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ABSTRACT  
 

In Perez-Amaral, Gallo, and White (2003), the authors proposed an 
automatic predictive modelling tool called Relevant Transformation of the 
Inputs Network Approach (RETINA). It is designed to embody flexibility (using 
nonlinear transformations of the predictors of interest), selective search within 
the range of possible models, control of collinearity, out-of-sample forecasting 
ability, and computational simplicity. In this paper we compare the 
characteristics of RETINA with PcGets, a well-known automatic modeling 
method proposed by David Hendry. We point out similarities, differences, and 
complementarities of the two methods. In an example using US 
telecommunications demand data we find that RETINA can improve both in- 
and out-of-sample over the usual linear regression model, and over some 
models suggested by PcGets.  Thus, both methods are useful components of 
the modern applied econometrician’s automated modelling tool chest. 

 
 
 
 
 
Note: We thank Peter C.B. Phillips and two anonymous referees for 

constructive comments and for pointing out directions for further research. 
The first and second author acknowledge financial support from the 
Coordinated Exchange programs funded by the Italian and Spanish Ministries 
for University and Research. Thanks are due to Massimiliano Marinucci, 
Universidad Complutense, for performing the computations of the empirical 
example.  
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1. Introduction 
 
Model building and specification selection is a process blending science and 

art: finding candidate models must adhere to some sort of paradigm, as 

Ploberger and Phillips, 2003, make clear in their discussion of the relationship 

between the data generating process and a principle of parsimony in 

achieving an adequate representation of the data. Recent developments have 

gone in the direction of making some of this process automatic, and hence 

implementable in software. A leading method is the strategy known as 

general-to-specific (Gets) modeling proposed by David Hendry, which Hoover 

and Perez (1999) first suggested to implement in an automated way.  An 

overview of the literature, and the developments leading to Gets modeling in 

particular, is provided by Campos, Ericsson and Hendry (2004).  Finite-

sample behavior is examined in Krolzig and Hendry (2001) and Hendry and 

Krolzig (2003). PcGets, a computer program that implements the Gets 

modelling is described in Hendry and Krolzig (2004). 

 

PcGets has four basic stages in its approach to selecting a parsimonious 

undominated representation of an overly general initial model, denoted the 

general unrestricted model (GUM). The first concerns the estimation and 

testing of the GUM; the second is the pre-search process; the third is the 

multipath search procedure; and the fourth is the post-search evaluation. See 

Hendry and Krolzig (2001) for details.  

 

In this paper we compare PcGets with RETINA, another automatic modeling 

method, recently proposed in Pérez-Amaral, Gallo and White (2003), based 

on earlier work by White (1998). It aims at achieving a flexible and 

parsimonious prediction model that well approximates the conditional mean of 

a variable, given a (potentially large) set of variables of interest, in situations 

where one does not have specific information as to the functional form of the 

conditional mean or as to the relevance of individual variables. RETINA has 

the flexibility of neural network models (see White, 1989) in that it 

accommodates nonlinearities and interaction effects (through nonlinear 

transformations of the potentially useful variables in the conditioning set), the 

concavity of the likelihood in the parameters of the usual linear models (which 

avoids numerical complexity in estimation), and the ability to identify a set of 
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attributes that are likely to be truly predictive (which corresponds to a principle 

of parsimony). In performing model selection, the approach relies on an 

estimation/cross-validation scheme that is aimed at limiting the possibilities 

that good performance is due to sheer luck.  

 

In section 2 we outline the basic features of RETINA. In section 3 we compare 

and contrast the objectives, strategies, selection criteria, base models, and 

other features of RETINA with those of PcGets. In section 4 we illustrate the 

complementarity of the methods by applying both to real data on US 

telecommunications demand. Section 5 contains concluding remarks. 

 

2. RETINA. 
The rationale behind the RETINA procedure is a predictive modeling effort 

guided by the data structure. In general there is no theory required apart from 

some guidance in selecting an information set of potential predictive 

usefulness. The key principles that have inspired the construction of the 

algorithm are flexibility, selective search, control of collinearity and out-of-

sample predictive ability. The procedure is described in detail in Table 1 below 

(cf. also the original paper by Perez-Amaral, Gallo and White, 2003); here  it 

is helpful to sketch the motivations for these basic features of RETINA.   
 
