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Summary

The strength of the evidence against an incriminated individual in cases of forensic identification is
presented in the form of a likelihood ratio or its reciprocal (profile match probability). This paper is
concerned with methods for calculating profile match probability, for personal identification, when analysis
is based on mitochondrial DNA. The current method for estimating profile match probability is based on the
frequency of sequences within databases. Such estimate is not statistically rigorous since complete database
has not been yet compiled. The aim of this paper is to develop a method for analysing data, that allow
for the effect of the mutation process which affect mitochondrial DNA molecule evolution, and computing
profile match probability in the framework of a fully likelihood based approach.

1. Introduction

The interest in maternally inherited mitochondrial DNA (mtDNA) for forensic identification is partially
due to the possibility of typing sequences from very small or degradated biological samples.

While most population genetic models for analysing DNA sequence polymorphisms were developed
under the infinite-sites model, which assumes that every mutation occurs at a different site in the sequence,
for mtDNA this assumption is violated. A more realistic framework is the finite-sites model which allows for
multiple substitutions at a single locus.

A general problem in forensic identification arises when a suspect is observed to have a genetic profile
also known to be possessed by the offender whose mtDNA is recovered from a biological sample left at the
scene of a crime. The problem consists in quantifying the evidential strenght, for the suspect’s guilt, of such
observation.

Consider an individual X1 accused to be the offender. We take a locus as a single position in the
mitochondrial DNA. Given that X1 has an allele Ai at a locus, our aim is to compute the probability that
another individual X2, who is not related to X1, shares the X1’s allele Ai. We refer to this probability as
conditional match probability. This is a natural measure of the weight of evidence in support of the event
that the suspect is the offender since it indicates how likely it is another individual shares the suspect’s
genetic profile.

In section 2, two results are given for computing the conditional match probability described above.
Since we operate in the framework of the finite-sites model, a mutated locus is a single position in the
mtDNA that has been hit by at least one mutation. Furthermore it is assumed that no recombination occurs
within the locus.

In Proposition 1 we consider a one-locus model with two alleles A1 and A2. We assume that A1 mutates
to A2 and A2 to A1 at a same rate µ, and an allele can mutate at most once per generation.

In Proposition 2 we consider a one-locus model with four alleles that correspond to the four DNA bases
{A,G, T, C}. In order to allow for multiple subsitutions, a Markov process model is used for base mutation
at a single locus.

Finally, section 3 contains some examples of how to compute the conditional match probability, under
different scenarios, using results of section 2.

2. Results

Proposition 1. Consider a one locus model with two alleles A1 and A2, and let π1 and π2 = 1−π1 be
the frequencies of A1 and A2 respectively. Moreover let θ be the limit limN→∞ 2Nµ where µ is the mutation
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rate per locus per generation and N is the population size of a haploid population P. Finally let t be the
coalescence time of two individuals chosen at random in the population P, this is, two individuals who are
not related. Then given that an individual X1 has the allele Ai, the probability that another individual X2,
chosen at random in the population P, who has a common ancestor with X1 tN generations ago, share the
same allele is

P (X2 = Ai|X1 = Ai, θ, t) =
(

1− θt

2

)(
π + (1− π)

θt

2

)
. (2.1)

Proof. In the finite-sites model hypothesis, the same locus can be hit several times by mutations or not. In
order to compute probability (2.1) we have to consider two cases: whether the common ancestor shares the
same allele with X1 and X2 or not. If the common ancestor shares the X1 and X2’s allele Ai, we have to
compute the probability that the X2’s locus has been hit by an even number of mutations, in case none. If
the common ancestor doesn’t share the X1 and X2’s allele, we have to compute the probability that X2’s
locus has been hit by an odd number of mutations. Then

P (X2 = Ai|X1 = Ai, µ, N, t) = π

btN/2c∑

j=0

(1− µ)btNc−2jµ2j + (1− π)
btN/2c∑

j=1

(1− µ)btNc−2j+1µ2j−1 (2.2)

where btNc is the largest integer less than or equal to tN .
From the first summation of equation (2.2) we have

btN/2c∑

j=0

(1− µ)btNc−2jµ2j = (1− µ)btNc
btN/2c∑

j=0

[(
µ

1− µ

)2
]j

=
1−

(
µ

1−µ

)btNc+2

1−
(

µ
1−µ

)2 · (1− µ)btNc =

=
(1− µ)btNc+2 − µbtNc+2

1− 2µ
(2.3)

where
∑btN/2c

j=0 (1 − µ)−2jµ2j is the partial sum of a geometric series with ratio µ2 · (1 − µ)−2. This series
converges if and only if µ < 1/2. Such condition is satisfied since the mutation rate µ is tipically quite small,
namely of the order of 10−5 or 10−6. Moreover we can use the following approximation:

(1− µ)btNc+2 − µbtNc+2 ' 1− (btNc+ 2)µ. (2.4)

