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Chain Graphs for Multilevel Models

Anna Gottard and Carla Rampichini

Department of Statistics “G. Parenti”, University of Florence, Italy.

Summary . The present work proposes a possible solution to extend graphical models for
correlated data. Particularly, the paper focused on hierarchical data structures, considering
two-level random intercept models. The proposed solution allows to use the existing chain
graphs theory in a straightforward way. After a brief introduction to multilevel models and a
description of the conditional independencies derived from the model, the paper defines chain
graphs for multilevel models. Some examples illustrates and an application to real data show
the usefulness of the proposed models.

Keywords: chain graphs, conditional independence, hierarchical data, multilevel models, two-
level random intercept model

1. Introduction

Probabilistic independence is a very important way to look at a statistical model. Graphical models
are a key technique in dealing with this topic. In recent years, the literature on graphical models has
grown considerably, particularly at a theoretical level. Their use in applied statistics, however, is
lagged behind, they mostly are considered a theoretical topic. The purpose of this article is to show
how the theory of conditional independence and graphical models can be successfully employed
in the analysis of complex data sets, such as hierarchical data structures, which are largely present
in applications. The class of models considered in this paper is that of multilevel models (Snijders
and Bosker, 1999). These models are useful tools to treat clustered correlated data, particularly if
one is interested in relations among variables at different levels in a hierarchical system. In case
of hierarchically clustered data, observations belonging to the same cluster are not independent,
while observations of different clusters are independent. In multilevel models, in order to deal with
this kind of dependence, a latent variable is introduced in the model and the independence among
observations is assumed conditionally on it.

The present work proposes an extension of chain graphs to represent multilevel models. As a
first step only the two-level random intercept model is analyzed.

Other authors proposed alternative representations:Johnson and Hoeting (2003) proposed a two
component graphical chain model to represent a random effects model with categorical variables
measured on many random sites, whileBuntine (1994) uses plates to represent multilevel data
structures in a Bayesian framework.

Section2 introduces multilevel models and describes the conditional independencies derived
from the model. Section3 provides some basics to understand the the semantics used in this work
and define chain graph for multilevel models. Section4 illustrates some examples of multilevel
graph models. Section5 presents an application to real data, while Section6 concludes giving some
direction for future research.
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2. Conditional independence in multilevel models

Many kinds of data have a hierarchical, nested, or clustered structure: for example, repeated mea-
sures on the same subjects over time, students in schools, patients in hospitals and so on. Statistical
units belonging to the same cluster have or tend to have similar observable and unobservable char-
acteristics. This implies that the group and its members both influence and are influenced by the
group membership. Ignoring this relationship leads to overlooking the importance of group effects,
and may also render invalid many of the traditional statistical analysis techniques used for studying
data relationships. In multilevel models a random variable is inserted to take into account such kinds
of dependency among observations.

Consider the random vectorY = (Y11, . . . , Yn11, . . . , YnJJ) and the matrix of random vectors
Z = (Z1, · · · , ZK) on a probability space(Ω,A,P). In a multilevel framework we assume that

Yij⊥⊥\Yi′j | Z, ∀i 6= i′, i, i′ = 1, 2, . . . , nj

given thati, i′ are two statistical units belonging to the same groupj, while

Yij⊥⊥Yi′j′ | Z and Yij⊥⊥Yi′j′ , ∀j 6= j′, j, j′ = 1, 2, . . . , J

sincej, j′ are two different groups.
If Y is a continuous response variable, assuming without loss of generality only one explanatory

variable Z, the basic linear two-level random intercept model is specified in the following way
(Goldstein, 2003):

Yij = α + βZij + τUj + εij , (1)

with i = 1, 2, . . . , nj statistical units for thej-th group (j = 1, 2, . . . , J). In (1), α is the intercept;
Zij is the matrix of the explanatory variables andβ the corresponding vector of fixed coefficients;τ
is the square root of the second level variance; the random variablesεij andUj are the disturbances,
respectively at the first (individual) and second (group) levels, under the hypotheses: (i)E(εij) = 0

andV ar(εij) = σ2, (ii) Uj
iid∼ N(0, 1), (iii) the εij ’s andUj ’s are mutually independent, (iv)

Uj⊥⊥Z.
According to model (1) and the (i)-(iv) assumptions the following statements hold:

• Yij⊥⊥Yi′j | Uj ,Z;

• τ = 0 ⇒ f(Yj | Uj ,Z) = f(Yj | Z), that isYj⊥⊥Uj | Z.

