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Abstract

The paper describes an application of a modified small area estimator to the data collected
in the Rathbun Lake Watershed in Iowa (USA). Opsomer et al. (2003) estimated the average
erosion per acre for 61 sub-watersheds within the study region using an empirical best linear
unbiased predictor (EBLUP).

The proposed methodology considers an EBLUP estimator with spatially correlated error
taking into account the information provided by neighboring areas.

KEY WORDS: Unit level random effect model, EBLUP, Spatial model, Natural resources survey.

1 Introduction

Sample survey data are extensively used to provide reliable direct estimates of totals and means
for the whole population and large areas or domains. A domain is regarded as “small” if the
domain-specific sample is not large enough to support direct estimates of adequate precision;
they are likely to yield large standard errors due to the unduly small size of the sample in the
area. Traditional area-specific direct estimators do not provide adequate precision, then in making
estimates for small areas it is necessary to employ indirect estimators that “borrow strength” from
related area; in particular, model assisted and model based indirect estimators. They are based
on either implicit or explicit models that provide a link to related small areas through auxiliary
data. Two types of indirect estimators can be identified: indirect estimators based on implicit
models (models assisted) include synthetic and composite estimators, while those based on explicit
models (model based) incorporate area-specific effects .

Small area models make use of explicit linking models based on random area-specific effects
that account for between areas variation beyond what is explained by auxiliary variables included
in the model. The random area effects are considered independents, but in practice, basically
in most of the applications on environmental data, it should be more reasonable to assume that
the random area effects between the neighboring areas (for instance the neighborhood could be
defined by a contiguity criterium) are correlated and the correlation decays to zero as distance
increases. The absence of information about neighborhoods could produced a series of failings
at national, local and community level; policies could easily be misdesigned or mistargeted and
important trends could be missed by national and local government.

The aim of this work is to estimate the average watershed erosion (Opsomer et al., 2003)
taking into account the spatial dimension of the soil erosion data, collected on the Rathbun Lake
Watershed (Iowa - USA), adapting a model with spatially correlated errors in the Empirical Best
Linear Unbiased Predictor (EBLUP) estimator (Rao, 2003).

The paper is organized as follows: section 2 introduces the small area models that include
random area-specific effects and EBLUP estimator is showed. In section 3 the Spatial EBLUP
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procedure is recalled. Section 4 discusses the results of the application of Spatial EBLUP to
estimate the average sub-watershed erosion per acre on the Rathbun Lake Watershed (Iowa -
USA).

2 Nested Error Unit Level Regression Models

A nested error unit level regression model assumes that unit-specific auxiliary data
xij = (xij1, xij2, ...xijp)T are available for each population element j in each small area i and
the population mean X̄i are known. The relationship among yij , the variable of study, and xij is
represented through a one-fold nested error linear regression model (Rao, 1994):

yij = xT
ijβ + ui + εij i = 1...m j = 1...Ni. (1)

The random effects ui and εij are assumed to be mutually independent error terms with zero
means and variances σ2

u and σ2
ε respectively (Saei and Chambers, 2003). In addition, it is often

assumed normality of the ui’s and εij ’s . The random term ui represents the joint effect of area
characteristics and εij is the random effect associated with the j-th unit within the i-th area. The
formula (1) can be write in matrix form as:

yi = Xiβ + ui1i + εi i = 1...m. (2)

where Xi is Ni × p, yi, 1i = (1, ...1)T and εi are Ni × 1 vectors.
If the sampling rate fi = ni/Ni is negligible, the small area means can be taken as:

Ȳi = X̄T
i β + ui + ε̄i (3)

where ε̄i
∼= 0 is the mean of the Ni errors εij ; then it follows that the estimation of the target

parameters θi are approximately equal to θi = X̄T
i β + ui. For known variances σ2

u and σ2
ε , the

BLUP of θi under the model is:

θ̂i = γi[ȳi + (X̄i − x̄i)T β̂] + (1− γi)X̄T
i β̂ with i = 1...m, (4)

where γi = σ2
u

(σ2
u+σ2

ε /ni)
is the shrinkage factor, β̂ is the weighted least squares estimate vector of

β and x̄i is the sample mean of xi. For area k with no samples, θ̂k = X̄T
k β̂. In practice, the

variances σ2
u and σ2

ε are seldom known and they are estimated from the sample data, using the
method of fitting constants (Battese et al., 1988) or the restricted maximum likelihood (REML)
method (Rao, 2001). The resulting predictors are known as the EBPLUP.