In order to apply the diffusion limit for large but finite populations, we assume the limit limN→∞ 2Nµ exists
and we indicate it with θ. Then,

lim
N→∞

1− (btNc+ 2)µ
1− 2µ

= lim
N→∞

1− btNcµ
1− 2µ

' 1− θt

2
. (2.5)

Even the second summation of equation (2.2) is a geometric series which converges if and only if µ < 1/2.
Then

btN/2c∑

j=1

(1− µ)btNc−2j+1µ2j−1 = (1− µ)btNc
btN/2c∑

j=1

µ2j−1

(1− µ)2j−1
= (1− µ)btNc


 1

1− µ
1−µ

−
btN/2c∑

j=0

µ2j

(1− µ)2j




' (1− µ)btNc


1−

btN/2c∑

j=0

µ2j

(1− µ)2j


 (2.6)

Hence for the same as before, we obtain the following result:

lim
N→∞

(1− µ)btNc


1−

btN/2c∑

j=0

µ2j

(1− µ)2j


 = (1− θt

2
) ·

[
1−

(
1− θt

2

)]
=

(
1− θt

2

)
θt

2
(2.7)
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So thesis derives from (2.5) and (2.7).

Proposition 2. Consider a one locus model with four alleles Ai, i = 1, 2, 3, 4, that correspond to the four
DNA-bases {A, G, T,C} respectively, and two type of mutations. We indicate with µ and ν the transition
(T ↔ C, A ↔ G) and transvertion (T, C ↔ A,G) mutation rate respectively. Let πi, i = 1, 2, 3, 4,∑4

i=1 πi = 1, be the allele frequencies. Moreover let θµ and θν be the limits limN→∞ 2Nµ and limN→∞ 2Nν
respectively, where N is the size of a haploid population P. Given that an individual X1 has an allele Ai,
the probability that an individual X2 share the same allele is:

P (X2 = Ai|X1 = Ai, θ, t) = πi

(
(1− θµt

2
)− 1

2
θνt

)
+ (1− πi)

(
θµt

2
+

θνt

2

)
. (2.8)

Proof. We model the mutation process as a Markov process with transition probabilities

P =




A C G T

A 1− (µ + ν) ν/2 µ ν/2
C ν/2 1− (µ + ν) ν/2 µ
G µ ν/2 1− (µ + ν) ν/2
T ν/2 µ ν/2 1− (µ + ν)


 (2.9)

The nth power of P is the matrix of n-step transition probabilities. The transition matrix P can be
written on the form V DV −1 where D is a diagonal matrix with the eigenvalues of P as its entries and V is
an invertible matrix consisting of the eigenvectors corresponding to the eigenvalues in D:

D = diag{1− 2µ− 2ν, 1− 2µ− 2ν, 1− 2ν, 1}, V =




1 1 1 1
1 −1 −1 1
−1 −1 1 1
−1 1 −1 1


 (2.10)

Then

Pn = V DnV −1 =




an bn cn bn

bn an bn cn

cn bn an bn

bn cn bn an


 (2.11)

with

an =
1
2
(1− 2µ− ν)n +

1
4
(1− 2ν)n +

1
4

(2.12a)

bn = −1
4
(1− 2ν)n +

1
4

(2.12b)

cn = −1
2
(1− 2µ− ν)n +

1
4
(1− 2ν)n +

1
4

(2.12c)

The probability that X2 shares the X1’s allele is the probability to observe no differerences if X1 and
X2’s common ancestor btNc generations has the same allele too; or to observe one difference if their common
ancestor doesn’t share the same allele. Hence

P (Ai|Ai, btNc steps) = πi · abtNc + (1− πi) · (1− abtNc) 2.13)

Applying the diffusion limit for large but finite populations, we obtain

abtNc =
1
2
(1− 2µ− ν)btNc +

1
4
(1− 2ν)btNc +

1
4

=

1
2
(1− (2µ + ν)btNc) +

1
4
(1− 2νbtNc) +

1
4

(2.14)

3



and when N →∞
abtNc → (1− θµt

2
)− 1

2
θνt (2.15)

from which the thesis derives.

3. Examples.

Suppose that an mtDNA sequence recovered from a biological sample left at a crime scene is found to
match the mtDNA sequence obtained from an individual X1. This observation supports the hypothesis that
X1 is the source of the recovered biological sample. In order to assess the evidential strenght of this support,
we need to evaluate the probability that another individual X2 would also match the recovered biological
sample left at crime scene.

