zero to realize. For this reason, in the marginalization (5), we
consider only the relevant configurations of H.

The main consequence of the above result concerns the probability updating of the
query variable H. In fact, for any evidence on X and X, the posterior probability of the
hypotheses variable can be calculated indifferently by using By or By.

Step 2. Here a divorcing technique (Jensen, 2001) is applied. The idea is to introduce
a set of mediating variables between the parents and their child of a large converging
connection. The role of the mediating variables is to lead some parents to divorce. The
main advantage of this method is the reduction of the computational efforts because the
original clique, {X, X., H}, is broken into a tree of smaller cliques.

A reasonable way to divorce the parents of node X, in the network By, is to add n
mediating variables Z = {Z; : j € I}, which take values in X, so that each pair of variables
X, and H; are married. Figure (3) illustrates the DAG after divorcing. We denote it with
D while we use U for indicating its domain, that is, U = {X,H,H,Z,X}. The node
X} represents the characteristic related to the crime scene which has been redefined for
convenience. In particular X} takes values in X* = X U {NAN} where the state labelled
NAN is an instrumental event.

The CPTs specification of the nodes X ,H and H remains unchanged with respect to
B¢;. Imposing the CSI conditions

Vj,Z; 1L X; | Hy =0, (6)

the rest of CPTs are specified as follows
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Fig. 4. The network obtained after dropping the X node and the related incidental arcs from the
DAG in Figure (3)

P(Zj=z|X;=&H;=1) = (8)

_ (9)
0 otherwise
where T € A* and z,%,z; € X.
The following proposition provides the probabilistic relation between the networks B
and %ﬁ'

PROPOSITION 3.1. For each x € X and for a given constant C(z), depending on x,
the following relation holds:

P(X,=2,X,H,H)=C(z)-Y_ P(X}==2XHH,Z) (10)
Z

Finally, combining (5) with (10), we obtain the main result:

P(X,=2,X,H)=C(z) Y P(X}=2XHH,Z) (11)
Z H

where, as usual, x € X. The above equation establishes that for calculating the posterior
probability of the hypotheses variable H we can use B instead of By.

Step 3. As explained in the proof of PROPOSITION 3.1, during the propagation,
each valid evidence on X is transferred to all mediating variables. So, operationally, we
build a new DAG merely by dropping from ® the node X » as well as its incidental arcs.
Moreover, we use the characteristic observed on the crime scene for evidencing each vertex
Zj.

The new graph, depicted in Figure (4), is conspicuous for a repetitive structure with
respect to the individuals in the DB. For each of them the same BN is built and all the
networks are mixed by the hypotheses variable H which is the only parent of every H;.
Therefore, a set of conditional independence assertions appears, i.e., given H, each triple
(Z;, H ;» X;) is independent of the rest of the variables so that, for calculating the posterior
distributions of H, local computations are allowed.

A more compact representation can be achieved by transforming the proposed network
in an OOBN framework. Considering the approach proposed by Bangso and Wuillemin
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Fig. 5. The OOBN representation for the DB search problem derived from Figure (4).

(2000), we define a class, F, containing a simple BN, H — Z « X, where the node H is
an input node while X and Z are interior nodes. For each instantiantion of the class F(5),
with j € I, we build a binary random variable H ; which is referenced node of F(j ).H. They
are connected through a reference link (=), that is, I?]T = F(j).H. Moreover, a set of arcs
from the general hypotheses variable H pointing towards each referenced node are drawn.
Finally, the CPTs related to the variables H} are specified as in (3).

Figure (5) illustrates the OOBN representation for the DB search problem as the basic
model for the forensic identification issue.

4. OOBN for Inheritable Nuclear DNA Traits

A DNA profile concerns measurements on several well specified locations of the DNA, called
loci. For each locus we observe two alleles, one inherited from the father and the other from
the mother, even if their origin is not recoverable. In this paper we assume independence of
the alleles within each locus and between the loci, i.e., we assume Hardy-Weinberg (H-W)
and linkage equilibrium. For a generic locus we define two random variables Ay and A,
whose states, a1, as,...,a,,, are the inheritable alleles. In addition, we consider a further
random variable X whose states represent the genotypes, i.e., an ordered pair of alleles
(at, a,) with ¢t < .