Thomsen (in Gosh and Rao, 1994) believes that predictors (4) tend to over-estimate area means
with small random effects and under-estimate area means with large effects such that the variation
between the predictors is smaller than the variation between the true means (Pfeffermann, 2002).
Another critical point for the unit level models is that they assume that the sample values obey
the assumed population model, that is, sample selection bias is absent (Rao, 2003).

3 Spatial Unit Level Random Effect Models

In order to take into account the correlation between neighboring areas we regarded to the spatial
models and how these models could be utilized in small area estimation (Cressie, 1991). In this
study a standard linear regression is considered and the spatial dependence has been incorporated
in the error structure (E[vi, vj ] 6= 0). It can be specified in a number of different ways, and results
in a error variance covariance matrix of the form (Anselin, 1992):

E[vi, vj ] = Ω(τ), (5)
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where τ is a vector of parameters, such as the coefficient in a Simultaneously Autoregressive (SAR)
or Conditional Autoregressive (CAR) error process, and vi, vj are the area random effects. A SAR
error model is used:

y = Xβ + v (6)

where v = ρWv +u, ρ is the spatial autoregressive coefficient, W is the spatial weight matrix for
y, u ∼ N(0, σ2

uI) is the error vector and

v ∼ (
0, σ2

u[(I− ρW)(I− ρWT )]−1
)
. (7)

Spatial models are a special case of the general linear mixed model. Considering the spatial
dimensions of the data, a model with spatially correlated errors could be implemented.

Suppose that the sample data obey the general linear mixed model and let y be the vector of
values of the response variable n × 1 (n =

∑m
i ni), X be the matrix of covariates n × p, v the

random area effect vector m × 1 (m is the number of small areas)and ε the error vectors n × 1.
Let Z be the incidence matrix n ×m for the random effect vector v. The model can be written
as:

y = Xβ + Zv + ε (8)

with the incidence matrix is

Z =




1n1 0 . . . 0

0
...

... 0
...

...
...

...
0 0 · · · 1nm




where 1ni is a vector of dimension ni with all elements equal to one. The error vector ε and
area effect vector v are mutually independent error terms with zero mean vectors and covariances
matrices given σ2

ε In and σ2
u[(I− ρW)(I− ρWT )]−1 respectively. The model (8) can be rewritten

as:
y = Xβ + Z(I− ρW)−1u + ε. (9)

It follows that the covariance matrices of the studied variable is:

V = R + ZGZT = σ2
ε In + Zσ2

u[(I− ρW)(I− ρWT )]−1ZT (10)

For known σ2
u, σ2

ε and ρ the Spatial BLUP estimator of a parameter θi (the small area mean)
is:

θ̃S
i (σ2

u, σ2
ε , ρ) = X̄iβ̂+bT

i {σ2
u[(I−ρW)(I−ρWT )]−1}ZT {σ2

ε In+Zσ2
u[(I−ρW)(I−ρWT )]−1ZT }−1(y−Xβ̂)

(11)
where X̄i are the known population mean, β̂ = (XT V−1X)−1XT V−1y and bT

i is 1 ×m vector
(0, 0, ...0, 1, 0, ...0) with 1 in the i-th position.

The MSE[θ̃S
i (σ2

u, σ2
ε , ρ)], depending on three parameters (σ2

u, σ2
ε , ρ), can be expressed as:

MSE[θ̃S
i (σ2

u, σ2
ε , ρ)] = g1i(σ2

u, σ2
ε , ρ) + g2i(σ2

u, σ2
ε , ρ) (12)

with

g1i(σ2
u, σ2

ε , ρ) = bT
i {σ2

u[(I− ρW)(I− ρWT )]−1 − σ2
u[(I− ρW)(I− ρWT )]−1ZT×

{σ2
ε In + Zσ2

u[(I− ρW)(I− ρWT )]−1ZT }−1Zσ2
u[(I− ρW)(I− ρWT )]−1}bi (13)

and
g2i(σ2

u, σ2
ε , ρ) = (X̄i − bT

i σ2
u[(I− ρW)(I− ρWT )]−1ZT×

{σ2
ε In + Zσ2

u[(I− ρW)(I− ρWT )]−1ZT }−1X)×
(XT {σ2

ε In + Zσ2
u[(I− ρW)(I− ρWT )]−1ZT }−1X)−1×
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(X̄i − bT
i σ2

u[(I− ρW)(I− ρWT )]−1ZT×
σ2

ε In + Zσ2
u[(I− ρW)(I− ρWT )]−1ZT }−1X)T . (14)