Suppose a reference sample D is available consisting of the mtDNA sequences of n unrelated individuals
drawn from the same racial group as X1. Then the conditional match probability another individual X2,
who is not maternally-related to X1, shares X1’s mitochondrial haplotype is

P (X1 = Ai|X2 = Ai, H̄,D) =
∫

θ,π,t

P (X1 = Ai|X2 = Ai, H̄, θ, π, t,D)P (θ, π, t|H̄,D)dθdπdt =

∫

θ,π,t

P (X1 = Ai|X2 = Ai, H̄, θ, π, t)P (θ, π|D)P (t|H̄,D)dθdπdt. (3.1)

In this equation H̄ indicates the hypothesis X1 and X2 doesn’t pertain to the same maternal lineage
and so, for instance, they aren’t brothers—this hypothesis ,which is weaker than supposing X1 and X2 are
the same person, is due to the fact we analyse maternally inherited DNA.

The probability P (X1 = Ai|X2 = Ai, H̄, θ, π, t) is given by result 1 or result 2 in preceding section.
Instead P (θ, π|D) denotes the posterior distribution of parameters θ and π which can be obtained by a
mutational model. Finally, P (t|H̄,D) is the posterior coalescence times distribution of two people who are
not related but present the same mitochondrial haplotype.

Often in databases between different individuals within a population, a single position exibits only two
variants—this is, for instance, the case of genetic data namely single-nucleotide polymorphisms (SNPs) for
which the more polymorphic such a locus is, the larger the relative frequency of the less common variant.
When analysing data of that kind, in defining a mutational model we have information about only two
alleles, hence we can consider result 1 in calculating the match conditional probability. We refer to this case
to present some examples.

Let us consider a databse D consisting of n = 49 individuals who have 28 polymorphic loci. Each
position is labeled with 0 or 1 whether the allele presents the common variant or the rare one respectively.
Since the polymorphic loci are distanced each other, we assume they evolve independently, so that

∫

θ,π,t

P (X1 = A1 . . . A28|X2 = A1 . . . A28, H̄, θ, π, t)P (θ, π|D)P (t|H̄,D)dθdπdt =

28∏

i=1

∫

θi,πi,t

P (X1 = Ai|X2 = Ai, H̄, θi, πi, t,D)P (θi, πi, t|H̄,D)dθidπidt (3.2)

Example 1. In this first example we consider a plug-in estimate approach in calculating probability (3.2).
Under this way of dealing with estimates, π is fixed to be its empirical estimate π̂, so that the population
frequency of each allele is simply estimated by its corresponding frequency as observed in the data set D.
In addition let us assume no randomness about mutation and demographic parameters, for which µ = 10−9

and N = 5000 (). For the posterior of t coalescence time between the two individuals X1 and X2, we
observe that the probability of not observing differences between two sequences given separation time t
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is P (no differences|t) = (1 − θt/2) ' exp(−θt/2) while the natural prior of coalescence time between two
individual who are not related is an exponential with mean equals to 2. So,

P (t|no differences) = P (no differences|t) · P (t) =
1
2

exp(−(θ + 1)t/2) (3.3)

which is approximately an exponential with mean 2 since θ is very small. With this assumption, for two indi-
viduals who has the same sequence with the rare variant on positions 11 and 25, then P (X1 = A1 . . . A28|X2 =
A1 . . . A28, H̄,D) = 0.000713 We observe that if two individual share the same sequence with just the rare al-
lele on position 28, which is the most polimorphic one, we obtain P (X1 = A1 . . . A28|X2 = A1 . . . A28, H̄,D) =
0.0326.

Example 2. In this example we introduce randomness for mutation process. We modelize data as a
Binomial(n, p) where p = exp(−θjt)(1/2− πj) + 1/2 is the rare variant proportion in the population. Than
we assume N = 5000 constant and used a gamma distribution with shape equal to 2 and scale parameter
equal to 10(−9). There are no compelling reasons for the particular choices of a gamma distribution. This
distribution has desiderable properties of being smooth, unimodal and excluding negative values. Having
adopted this functional form, the parameter values were chosen to give desired mean and variance. (Tavaré
et al. 1997). Finally we complete the specification of the model by taking a symmetric beta(a,a) distribution
on π with a = 0.1 (Nicholson et al. 2002) As in example 1 the coalescence time between two individuals
who are not related has an exponential distribution with mean 2. With this assumption, if two individuals
have the same sequence with the rare variant on positions 11 and 25, the conditional match probability is
P (X1 = A1 . . . A28|X2 = A1 . . . A28, H̄,D) = 0.00074. We observe that, for instance, if two individuals share
the same sequence with just the rare allele on position 28, which is the most polimorphic one, we obtain
P (X1 = A1 . . . A28|X2 = A1 . . . A28, H̄,D) = 0.031.

Results show that our method is robust under the different scenarios assumed in the examples. Fur-
thermore it is interesting to compare our results whith those based on mtDNA sequences, that is analyses
based on the frequency of a sequence within a database. For instance in the FBI database, which contains
2087 sequences, there is not the mithocondrial aplotype analysed in previous examples with rare variant on
positions 11 and 25. So in the augmented database we have a probability of order 10−3 which is more con-
servative than ours. This finding would suggest that our method captures some information that, although
contained in the considered data, is not recognized by a pure descriptive method.
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