This inheritance allows us to consider also, as the possible donor of the crime sample,
individuals never typed but genetically related to the DB members. In this way the no-
match case, the most common, but unfortunately also the less useful outcome of the DB
search, could increase the probability for some compatible individuals to be the origin of
the trace. Compatible individuals are defined as those having a positive probability for the
characteristic observed on the crime sample, conditional to all the available evidence. For
instance, a Db member not matching the crime sample, has a compatible child if he/she
shares an allele with the crime sample at each considered locus.

Here, we consider a pedigree, F, constituted by a generic individual (i), his parents (0
and 1), his sibling (s), his partner (p) and his brother (b). Note that, the labels 0 and 1
are referred to a generic parent and not specifically to the mother or father because the
information concerning inheritance is not available. Since this pedigree is built around a
generic individual we call it a one-generation-around pedigree.

In this perspective, the variables H and H7, shown in Figure (5), have a new meaning.

The j-th state of H, with j € I, is referred to the hypothesis that the donor of the
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Fig. 6. The individual class

trace belongs to the family of the j-th individual of the DB while H = rest concerns the
possibility that trace was left by someone not included in the considered families. Remark
that, NV, used to specify the prior on H, has to be interpreted as the number of the families
composing the reference population.

Furthermore, every variable FI; takes values in £ = JF U rest. The state rest
concerns the hypothesis that the trace is left by none of the considered family while the
statement H ;= ¢, with ¢ € 7 means that the donor of the trace is exactly the g-th member
of F. Since, we do not have any clue in advance the CPT attached to each referenced node
H ; is specified as follows

1/6 if j =i and h # rest
PH!=h|H=i)={ 1 ifj#iand h=rest (12)
0 otherwise

where i,j € I and h € F.

In this respect the class F includes the one-generation-around pedigree and the set of
hypotheses variables related to a generic family. Considering the Allele Network proposed
by Lauritzen and Sheehan (2002), we provide an OOBN representation of F. To do so, we
need to define two other classes: the Individual (I) and the Segregation (S) class.

The individual class’ inner structure is represented in Figure (6). If no information
about the individual’s parents is available, the allele input nodes A} e A} depend on the
reference population parameters , otherwise they are determined by the transmitted alleles.
Another input node is the binary random variable H representing the originator status of a
generic individual. To provide the transmission of the individual genetic characteristics to
the siblings, a copy of the alleles is expressed by output nodes (A§ e AY), the other vertexes
X and Z being interior nodes. The variable X denotes the observable genotype and its
CPT is specified as follows

P(X = (amau) | Aé = a‘h7A;:l = at) =

1 if(h=randt=wu)or (h=wvandt=r)
(13)
0 otherwise,

while Z plays the instrumental role explained in section (3) and its CPT is built according
to equations (6), (7) and (8).
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Fig. 7. The segregation class

The segregation class’ structure, Figure (7), has two alleles input nodes and provides
the selection mechanism to generate the transmitted allele A? via the following CPT, which
reflects the first Mendelian law:

P(At =a, | Ao =ai, A1 = a,) =

1 ifr=t=u
05 if(r=tandr#u)or (r=wandr#t) (14)

0 otherwise.

In the overall, the family class F is defined by a set of instantiations of I, I(g), and S,
S(q,t), with ¢,t € F and ¢ # t. The index g is referred to the alleles donor while ¢ denotes
the member that receives the allele after the segregation. The links among the instantiations
of the basic classes, I and S, are drawn according to the biological relationships and each
input node I(q).H has its own referenced vertex H, - All of them are mixed by the only
input node H and the related CPTs are built as follows

~ B 1 ifg=u

P(H;“1|Hu){ . (15)
0 otherwise

with v € F and ¢ € F. In Figure (8) we give a simple example of F assuming that

F =1{0,1,i}.

Under the linkage equilibrium assumpion we build, for each locus I € L = {1,2,...,k},
a BN, %B,, as in Figure (5). The genotype of the j-th individual observed on the I-th locus
is used for entering evidence on the node %B,.F(j).I(i).X. Moreover, all the interior vertexes
B,.F(5).I(q).Z, with j € I and ¢ € F, receive as evidence the (same) genotype observed on
the I-th locus of the crime sample.

The propagation provides all the probabilities we need to compute the Weight of Ev-
idence (WE). This measure is used to evaluate the support given by the genetic evidence
(€) to an identification hypothesis of interest (). The WE cannot be read directly by the
net, but it can be derived from

_P(H) P(H|E)
WE=P@m) PHE| &) (16)

If linkage equilibrium holds the overall WE is just the product of each single WE evaluated
for each locus.
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Fig. 8. The family class F when F = {0, 1,}.
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5. An Application Using a Real DB

Now let us to give account of some simulations on a real (small) DB containing 100 ob-
servations on 13 loci. The members of the DB are unrelated and we assume that all the
one-generation-around individuals belong to the originator population.