Flexibility: Flexibility is required to handle the lack of information about the 

functional form of the conditional mean of  the dependent variable Y given 

“inputs” X that is common in economics. To attain this flexibility, one may use 

a set of transformations of the input variables, say ( )Xζ  = { ζ j(X), j = 1, …, 

m}, that embodies both nonlinearities and interactions.  

Selective Search: The task of evaluating all 2m possible models arising when 

we have m candidate regressors in the set of transformed variables ( )Xζ , 

and then of applying some form of model selection becomes impossible for 

even a moderate value of m. Rather, following the ideas in White (1998), we 

can select from a judiciously chosen subset of all possible models (of order 

proportional to m), admitting (transformed) predictor variables on the basis of 

their relevance for the problem at hand. For example, one may rank the 

candidate regressors according to their correlation in absolute value with the 

dependent variable, and include them in the model sequentially in rank order.  
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Collinearity: In order to control the degree of dependency among the 

variables of the model, one can require that the amount of collinearity 

between the included predictors and any candidate predictor considered for 

sequential inclusion must lie below a threshold parameter λ chosen by the 

experimenter (as λ approaches 0 new regressors approach orthogonality; as λ 

approaches 1 new regressors may be highly collinear).  

Out-of-Sample Forecasting Ability: Although flexibility is desirable, it 

creates the danger of overfitting the sample data. In order to avoid this, we 

use disjoint sub-samples for estimation and cross-validation and an out-of-

sample prediction performance criterion for model selection as important 

features of the procedure.  

 
TABLE 1 - The RETINA algorithm†

Stage 0 - Preliminaries 
1. Data building and sorting 

a. Generate the set of transformed variables 1( ) { , , }mX W Wζ = … . 
b. Randomly divide the sample into three sub-samples.  

Stage I - Isolating a “candidate” model 
2. Using Data on the First Sub-sample 

a. Order the variables in ζ(X) according to their (absolute) sample 
correlation with the dependent variable in the first sub-sample 
alone. Let  be the variable with the largest absolute 
correlation with Y,  be the second most correlated, and so 
on. 

(1)W

(2)W

b. Consider various sets of regressors all of which include a 
constant and : each set of regressors (1)W ( )Xλζ  is indexed by a 
“collinearity threshold” 0 1λ≤ ≤  and is built by including  

(j=2,…,m) in 
( )jW

( )Xλζ  if the 2R  of the regression of  on the 
variables already included is less than or equal to 

( )jW
λ . 

c. The number of sets of regressors is controlled by the number of 
values of λ  between 0 and 1 chosen, say, ν . 

3. Using Data on the First and Second Sub-sample  
a. Estimate each model by regressing Y on each set of regressors 

( )Xλζ  using the data on the first sub-sample only and compute 
an out-of-sample prediction criterion (the cross-validated mean 
squared prediction error) using the data on the second sub-
sample only. This involves the estimation of ν  models. 

b. Select a “candidate” model as the one corresponding to the best 
out-of-sample performance ( )* X

λ
ζ . 

Stage II – Search Strategy 
4. Using Data from both the Second and Third Sub-sample 

a. Search for a more parsimonious model: estimate all models 
including a constant and all the regressors in ( )* X

λ
ζ  one at a 
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time in the order they were originally included, but also in the 
order produced by the procedure sub 2.a, this time on the basis 
of the correlations in the second sub-sample. 

b. Perform an evaluation of the models out-of-sample (using the 
data on the third sub-sample) calculating a performance 
measure (the cross-validated mean squared prediction error, 
possibly augmented by a penalty term for the number of 
parameters in the model). 

Stage III – Model Selection  
5. Repeat Stage I and II Changing the Order of the Sub-samples; 

Produce a Candidate for Each Sub-sample Ordering 
6. Select the Model which has the Best Performance over the 

Whole Sample  
† Codes for running RETINA (GAUSS, MATLAB) are available upon request. 

 

 

Some comments on the RETINA algorithm are in order.  