The estimator θ̃S
i (σ2

u, σ2
ε , ρ) depends on the variance components σ2

u, σ2
ε and ρ, but in practice

they will be unknown. Replacing the parameters with asymptotically consistent estimators σ̂2
u,

σ̂2
ε , ρ̂, a two stage estimator θ̃S

i (σ̂2
u, σ̂2

ε , ρ̂) is obtained and it is called Spatial EBLUP:

θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂) = X̄iβ̂+bT

i {σ̂2
u[(I−ρ̂W)(I−ρ̂WT )]−1}ZT {σ̂2

ε In+Zσ̂2
u[(I−ρ̂W)(I−ρ̂WT )]−1Z}−1(y−Xβ̂)

(15)
with bT

i = (0, 0, ...0, 1, 0, ...0) and 1 referred to i-th area. Assuming normality, σ2
u, σ2

ε and ρ
can be estimated both by ML and REML procedures. The ML estimators σ̂2

uML
, σ̂2

εML
and ρ̂ML

can be obtained iteratively using the “Nelder-Mead” algorithm (Nelder and Mead, 1965) and the
“scoring” algorithm in sequence. The use of these procedures one after the other is necessary
because the log-likelihood function have a global maximum and some local maximums. The ML
estimator obtained with the “scoring” algorithm depend from the selected starting point, while
the “Nelder-Mead” method for the maximization of a function of q variables depends on the
comparison of function values at the (q + 1) vertices of a general simplex; it adapts itself to the
local landscape, and contracts on the final maximum. It does not depend from the selected starting
point and it is computationally compact but it is not fully efficient: it achieves a point that is
close to the global maximum. For this reason it needs to use the “scoring” algorithm selecting as
starting point the maximum that has been obtain by the “Nelder-Mead” method.

The “scoring” algorithm can be represented as:



σ2
u

σ2
ε

ρ




(n+1)

=




σ2
u

σ2
ε

ρ




(n)

+ [I(σ2(n)

u , σ2(n)

ε , ρ(n))]−1 · s
[
β̂(σ2(n)

u , σ2(n)

ε , ρ(n)), σ2(n)

u , σ2(n)

ε , ρ(n)
]

(16)

where s
[
β̂(σ2(n)

u , σ2(n)

ε , ρ(n)), σ2(n)

u , σ2(n)

ε , ρ(n)
]

is the vector of the partial derivatives of log-likelihood

function with respect to σ2
u σ2

ε and ρ, I−1(σ2
u, σ2

ε , ρ) is the inverse matrix of expected second deriva-
tives minus log-likelihood function with respect to the variance components and n indicates the
number of iteration.

The ML procedure to estimate σ2
u, σ2

ε and ρ does not consider the loss in degrees of freedom due
to estimating β. This drawback involves the use of REML method (Cressie, 1992). The “Nelder-
Mead” method and the “scoring” algorithm are used and at convergence the REML estimators are
obtained and the asymptotic covariance matrix of β̂R, σ̂2

uR
, σ̂2

εR
and ρ̂R has a diagonal structure

diag
[
V̄(β̂R), V̄(σ̂2

uR
, σ̂2

εR
, ρ̂R)

]
≈ diag

[
V̄(β̂ML), V̄(σ̂2

uML
, σ̂2

εML
, ρ̂ML)

]
with

V̄(β̂R) ≈ V̄(β̂ML) = (XT V−1X)−1

V̄(σ̂2
uR

, σ̂2
εR

, ρ̂R) ≈ V̄(σ̂2
uML

, σ̂2
εML

, ρ̂ML) = I−1(σ2
u, σ2

ε ρ). (17)

The ML and REML estimators are robust, in fact they may work well even under non normal
distributions (Jiang, 1996).