The size of the originator population was set to one million and the prior on H is assumed
to be uniform.

For each observed individual, we generated two crime samples obtained respectively
from the posterior marginal distribution of the child’s and the sibling’s genotypes. We call
them the child-crime-samples and the sibling-crime-samples.

For each child-crime-sample, we evaluate two hypotheses: one concerns the identifica-
tion of the child for each member of the DB, the other considers the possibility that the
crime sample comes from a generic member of each one-generation-around family. Similar
computations are provided if the sibling-crime-samples are used.

Concerning the identification of a child, 98 out of 100 of the WEs supporting the correct
identification hypothesis have the highest values compared to the WEs relating the simulated
child to the other 99 families. In the same simulation, the remaining 2 WEs have got the
second highest values. The identification of a brother was a slightly less successful, since he
is not a direct lineage: 91 out of 100 WEs have got the highest values; 4 of 100 the second
highest value, finally the less successful case assumed the seventh highest WE.

As a comment, it must be noted that our simulation is conservative in nature since,
for instance, in sampling a sibling-crime-sample we do not know the relatives’ genotypes
but we sample from their posterior distribution conditional to the genotype of just one of
their siblings. In real cases, where the relatives’ genotypes are knows by nature, brothers’
genotypes are often very similar: for each locus, the fact that only one of the parents is
homozygote is sufficient for the probability that brothers share one allele to be equal to one
and the probability they are identical is equal to 0.5.

6. Conclusions

The use of BN to provide an evaluation of the weight of evidence for forensic identification
purposes is a new but already well established approach Dawid (2003), Mortera and al.
(2003) and Corradi et al. (2003).

Here, the BN technology is invoked when there is no clue about the origin of the trace but
there is a list of well identified individuals, not apparently related to the crime, available in
the DB. This result is all the more effective when an augmented DB is introduced, having
assumed that all its members belong to the population of possible donors of the crime
sample, even if some of them are not observed. In this new perspective the OOBN approach
provides the most striking solution: the familiar, the individual and the segregation classes
of hierarchy provide a concise representation of the repetitive part of the problem, saving
efforts when maintenance operations are required. This could happen for instance when
we want to introduce the possibility of a mutation in the alleles transmission: in this case
a slight modification of the segregation class produces the result. At the same time the
proposed solution leaves some room to operate on the single instance of the classes. This is
compulsory for our problem since we are required not to consider as possible originator of
the crime sample those individuals in the augmented DB who are not included in the donors’
population since e.g. dead or in jail. In the OOBN environment this can be realized just
by intervening on the hypotheses input nodes concerning each family and detailed for each
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considered members. In this view, even a subject in the original DB thrown out from the
hypotheses evaluation, should be kept since the possibility to evaluate genetically related
individuals would not be excluded.

Proof of Proposition 3.1

The joint marginal distribution of {X, H, H} is the same in the two BNs B and B, so
(10) becomes

P(X.=z,|X,H) = ZPX*—x|Z HPZ|3:J7 ) (17)

When the variable X} receives an evidence z € X it is easy to show that after the
reduction (9) can be written as product of n potential ¢;, that is

P(X;=2|2)=]]¢(2) (18)
i=1
where
1 ifz=2x
0;(Z; =%) = , (19)
0 otherwise
with £ € X.

The equation (19), which defines a finding on Z;, establishes that all mediating variables
take value  with probability 1. So, combining equations (18) and (19) with (17) we obtain
that

P(X} =2, X,H)=C) [[ P(Z == | X;, Hj). (20)

If H=1; then from (4) and (6) we have that

P(X,=uz,| X;,H = x)- [[P(2i =« | H: =0)
1]
P(Z]:.T|XJ,H321)

The third part of the right side of the above equation is a product which involves n — 1
terms. From (7), each one of them is equal to 6, so, comparing (2) with (8) we obtain
C(x) =0

The same result is achieved for H = 0 as well. In fact, in that case, considering (4) and
(6), the equation (20) becomes

P(X,=ux,| H=rest) = H H; =0).

Finally, from condition (iv) and equation (7) we obtain again that C(x) = §17".
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