• Division of the entire sample into three sub-samples. This is done in 

order to cross-validate using truly out of-sample-data.  

• Safeguards against spurious correlations. This is achieved by three 

features of RETINA. One is the scrambling of the regressors by their 

correlation in the second subsample, another is the use of the 

parameter λ to control for collinearity, and a third is the repetition of the 

whole procedure on the different orderings of the sample.  

• Information criteria. In order to select the final model associated with a 

specific ordering of the sub-samples we apply an information criterion; 

RETINA uses the out-of-sample AIC.  

 

 

3.  PcGets vs RETINA. 
 
 
In this section we sketch similarities and differences between PcGets and 

RETINA. For clarity and brevity, we omit details that can be found in the 

references.  We start by comparing the objectives, strategies and general 

characteristics of the two procedures, continue with some more specific 

details, and finally outline certain parallel aspects of the two methods.  
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A. Goals 
           

PcGets RETINA 
a. Select a parsimonious undominated 

representation of an overly general 
initial model, the general 
unrestricted model (GUM) 

b. Best model fit within sample. 
c. Congruent with theory. 

Identify a parsimonious set of 
(transformed) attributes likely to be 
relevant for predicting out-of-sample. 

 

 
In many practical applications, the general-to-specific approach often 

proceeds as if the DGP is nested within the GUM (or, equivalently, as if the 

GUM is an overparameterization of the DGP), so that the DGP can be 

discovered by eliminating the irrelevant variables (this is not an explicit 

assumption of PcGets, though). 

RETINA is less ambitious. It tries to approximate an unknown predictive 

relationship using a model that is not necessarily correctly specified, using 

transforms of the attributes to the extent that they contribute to out-of-sample 

prediction and are not too collinear with each other. 

 
 
B. Strategy 
       

PcGets RETINA 
a. General to specific. 
b. Formulate a general unrestricted 

model, GUM, and reduce it to a 
parsimonious model using residual 
tests and hypothesis testing on 
coefficients.  

a. Specific to general: Start from a 
model with a single transform. Add 
additional transforms only if they 
contribute to out-of-sample forecast 
ability. 

b. Flexible and parsimonious model. 
c. Selective search of transforms. 
d. Control for collinearity. 

 
The modeling strategies are quite different: PcGets proceeds from general to 

specific; it starts from a general model and reduces it down. RETINA starts 

from a model with just a constant and augments it by including additional 

transforms only when they help forecast out-of-sample and are not too 

collinear with previously included variables (no specific hypothesis testing is 

performed). 
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C. Base Model  
 

PcGets RETINA 
GUM: General Unrestricted Model, 
specified by the researcher, usually 
based on theory. Using transforms of 
the original variables. 

Based on original inputs and 
transforms, automatically selected 
from the first subsample by cross 
validation in the second, controlling for 
collinearity.  

 
The role of the GUM is crucial in PcGets, but there is no automatic procedure 

for specifying the GUM, although there are useful guidelines.  On the other 

hand, RETINA constructs several base models (GUMs in PcGets parlance) in 

an automatic fashion and then uses a strategy to reduce them using out-of-

sample performance criteria.  

 
D. Flexibility  

 
PcGets RETINA 

The GUM determines maximum 
flexibility. May include transforms of 
the original variables. 

a. The permitted transformations of 
the inputs determine maximum 
flexibility. 

b. The actual flexibility of the 
candidate model is chosen by the 
procedure 

 
 
E. Selective/systematic search.  

 
PcGets RETINA 

a. Starting from the GUM, performs a 
systematic search using multiple 
reduction paths. 

b. Using diagnostics, checks the 
validity of each reduction until 
terminal selection. 

c. When all paths are explored, 
repeatedly tests models against 
their union until a unique final 
model is obtained.  

 

 

a. Uses a selective search to avoid 
the heavy task of evaluating all 2m 

possible models and of applying 
some form of model selection. 

b. A saliency feature of the 
transforms, such as the correlation 
with the dependent variable, is 
used to construct a natural order of 
the transforms in which they are 
considered.  

c. Only a number of candidate models 
of order proportional to m is 
considered.  
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F. Collinearity.  
 