The MSE of Spatial EBLUP θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂) is:

MSE[θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂)] ≈ g1i(σ2

u, σ2
ε , ρ) + g2i(σ2

u, σ2
ε , ρ) + g3i(σ2

u, σ2
ε , ρ) (18)

where g3i(σ2
u, σ2

ε , ρ) is approximately

tr








bT
i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
σ2

uC
−1ZT (−V−1InV−1)

)

bT
i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

)


 V×

×




bT
i

(
C−1ZT V−1 + σ2

uC
−1ZT (−V−1ZC−1ZT V−1)

)
bT

i

(
σ2

uC
−1ZT (−V−1InV−1)

)

bT
i

(
AZT V−1 + σ2

uC
−1ZT (−V−1ZAZT V−1)

)




T

V̄(σ̂2
u, σ̂2

ε , ρ̂)





(19)



Small Area Estimation: Spatial EBLUP 5

with C = [(I − ρW)(I − ρWT )] and A = σ2
u[−C−1(2ρWWT − 2W)C−1]. An estimator of

MSE[θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂)] can be expressed as:

mse[θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂)] ≈ g1i(σ̂2

u, σ̂2
ε , ρ̂) + g2i(σ̂2

u, σ̂2
ε , ρ̂) + 2g3i(σ̂2

u, σ̂2
ε , ρ̂) (20)

if σ̂2
u, σ̂2

ε and ρ̂ are REML estimators. Otherwise, if ML procedure is used, the mse[θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂)]

is given by

mse[θ̃S
i (σ̂2

u, σ̂2
ε , ρ̂)] ≈ g1i(σ̂2

u, σ̂2
ε , ρ̂)−bT

ML(σ̂2
u, σ̂2

ε , ρ̂)5g1i(σ̂2
u, σ̂2

ε , ρ̂)+g2i(σ̂2
u, σ̂2

ε , ρ̂)+2g3i(σ̂2
u, σ̂2

ε , ρ̂)
(21)

with

5g1i(σ2
u, σ2

ε , ρ) = bT
i





(C−1 − [C−1ZT V−1Zσ2
uC

−1 + σ2
uC

−1ZT (−V−1ZC−1ZT V−1)Zσ2
uC

−1+
(−σ2

uC
−1ZT (−V−1InV−1)×

(A− [AZT V−1Zσ2
uC

−1 + σ2
uC

−1ZT (−V−1ZAZT V−1)Zσ2
uC

−1+

+σ2
uC

−1ZT V−1ZC−1])
Zσ2

uC
−1)

+σ2
uC

−1ZT V−1ZA])



bi (22)

and

bT
ML(σ2

u, σ2
ε , ρ) =

1
2m



I

−1(σ2
u, σ2

ε , ρ)




tr[(XT V−1X)−1XT (−V−1ZC−1ZT V−1)X]
tr[(XT V−1X)−1XT (−V−1InV−1)X]

tr[(XT V−1X)−1XT (−V−1ZAZT V−1)X]






 . (23)

If the term bT
ML(σ̂2

u, ρ̂)5g1i(σ̂2
u) is ignored, the use of ML estimators could lead to underestimation

of MSE approximation.

4 Data and results

In 2000 a survey designed to estimate the amount of erosion delivered to the streams in the
Rathbun Lake watershed was completed. The watershed, located in southern Iowa (USA), covers
more than 365000 acres (147715 ha) in six counties and is divided into 61 sub-watersheds.

Figure 1: The Watershed of Rathbun Lake

In the application the data are the result of this design: each small area (domain) has been
divided in plots (total 2146), each plot has been sequentially labelled and a systematic sampling
of plots has been selected. The fractional interval has been fixed in order to select four units from
each small area (domain). Not all these 4× 61 units have been included in the sample. From each
domain a simple random sample of 3 units has been selected. Then within each sub-watershed,
three 160-acre (64 ha) plots were selected, as is showed in Figure 1, and a sample of 183 units was
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WAYNE

LUCAS

DECATUR

CLARKE MONROE

APPANOOSE

Erosion (Ton/Acre)
2.45 - 2.49
2.49 - 2.81
2.81 - 3.02
3.02 - 3.22
3.22 - 3.76

County

Figure 2: The quantity of the erosion estimated by REML method for the 17 HUC of Rathbun
Lake.

obtained. The final sample can be reasonably assimilated to a simple random sample from the
domains (for details Opsomer et al., 2003).