• f(Uj | Z) = f(Uj)

Therefore the joint probability distribution for each groupj, j = 1, 2, . . . , J , can be factorized as:

f(Yj ,Uj ,Z) = f(Yj | Uj , Z)f(Uj)f(Z) = f(Yj | Uj ,Z)f(Uj)f(Z)

=

[
nj∏

i=1

f(yij | Uj ,Z)

]
f(Uj)f(Z) (2)

whereYj = {y1j , . . . , ynjj}′.
If the joint density is absolutely continuous and strictly positive, for the conditional independen-

cies properties and given the assumptionUj⊥⊥Z, if Yj⊥⊥Uj | Z thenUj⊥⊥(Y,Z) and the model (1)
reduces to a standard regression model. Nevertheless, the assumptionUj⊥⊥Z does not imply that
Uj⊥⊥Z | Yj , unlessYj⊥⊥Uj or Yj⊥⊥Z.
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It is well known that under the Gaussian distribution, conditional independence is equivalent
to the assumption that a certain element of the concentration matrix is equal to zero and marginal
independence among variables is equivalent to the assumption that the corresponding element of
the covariance matrix is zero (Whittaker, 1990). Therefore, if(Y,U , Z) ∼ MN(µ,Σ), it is useful
to look at the covariance and concentration matrices derived from model (1).

For each groupj, Vj = {Yj ,Uj ,Z} andVj ∼ MN(E(Vj), ΣVj ), whereE(Vj) = (µYj , 0, µZ),
with Σ = IJ×J ⊗ΣVj

.
Following Cox and Wermuth (1996), given thatUj⊥⊥Z, we can write the covariance matrix of

Vj as:

ΣVj =




ΣYjYj ΣYjU ΣYjZ

ΣUYj ΣUU ΣUZ

ΣZYj
ΣZU ΣZZ


 =




ΣYjYj ΣYjU ΣYjZ

ΣUYj ΣUU 0
ΣZYj

0 ΣZZ




Note that, sinceYij⊥⊥Yi′j | (Uj ,Z), the elementΣYjYj of the concentration matrixΣ−1
Vj

is a
diagonal matrix. Moreover,Uj⊥⊥Z ⇔ ΣUZ = 0, in ΣVj

, but in generalUj⊥⊥\Z | Yj ,so the element
ΣUZ of the concentration matrix might not be a null matrix.

The normal vectorYj andUj are conditionally independent givenZ if and only if either (Whit-
taker, 1990):

i. cov(Yj ,Uj | Z) = 0 or ΣYjU |Z = ΣYjU − ΣYjZΣ−1
ZZΣUZ = 0;

ii. or the block of the concentration matrixΣYjU = 0.

Under model (1), assuming without loss generalitynj = 2 so thatY′
j = (Y1j , Y2j) and only

one explanatory variableZ, the Normal distribution hypothesis forYj corresponds to a normal
distribution for theεij . As a consequence, conditional onUj and Z, the responseYij on each
observation is normally distributed withE[Yij | Uj = uj , Z = zij ] = α+βzij +τuj , var(Yij |Uj =
uj , Z = zij) = σ2 and cov(Yij , Yi′j |Uj = uj , Z) = 0, while marginally with respectUj var(Yij |
Z = zij) = σ2 + τ2 and cov(Yij , Yi′j′ | Z = zij) is equal to zero ifj 6= j′ and equal toτ2 if
j = j′.

Thus, the covariance matrixΣj of the observed variables can be written in terms of the multi-
level model parameters:

Σj =




σ2 + τ2 + β2σ2
Z τ2 + β2σ2

Z βσ2
Z

τ2 + β2σ2
Z σ2 + τ2 + β2σ2

Z βσ2
Z

βσ2
Z βσ2

Z σ2
Z


 (3)

while the observed concentration matrixΣ−1
j has the form:

Σ−1
j =

1
| Σj |




· τ2 −βσ2
Zσ2

τ2 · −βσ2
Zσ2

−βσ2
Zσ2 −βσ2

Zσ2 ·


 (4)

Note thatσY1jY2j = τ2, so if τ = 0 thenσY1j ,Y2j = 0, soY1j⊥⊥Y2j | Z, that is theYij are indepen-
dent and identical distributed variables. Moreover, it can be seen thatΣYjZ − ΣYjUΣ−1

UUΣZU =
βσ2

Z . Recalling that the normal vectorYj andZ are conditionally independent givenUj if and only
if either (Whittaker, 1990):

i. cov(Yj , Z | Uj) = 0 or ΣYjZ|U = ΣYjZ − ΣYjUΣ−1
UUΣZU = 0;

ii. or the block of the concentration matrixΣYjZ = 0,

it is manifest that ifβ = 0 then(Y1j , Y2j)⊥⊥Z | U , and this implies thatY1j⊥⊥Z | U andY2j⊥⊥Z |
U .
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3. Chain graphs for multilevel models

There are many types of graphs in literature, with different semantics. This Section provides some
basics to understand the the semantic used in this work and define chain graph multilevel models.
For an extended presentation of chain graphs theoretical concepts refer toLauritzen (1996).