PcGets RETINA 
a. Seeks to formulate the GUM, in 

search for a relatively orthogonal 
specification.   

b. A quick modeller option is available 
in PcGets for non-expert users.  

Controls for collinearity by adding an 
additional transform to the candidate 
list only if the collinearity is below a 
certain (user defined) threshold.  

 
The control for collinearity on the variables as they are expressed in the initial 

information set and subsequent transformations (hence nonsingular linear 

transformations are excluded from consideration as candidate regressors) is a 

priority within the RETINA procedure, but this is not as central a concern for 

PcGets, although Hendry often advocates reparameterizations of the GUM so 

as to strive for orthogonal regressors. 

 
G. Subsamples 

    
PcGets RETINA 

a. Two overlapping subsamples. 
b. Used only to check the significance 

of every variable in the final model 
to check the reliability of the 
selection.  

a. Three disjoint homogeneous 
subsamples (essential feature of 
the procedure). If doubts arise as of 
possible clustering of the data in 
cross-section studies (say from 
preliminary data analysis), the 
observations may be scrambled. 

b. Used in order to cross validate out-
of-sample using fresh data.  

c. The order of estimation, testing and 
cross validation is inverted and 
results are contrasted against one 
another. 

 
In PcGets two overlapping subsamples are used for post-choice evaluation, 

but not for model selection.  They are used to check for in-sample-goodness 

of fit. However, the model building and selection mechanism of RETINA  is  

directed toward out-of-sample predictive ability. That is why it is necessary to 

use disjoint subsamples for performing out-of-sample forecasts and carrying 

out truly out-of-sample forecast evaluations. 

 
H. Explanatory variables 

     
PcGets RETINA 

Original variables and transformations Original variables and nonlinear 

 8



specified in the GUM. transformations allowed for by the 
procedure.  

 
I. Linearity 

 
PcGets RETINA 

a. Linear or nonlinear in the 
parameters, as specified by the 
GUM. 

b. Linear or nonlinear in the 
underlying variables, as specified by 
the GUM 

a. Linear in the parameters  
b. Linear or nonlinear in the 

underlying variables. 

 
The linearity or nonlinearity in the underlying variables afforded by PcGets is 

specified by the GUM. The nonlinearity in the underlying variables of the 

model selected by RETINA is chosen by the procedure. Linearity in the 

parameters ensures simple computation. 

 
J. Functional form 

  
PcGets RETINA 

Assumed that can be approximated 
by a model nested in the GUM 

Assumed that it can be approximated 
by the allowed transforms 

 
The functional form of the model suggested by PcGets is embedded in the 

GUM. The functional form of the model suggested by RETINA is given by the 

original inputs and the transforms allowed by the procedure.   

 

K. Types of data applicable so far 
  

PcGets RETINA 
Time series or cross section Mainly cross section at present (no 

obstacles to its application in a time 
series context). 

 
L. Algorithms behind PcGets and RETINA 
 

PcGets RETINA 
a. Specify the GUM, based on 

theory, seeking a relatively 
orthogonal specification. 

b. Estimate the GUM on the 
whole sample.   

c. Select the set of mis-
specification (residual and 
parameters) tests. Reduce the 

a. Select a candidate set of 
potentially predictive variables 
(inputs)  

b. Generate the selected 
transformations of the inputs. 
Select three homogeneous 
disjoint subsamples. Order the 
transforms by a saliency 
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GUM by repeated in-sample 
testing. Obtain a baseline 
model. 

d. Multiple reduction path 
searches to obtain terminal 
selections.  

e. Repeat the above using as 
GUM the union of the terminal 
models.  

f. The significance of every 
variable in the final model is 
assessed in 2 over-lapping 
subsamples to check  the 
reliability of the selection.  

feature. 
c. Select and estimate on 

subsample 1 a base model 
adding the transformations one 
by one in the order of the 
saliency feature subject to a 
collinearity constraint. 

d. Cross-validate out-of-sample 
the previous model using 
subsample 2.  

e. Repeat the above, estimating 
the previous model in 
subsample 2 and cross-
validating out-of-sample in 
subsample 3. Use out-of-
sample AIC.  

f. Repeat steps a. through d. for 
all 6 combinations of the three 
subsamples. 

g. Select one of the 6 previous 
models by estimating each of 
them in 2 of the subsamples 
and cross validating in the 
third. 