Auxiliary data at the plot and sub-watershed level were available for this study: the land
use and the topography are considered major determinants of the erosion. Data related to these
factor were available for the study region in the form of digital elevation and land use classification
coverages. Hence, the Spatial EBLUP method is implemented to this data to estimate the average
of watershed erosion in each of the 61 small area within the study region using SAR model. The
neighborhood structure W is defined as follows: spatial weight, wij , is 1 if area i shares an edge
with area j and 0 otherwise. For the study a new programme, running under the R environment,
using the “Nelder-Mead” algorithm and the “scoring” algorithm in sequence was implemented to
estimate the parameters (σ2

u, σ2
ε , ρ), to calculate the Spatial EBLUP and its mse. The value of

the estimated spatial autoregressive coefficient ρ̂ is 0.116 (s.e. = 0.0504) with ML procedure and
0.131 (s.e. = 0.0632) with REML method, which suggests a moderate spatial relationship. Table
1 shows the value of estimated parameters and their standard error.

Estimator σ̂2
u σ̂2

ε ρ̂s

θ̃S(σ̂2
uML

, σ̂2
εML

, ρ̂ML) 3536.05 (5973.08) 74503.91 (9344.05) 0.116 (0.0504)
θ̃S(σ̂2

uR
, σ̂2

εR
, ρ̂R) 3631.75 (5959.45) 75632.57 (9460.26) 0.131 (0.0632)

Table 1: Estimated parameters and their standard error.

To summarize, Figure 2 displays the map of the Rathbun Lake Watershed with the Spatial
EBLUP estimates for the average erosion per acre in only 17 small areas, which are an aggregation
of sub-watersheds.

In order to asses the achieved results with the introduction of the spatial information in the
small area estimation, the direct estimator is also calculated. In Table 2 are reported the average
estimated standard errors and its variability per acre of Direct and Spatial EBLUP estimators.
Table 2 shows also the average estimated of mse and its decomposition in g1, due to the random
effects, g2, which accounts for the variability in the estimator β̂, g3 due to estimate ρ, σ2

u and σ2
ε .

The Spatial EBLUP estimator provides estimates with smaller average estimated standard
errors than the direct estimator.
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Estimator A.E.Se. A.E.mse A.E.(g1) A.E.(g2) A.E.(g3)
θ̃S(σ̂2

uML
, σ̂2

εML
, ρ̂ML) 0.514 42.43 23.46 1.95 8.50

θ̃S(σ̂2
uR

, σ̂2
εR

, ρ̂R) 0.537 46.48 25.60 1.82 9.52
DIRECT θ 0.886

Table 2: Average Estimated Standard Errors (A.E.Se.) of Direct and Spatial EBLUP estimators.

As it said above, small area models make use of explicit linking models based on random
area-specific effects that account for between area variation beyond that is explained by auxiliary
variables included in the model.
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Figure 3: Normal q-q plot to check the normality of the standardized residuals rij
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Figure 4: Normal q-q plot to check the normality of the small area effects

Inferences from model based estimators refer to the distribution implied by the assumed model.
Model selection and validation play an important role in model based estimation, in fact if the
assumed models do not perform a good fit to the data, the estimators will be model biased and
can lead to wrong inferences. An evaluation of the resulting model is performed by treating the
standardized EBLUP residuals rij = (yij − xT

ijβ̂ − v̂i)/σ̂2
ε . If rij are approximately iid N(0, 1)

variables, the model is valid. Residual plots of the standardized residuals show the effects of
individual errors (Figure 3). It can be noted that the residuals are lightly skewed: perhaps
because of the particular micro-climate which characterizes that region. But this issue should
be more developed in order to better evaluate the performances of the model. To check the
normality of the small area effects vi a normal q-q plot is examined (Figure 4). The Shapiro-Wilk
W statistic gives value of 0.973 for small area effects, yielding p-value of 0.2048 that suggests no



8 Alessandra Petrucci, Nicola Salvati

evidence against the hypothesis of normality.
In conclusion, considering the case study, the Spatial EBLUP methodology, which takes into

account the SAR spatial model in the small area estimation, suggests a reduction of the width of
the confidence interval.
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