A graphG is a pair(V, E), whereV is a nonempty set ofnodes, representing random variables,
andE is a subset of the setV × V of ordered pair of distinct nodes, callededges. The assumption
thatE consists of pair of distinct nodes, implies that there are no self-loops. We say thatu, v ∈ V
areneighbors, if both (v, u) and(u, v) ∈ E; these edges are called undirected (—) and indicate a
sort of symmetric association. Edges with either(v, u) or (u, v) ∈ E are called directed edges or
arrows (−→), representing a sort of asymmetric relation. Whenu −→ v, u is calledparentof v
andv is calledchild of u. A lack of connection between two nodes represents a sort of conditional
independence, according to Markov properties. Achain graphis a graph admitting both undirected
and directed edges without partially directed cycles. In a chain graph the setV can be partitioned
into an ordered sequence of nonempty subsets, calledblocks, forming the so-calleddependence
chain V = C1 ∪ . . . ∪ Cr, with Ci ∩ Cj = ∅, ∀i 6= j, i, j = 1, 2, . . . , r. Nodes in a same block
can be joined only by undirected edges, while nodes in different blocks can be connected only by
arrows, the direction being the one specified by the ordering of the blocks. Given a probability
measureP overX = XV , a product probability space for all the random variables inV , it can be
said thatP obeys to theblock-recursive Markov propertywith respect to a chain graphG if, for each
non–adjacent pairu, v ∈ V , u⊥⊥v | Ṽuv\(u, v), whereṼuv is the largest subset ofV containing
all random variables in the same block or in a previous block ofu andv. Hereafter, in this paper,
the so-called Lauritzen-Wermuth-Frydenberg (LWF) Markov properties (Lauritzen and Wermuth,
1989; Frydenberg, 1990) are adopted.

Chain graph models concentrate their attention on the relationships among variables, given that
individuals are regarded as independent. This is not true when the response variables are correlated
into groups of statistical units as in multilevel models. This calls for a new kind of chain graphs,
where individual responses are represented by nodes in the graph. We start giving some definitions
of the new object strictly necessary to the construction of this new kind of chain graph.

DEFINITION 3.1. An individual nodeis a node of a graphG representing a random variable
of a specific statistical unit.

Given that an individual node represent also a random variable, it will be impossible to distinguish it
by an aggregate node but its label: for example, for a variableY , Y will be the label of the aggregate
node, whileYi will be the label for the individual node.

DEFINITION 3.2. An individual graphis a graphG = (V,E) with V containing individual
nodes.

Note that it is advisable to include individual nodes in a graph if the conditional independence
structure among the individual random variables represented can be modified by the inclusion or
the omission of one or more random variables. For example, letYi andYj be two individual nodes
for the statistical unitsi andj respectively, andZ an explanatory random variable. If, as in simple
random samples,Yi⊥⊥Yj for construction, it is not expedient to represent bothYi andYj in the
graph. On the contrary, ifYi⊥⊥\Yj for construction then, the introduction of individual nodes is to be
preferred.

DEFINITION 3.3. A grouping latent nodeis a latent node representing an unobserved random
variableU such that

Yij⊥⊥Yi′j | Uj ,Z and Yij⊥⊥\Yi′j | Z
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for Yik, Yjk ∈ ch(U).

Note that the variableUj represents the kind of unobserved factor mentioned in Section2. In the
graph, the grouping latent node will be drawn as©\\ , as it belongs to the class of latent nodes
described inCox and Wermuth (1996), such that marginalizing over this kind of node leads to a
correlation between its children nodes.