 
  
Undoubtedly, the two procedures have certain parallel features. Both apply 

repeated testing: PcGets reduces the GUM from the top down with in-sample 

tests while RETINA builds from the bottom up by adding regressors one by 

one, in the order suggested by a saliency feature, controlling for collinearity, 

and then repeatedly using out-of-sample tests and an information criterion, 

the out-of-sample AIC, for trimming the model down. 

 

Despite these parallel features, especially in the mechanics, PcGets and 

RETINA are nevertheless distinct in terms of objectives, general strategy, 

selection criterion, the base model, flexibility of the model, treatment of 

collinearity, and the use of the subsamples.   

 

The procedures can be seen as different but far from incompatible ways of 

providing insights into a set of data. Different emphases are at work and, in 

particular applications, one may be more useful than the other, depending on 

prior knowledge, the intended use of the model, and the ability of the 

researcher.  
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4. RETINA and PcGets: an application. 

The aim of this section is to illustrate the performance of RETINA and PcGets 

using a real data set. The comparison is necessarily limited in scope, since 

the GUM is crucial for PcGets, and its specification is crucial for a proper 

comparison with other methods. We do not have clear indications as to what 

might be legitimate GUMs in our particular application, so we use simple 

models to start with and feed the same inputs to the linear regression model, 

RETINA and PcGets.  By the same token, not having strong hypotheses 

about the function linking the available information is a fundamental basis for 

the use of RETINA. 

 

For our application we use a cross section of US firms. The data were 

obtained from PNR, a subsidiary of Indetec International. The data set 

includes variables related to the demand for business toll telephone services 

in 1997. Our main interest is the duration of “intra-lata” calls. (LATA stands for 

“Local Access and Transport Area.”) A toll call from one point within a LATA to 

another point within the same LATA is an intra-lata or short distance toll call. 

Possible explanatory variables of intra-lata duration are: business lines [Bus], 

the number of hunting lines [Hun], the sales [Sales] of the company 

expressed in dollars, the number of employees working locally [Emh], the total 

number of employees for the business [Emt], the physical extension of the 

business, proxied by the square footage of its premises [Sqft], and population 

[Pop], that is, the size of the business area location.  
 

Our sample has 1217 observations. Prior to the analysis, the data were 

rescaled, to avoid the eventual negative impact on computations of large 

differences in orders of magnitudes of the variables. Given our purposes here, 

we focus on the performance of RETINA with respect to the more traditional 

use of a linear model. We do not consider prior transformations of the original 

variables, although a log transform of the dependent variable or its ratio by the 

number of employees (which is common in the Telecom demand literature) 

could also be considered (which also raises the issue of what transformation 

for the dependent variable should be considered). 
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We model intra-lata minutes as a function of the number of business lines, the 

number of hunting lines, employees here, employees total, sales, square 

footage and population habitat size.  

 

To evaluate the candidate models, we use two criteria. The first is based on 

an Information Criterion; specifically, we choose the model with the lowest 

AIC. The second is the out-of-sample performance, measured by Cross-

Validated Mean Square Prediction Error (CMSPE), which we expect to be 

lower for models suggested by RETINA. To compute a consistent measure of 

CMSPE, we used the following strategy, motivated by the fact that CMSPE 

depends on the specific subsample split considered, in terms of its size and 

characteristics.  

 

We randomly assigned each observation to three disjoint sub-samples, each 

including approximately one third of the observations in the sample. Then the 

proposed models were cross-validated using two of the three subsamples for 

estimation and the third for cross-validation. We considered all the three 

possible rotations and then summed the CMSPE’s obtained in each rotation. 

 

Table 2.  PcGets and RETINA: Selected Simple Models 

 (1) Benchmark 
Linear Model 

(2) PcGets 
(Liberal Strategy) 

(3) PcGets 
(Conservative

Strategy) 

(4) RETINA  
Model 1  

Original Inputs
CMSPE 909.88 896.11 903.08 770.86 

AIC 5.443 5.440 5.446 5.459 

Adj. R2 0.603 0.603 0.600 0.595 
Number of 
parameters 8 6 5 5 

CONSTANT -3.945 
(.717) 

-3.907 
(.678) 

-3.278 
(.649) 

-4.086 
(.684) 

Bus  2.508 
(.207) 

2.492 
(.183) 

2.579 
(.182) 

2.571 
(.185) 

Hun .089 
(.031) 

.091 
(.030)  .083 

(.030) 

Sales  -7.972 
(41.852)    

Emt .472 
(.093) 

.472 
(.093) 

.458   
(.093)  

Emh .930 
(.132) 

.933 
(.130) 

.921 
(.131) 

1.438 
(.085) 

Sqft .450 
(.061) 

.450 
(.061) 

.462   
(.061) 

.481 
(.061) 

Pop .033 
(.184)    

Standard errors in parentheses. 
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In Table 2 above, we compare several model estimations. In column 1, we 

report the estimation of a usual linear model (by OLS) without using an 

automatic model selection strategy. The signs of the coefficients are as 

expected, except for Sales and Population, which are not statistically 

significant. The results suggest that the number of business lines [Bus], labour 

force [Emh], [Emt], and physical extension of the business [Sqft] should be 

important for explaining the duration of intra-lata calls. 
 

In columns 2 and 3 we report the results of PcGets taking the standard linear 

model as the GUM. The liberal strategy drops the two insignificant variables of 

the basic linear model, and obtains a slightly lower AIC and a better CMSPE, 

providing an improvement over the basic model. The conservative strategy 

drops an additional variable, hunting lines [Hun], with a slight increase in AIC 

and worsening of the CMSPE. In terms of prediction, it is still better than the 

basic model of column 1. 

 

In column 4, we report the model suggested by RETINA without allowing any 

transformation of the inputs. We do this to obtain a direct comparison with the 

basic linear model and with the models suggested by PcGets. We observe 

that the first model suggested by RETINA - model 1, is very similar to the 

conservative PcGets model. The difference is that it substitutes [Hun] for 

[Emt].  

 

The comparison of columns 2 and 4 illustrates how RETINA has improved 

out-of-sample predictive ability (corresponding to an improvement of the 

CMSPE from 896.11 to 770.86) by dropping the variable Emt even if it is 

highly significant in sample, with a t-statistic of 5.07, a result which parallels 

the outcomes in the simpler models seen in Table 2. If one had a strong prior 

to the theoretical relevance of such a variable the indications provided by the 

automated procedure should definitely be taken into account. 

 

In this case, RETINA chooses just one of the two variables related to 

Employees in the model, as the number of workers locally and in the whole 

business is highly correlated (Pearson’s correlation=0.86). On the other hand, 
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it excludes more descriptive and non-significant variables such as Sales and 

Population.  

 

Table 3 about here 

 

A distinguishing feature of RETINA is its use of nonlinear and interactive 

transforms of the underlying predictors.  Accordingly, in Table 3 - columns (1) 

and (2) - we report the results obtained by RETINA, permitting it the use of 

nonlinear transforms and interactions created by taking all squares, cross-

products, and cross ratios.  For brevity, we do not explicitly reference all such 

ratios as most of these are never selected.  As a result the out-of-sample (as 

well as the in-sample) performance improves significantly relative to the 

results of Table 2, while at the same time being only slightly less 

parsimonious than the simple linear model of Table 2. RETINA Model 2 

(column 1) was chosen using a minimum AIC criterion and RETINA Model 3 

(column 2) considering the minimum CMSPE.  

 

The total variation explained by these models is noticeably higher than 

models with the original inputs, whereas the CMPSEs for models 2 and 3 are 

respectively 37% and 43% lower than that of the first basic model (column 1).  

 

The transformations suggested by RETINA for both models 2 and 3, in 

particular the interaction terms, are interesting. The negative constant terms in 

columns 1-4 become positive in columns 5 and 6, in which RETINA allows for 

transformed inputs. These models are not necessarily correctly specified, and 

we emphasize that this implies that the coefficients thus do not necessarily 

have the standard ceteris paribus interpretation. 