DEFINITION 3.4. A random–intercetpt multilevel graphG = (V, E) is an individual graph
fulfilling the following conditions:

(a) with respect to the variable nature, the set of nodesV is partitioned into three subsets: the
setI, of the individual nodes, with cardinality|I| ≥ 2, the setΨ containing grouping latent
nodes, and the setΛ of all the other random variables;

(b) G is a chain graph, withV partitioned into an ordered sequence ofblocks, V = C1 ∪ . . .∪ Cr,
such that

(b.1) if v ∈ I thenv ∈ Cr;

(b.2) if v ∈ Ψ thenv ∈ Cr−1;

(b.3) if v ∈ Λ thenv ∈ ⋃r−2
i=1 Ci;

(c) E = (EI , EΥ). EΥ contains the pairs(u, v), whereu, v ∈ Υ = Λ∪Ψ, EI contains the pairs
(u, i), whereu ∈ Υ, i ∈ I: if the edge(u, i) exists, then also the edge(u, i′) is an element of
EI , for eachi′ ∈ I. Therefore the setEI can be represented as:

EI =
{{(u, i), ∀i ∈ I}, · · · , {(v, i), ∀i ∈ I}}.

Note that each element ofEI is a set with the same cardinality ofI, that is:|{(u, i),∀i ∈ I}| = |I|.
As defined in point (b.2) Definition3.4, in a multilevel graph a grouping latent node is inserted
in the second-last block, becauseUj represents the residual heterogeneity in the responses after
considering all the observable explanatory variables. Moreover, the point (c) of Definition3.4states
that eachZ affects everyYij in the same manner, so the conditional independencies involvingYij

are the same for all thei, j. The principal advantage of this formulation is that usual Markov
properties of block recursive graphical models and factorization criterion (Lauritzen, 1996) apply
also in this case.

Fig. 1. (a) A graphical multilevel model and (b) its moralized version.
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To assess the global Markov property, the moralized version of a multilevel graph has to be
drawn and this can be done following the usual rules for chain graphs. As an example, in Figure1
a graphical two-level random intercept model and its moralized version are represented. Note that
U⊥⊥Z1, like is manifest from part (a) of Figure1, while from part (b) of Figure1 it can be read that
U⊥⊥\Z1 | (Y1j , Y2j).

It is worth to note that ifUj /∈ pa(Yij , Yi′j), then the individual graph is not necessary and can
be misleading. In this case:

i. the individual nodes setI collapses into a single node and the multiple arrows originating
from theZ to the individual nodes are collapsed in a single arrow (see example4.3);

ii. the collapsed graph is Markov equivalent to the corresponding individual graph.

It is important to remark that the collapsed graph is still a chain graph, but it is no more an individual
graph.

4. Examples

The following examples help to illustrate the graphs relative to multilevel models and their interpre-
tation.

4.1. Two level null random-intercept model
Consider the two level null random-intercept model

yij = α0 + τuj + εij (5)

whereyij is the response variable of thei-th individual of thej-th cluster,i = 1, 2, . . . , nj , j =
1, 2, . . . , J , α0 is the common mean,uj are i.i.d random variables representing thej-th cluster
deviation from the mean, whileεij are i.i.d. individual residuals. The graph of this model is reported
in Figure2. According to the graph, the joint probability distribution can be factorized as:

f(Yj ,Uj) = f(Yj | Uj)f(Uj) =

[
nj∏

i=1

f(yij | Uj)

]
f(Uj) (6)

whereYj = {y1j , . . . , ynjj}′.

Fig. 2. A graphical multilevel null model: (a) conditioning on Uj and (b) marginalizing over it.
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Looking at part (b) of Figure2, it can be seen that marginalizing with respect to the grouping
latent nodeUj leads to a connection between its children nodes.
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4.2. Two-level random-intercept model with covariates
The following model (7) corresponds to the classical two-level random intercept model with two
explanatory variables:

yij = α0 + β1z1ij + β2z2ij + τuj + εij (7)

Its factorization is that of equation (2), whereZ = (Z1, Z2)′. The chain graph corresponding to
model (7) is represented in Figure3, wheneverβ2 is not significantly different from zero.

Fig. 3. A graphical multilevel model: (a) conditioning on grouping and (b) marginalizing over it.
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It is worth to note that the LRT is not a valid test to compare two nested random-intercept models
with a different number of explanatory variables because the latent variableU might include also
the effect of the omitted explanatory variables. For instance, the null model of Figure2 cannot be
compared with LRT to the model with explanatory variables of Figure3. In this case, a Wald test
has to be preferred.

4.3. An ordinary regression model with covariates
The following is an example of a misleading individual graph. Consider the the model

yij = α0 + β1z1ij + β21z2ij + εij (8)

The corresponding graph, reported in Figure4, states thatY1j⊥⊥Y2j | Z1, but actually it isY1j⊥⊥Y2j .
Moreover, the nodeUj is a singleton and can be deleted from the graph without changing the
conditional independencies set.