 

Although PcGets is designed to identify a theory-congruent parsimonious 

model corresponding to the true DGP, it may nevertheless have value in 

obtaining forecasts.  To investigate the properties of PcGets in this regard in a 

manner directly comparable to our RETINA results, we apply PcGets by 

specifying a GUM that contains all the transforms accessible to RETINA.  

Strictly speaking, this is a non standard approach to PcGets, as we have no 

theory justifying this specification of the GUM, nor a guarantee that the result 

may be theoretically plausible. We may be placing theory congruence at risk, 
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and we make no attempt to specify relatively orthogonal regressors.  

Nevertheless, we see from columns (3) and (4) of Table 3 that both 

conservative and liberal versions of PcGets not only provide noticeable 

improvements in CMSPE and AIC relative to all the models of Table 2, but 

also improvements relative to the RETINA results of column (1) and (2) of 

Table 3 (CMSPE of column (3) of PcGets is 3.7% lower than column (2) of 

RETINA). 

 

That PcGets is useful in this context should not, however, be surprising, 

considering that (as is plausibly true here) even when the GUM does not 

include the DGP (the ideal forecasting tool), PcGets should identify an 

approximation to the DGP that has certain optimality properties and that may 

thus be useful in forecasting.  Interestingly, although PcGets is designed to 

deliver parsimonious models, it achieves its modest gains relative to RETINA 

with models that are twice as complex. 

 

We emphasize the strictly limited scope of the above comparison. 

Nevertheless, our example illustrates that RETINA may help the researcher 

not only to arrive at useful forecasting models, but also to consider relevant 

transformations of the inputs, that, when used as regressors, yield models 

with improved forecasting ability relative to the basic regression model.  

Further, we see that PcGets has value in obtaining useful forecasts.  It is an 

interesting question to investigate whether the use of PcGets for this purpose 

generically results in less parsimonious models than RETINA or whether this 

is only a feature of our present example 

 
5. Conclusions.  
 
Our discussion has revealed both differences and similarities between the two 

automated modelling procedures, PcGets and RETINA. Although some 

polarization of reality should be discounted in what follows, as matters are not 

always so clear cut, the main differences between the two approaches 

concern:  

a. Objectives: In PcGets, obtain an appropriate representation of the 

data within sample (with all caveats about implicit assumptions often 
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encountered in the literature that the true DGP is among the models 

being considered) or, in RETINA obtain a predictive approximation.  

b. Base model: GUM specified by the researcher prior to the use of 

PcGets or constructed within the procedure from the relevant 

transformations of the inputs in RETINA. 

c. General strategy: general-to-specific in PcGets or specific-to-general 

with later reduction as in RETINA.   

d. Selection Criterion: in-sample specification tests (residuals and 

parameters) in PcGets or out-of-sample predictive performance, in 

RETINA (cross-validation, no specification tests).  

e. Flexibility: embedded in the GUM and later selected by the reduction 

process in PcGets or chosen by the procedure in RETINA from the 

allowed transformations.  

f. Collinearity: checked for in PcGets when constructing the GUM or 

explicitly embedded checks in the procedure as in RETINA (with some 

caveats in order since RETINA does not recognize the meaning of the 

variables involved). 

g. Subsamples: used as a final post-selection check in PcGets or an 

essential part of the procedure in RETINA. 

 

The complementarities of both approaches are also important:  

1. PcGets may be more appropriate when there is a strong desire to 

conform to a theory, or reasonable confidence that the GUM can be 

seen as a good representation of the DGP (although there is no formal 

assumption that the DGP is nested within the GUM in PcGets, 

practitioners often do operate as if the DGP is among the models 

considered in the selection); RETINA may be more appropriate when 

the researcher lacks precise knowledge of the relationship between the 

dependent variable and the inputs. The role of the GUM is crucial in 

PcGets; however, it is generated outside PcGets. 

2. PcGets may be more useful when an in-sample fit is desired, whereas 

RETINA may be more appropriate when the objective is an out-of-

sample predictive performance.  Nevertheless, Pc GETS has the 

potential to identify useful forecasting models when provided with a 

sufficiently flexible GUM, as our example shows. 
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3. In case of high collinearity between the original inputs or the regressors 

of the GUM, RETINA may be the procedure of choice, since it explicitly 

embeds the control of collinearity, although in a time series context 

RETINA as currently implemented would not be able to guide between 

the addition of, say, a lagged variable or a variable in first differences. 

Moreover, the degree of collinearity among regressors depend on the 

way variables are originally included in the information set: it is 

certainly true that models containing, say X1 and X2 on the one hand 

and X1 and Z=X2-X1 are equivalent, but the degree of collinearity 

between X1 and X2 is different than that of X1 and Z (or X2 and Z for 

that matter). 

 

By and large, while it seems that a reasonable approach would be the 

creation of a “RetiGets” hybrid, one should bear in mind some facts: 

  

a. PcGets is mostly designed for macroeconomic aggregate time 

series data, whereas RETINA has been developed for cross 

section individual data of economic or non-economic nature.   

b. PcGets is more inclined towards modest size samples and  

number of regressors, whereas RETINA has been developed for 

large samples and possibly large numbers of inputs.  

c. PcGets may be more useful when an in-sample fit is desired 

whereas RETINA may be more appropriate when the objective 

is an out-of-sample predictive performance. 

 

It is apparent that both procedures are still at an early stage of development, 

especially RETINA. In particular, these methods can be extended to handle 

other types of data and estimation techniques: e.g. models with stationary and 

nonstationary variables among the candidate regressors, panel data, limited 

dependent variable models, systems of equations; and their performance in 

these contexts needs to be assessed. Nevertheless, the usefulness of these 

automatic modelling methodologies so far certainly warrants these further 

developments.  
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Table 3. PcGets and RETINA: Selected Flexible Models. Transformed Inputs 

 (1) RETINA  
Model 2 

(2) RETINA  
Model 3 

(3) PcGets 
(Conserv.) 

(4) PcGets 
(Liberal) 

CMSPE 572.01 518.00 498.63 507.42 
AIC 4.932 4.947 4.839 4.839 

Adj. R2 0.757 0.756 0.784 0.785 
# of parameters 9 9 18 19 

CONSTANT 3.240 
(.633) 

3.792 
(.425) 

3.760 
(.532) 

3.196 
(.644) 

Bus 1.116 
(.182)    

Hun   -.263 
(.056) 

-.269 
(.058) 

Emt -.446 
(.097)    

Sqft -.461 
(.111)    

Pop   2.949 
(.664) 

3.204 
(.693) 

Bus2  .842 
(.117) 

1.125 
(.153) 

1.151 
(.154) 

Hun2   
.397 

(.130) 
.326 

(.129) 

Sqft2
.080 

(.033)    

Pop2   
-.318 (.087) -.333 

(.089) 

1/Pop2   
 .116 

(.036) 

Hun * Emh 
1.193 
(.060) 

1.328 
(.076) 

1.176 
(.095) 

1.155 
(.096) 

Bus * Emh   
2.706 
(.442) 

2.783 
(.441) 

Hun * Sqft   
-.098 
(.025) 

 

Bus * Sqft 
1.042 
(.116) 

1.102 
(.091) 

1.210 
(.099) 

1.212 
(.099) 

Emt * Sqft 
.485 

(.047) 
.415 

(.040) 
1.233 
(.148) 

1.262 
(.148) 

Emh * Sqft 
-.449 
(.039) 

-.650 
(.049) 

-1.181 
(.182) 

-1.213 
(.181) 

Emt * Pop  -.139 
(.043) 

  

Sqft * Pop  -.047 
(.018) 

-.092 
(.020) 

-.108 
(.020) 

Bus * Emt   
-2.854 
(.411) 

-2.931 
(.410) 

Bus * Pop   
-.287 
(.057) 

-.275 
(.057) 

Hun * Pop   
.524 

(.104) 
.457 

(.106) 

Emh / Pop   
-.424 
(.086) 

-.445 
(.095) 

Hun / Pop   
.364 

(.095) 
.261 

(.105) 

Sqft / Pop   
 -.598 

(.169) 

Hun * Sales  -.689 
(.264) 

  

Standard errors in parentheses. 
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