Fig. 4. An example of misleading graphical multilevel model (a) and its correct collapsed version (b).
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Moreover, from the graph of Figure4 it can be seen thatY⊥⊥U | Z and alsoY⊥⊥U , becauseU⊥⊥Z.
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Table 1. Graduates by job position (2000).
Code Job position Frequency Percent
0 no job 249 8.02
1 temporary job 1458 46.97
2 stable job 1397 45.01

5. Application

The proposed models are used to analyze some of the data gathered by a telephone survey con-
ducted, about two years after the degree, on the 2000’s graduates of the University of Florence. The
main goal is to determine factors influencing graduates job position. Moreover, we want to evaluate
the degree programmes on the basis of the probability of finding a stable occupation of graduates.
The pure response variableY , job position at the date of the interview, is a polytomous variable (Ta-
ble 5†), taking on value ‘0’ if the graduate doesn’t have a job, ‘1’ if he/she has a temporary job and
‘2’ if he/she has a stable job. Many observed and unobserved variables may influence the probability
of finding a temporary or stable job. Variables can be ordered into a sequence of blocks, according
to subject-matter knowledge or time. The unexplained variability at the course programme level is
represented by a latent node. The variables definition and the blocks ordering is reported in Table
2. According to the sequence of blocks, the joint density function can be factorized as:

f(Yj ,Uj ,Z) = f(Yj , | Uj ,Z)f(Uj)f(Z)

wheref(Z) =
∏6

m=1 f(Zm | Zm−1, . . . ,Z1), with Zm denoting the vector of variables in the
m-th block.

The estimation of a chain graph model is a difficult task, requiring many steps. The estimation
strategy adopted in this work is based on fitting univariate appropriate regression models according
to the dependent variable scale and to the recursive nature of the chain graph (Cox and Wermuth,
1996). To take account of the hierarchical structure of the data and of the multinomial nature of the
pure response variable, a suitable graphical multilevel model for polytomous response (Skrondal
and Rabe-Hesketh, 2003) is developed and fitted by means of maximum likelihood with adaptive
Gaussian quadrature.

The dependence structure of the data is quite complex. Only 5 of the 15 explanatory variables
have a direct effect on the job position, but only one (X51 = professional training) among them
has no effect at all on the pure response variable. For example, the parents educational level has
only an indirect effect on the pure response through the high school type and the high school rank.
The introduction of a latent node, representing the course programme effect, is substantial: the
likelihood ratio test comparing the models with and without the latent grouping effect is significant.
The proportion of residual variance explained by the grouping is about 8.25%. To give an idea
of usefulness of the proposed approach, Figure5 represents a part of the resulting chain graph,
where all undirected edges and only some arrows are drawn to highlight all direct and some indirect
effects on the pure response. It is important to stress that graphical models are not a causal models:
particularly, in this application, the analysis is conditional on (a) the choice to enroll at the university
after the high school and (b) to not drop out during the university career.

†Only graduates having looked for a job have been considered.
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Table 2. Variables definition and blocks ordering
Z Name Description Block
11 father educational level 1-5 1 (pure explanatory)
12 mother educational level 1-5
13 male 1 if male
21 high school type 4 types 2 (intermediates)
22 high school rank 36-60
23 regular career 1 if regular
31 enrollment year 1(<1990)-5(>1995) 3 (intermediates)
32 short degree 1 if short degree
33 school 11 schools
41 examinations rank average 18-31 4 (intermediates)
42 duration index 0.91-4.86
51 training 1 if training done
52 honors 1 if graduate with honors
53 age at the degree 22-51 5 (intermediates)
61 degree-interview distance 12-33 months 6 (intermediate)
uj course programme 56 course programmes (latent node)
yij job position 0 no, 1 temporary, 2 stable 7 (pure response)

6. Concluding remarks

The work proposes a possible solution to extend graphical models for correlated data. Particularly,
the paper focused on hierarchical data structures, considering two-level random intercept models.
The proposed solution allows to use the existing chain graphs theory in a straightforward way.

This definition of a chain graph for multilevel models combines the potentialities of graph mod-
els with that of multilevel models. Moreover, it forces to make clear the conditional independence
hypotheses underlying the multilevel model specification. Furthermore, the introduction of indi-
vidual response nodes highlight that in multilevel models the unit of analysis is the cluster, while
the response is multivariate. The estimation procedure used in the application could be improved
further, relying on the graph properties.

The simply random-intercept model can be extended in many ways, in order to taking into
account a more complex dependence structure of the responses, including random slopes, and a
more complex hierarchical structure, allowing more that two-level of hierarchy, or cross-classified
structures.
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Fig. 5. Part of the resulting chain graph
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