
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gianluca Baio,  Fabio Corradi  
 
 
 
 
 
 
 

 

 
U n i v e r s i t à  d e g l i  S t u d i  

d i  F i r e n z e  
 
 
 
 
 
 
 
 
 
 

 

 

 

Handl ing Manipulated Ev idence

 

 

W
O

R
K

I
N

G
 

P
A

P
E

R
 

2
0

0
4

/
1

3
 

D
ip

a
rt

im
e

n
to

 d
i 

S
ta

ti
s
ti

c
a

 “
G

. 
P

a
re

n
ti

” 
–

 V
ia

le
 M

o
rg

a
g

n
i 

5
9

 –
 5

0
1

3
4

 F
ir

e
n

z
e

 -
 w

w
w

.d
s
.u

n
if

i.
it

 

S t a t i s t i c s



HANDLING MANIPULATED EVIDENCE
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Abstract. Bayesian Networks have been advocated as a useful tool to de-
scribe the relations of dependence/independence among random variables and
relevant hypotheses in a crime case. Moreover, they have been applied to help
the investigator structure the problem and weight the observed evidence, typ-
ically with respect to the hypothesis of guilt of a suspect. In this paper we
describe a model to handle the possibility that one or more pieces of evidence
have been manipulated in order to mislead the investigations. This method
is based on causal inference models, although it is developed in a different,
specific framework.

Keywords: Bayesian Networks, Influence Diagrams, Forensic identification, Ma-
nipulated Evidence, Causal Inference.

1. Introduction

Bayesian Networks (BNs) have recently been advocated in forensic science as a
powerful tool to establish the overall dependence between relevant hypotheses and
observable random variables, and to evaluate the probabilistic effects of the latter
on the former during an investigation, or in a trial (Dawid & Evett 1997, Garbolino
& Taroni 2002). A further interesting feature of a BN is that it can be easily
increased including relations with previously not considered variables, whenever
required and as usually happens in real practice.

A possible subtle drawback in the use of BN-assisted investigations consists in
overconfidence in the results obtained. The most treacherous possibility occurs if
manipulated evidence is introduced, i.e. if observations not genuinely arisen from
the context are produced to mislead the investigator. Examples of cases where
police or a Court is induced to focus towards a person different from the culprit
include false testimonies, blood traces left intentionally, and many others.

The aim of this work is to build a model that can help the investigator handle
some possibly manipulated variables, in order to produce an updating of the prob-
ability that the evidence under suspicion is in fact genuine or not, as well as the
posterior distribution of the hypotheses of interest.

The structure of the paper is the following: in section 2, we describe the very
basics of BNs theory. Then, in section 3, we show how BNs can be used to formalise
an investigation case, following its development. We presume that an expert, the
investigator, supervises the construction of the models based on genuine evidence.

This paper was published as a Working Paper in the Department of Statistics ‘G. Parenti’
series: Baio, G. & Corradi, F. (2004), Handling Manipulated Evidence. University of Florence

Press, Florence, Italy, Working Paper no. 2004/13.
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2 BAIO G., CORRADI F.

In section 4 we derive the model that takes into account the possibility of manip-
ulated evidence, modifying the graphical structure obtained under natural condi-
tions, according to the intervention model originally introduced into the statistical
literature by Pearl (1993) and Spirtes et al. (1993) in the causal inference frame-
work.

In section 5, the model is extended to situations where more than one piece of
evidence whose origin is unknown is possibly manipulated, to help the investigator
detect a criminal plan aimed at misleading the inference. Finally, in section 6, we
discuss the most relevant implications of this work.

2. Bayesian Networks

This section briefly reviews the basic features of BN theory. For a more thor-
oughly description, see for example Cowell et al. (1999), or Jensen (2001).

Formally, a BN is represented by B = {G,Π}, where G is a Directed Acyclic
Graph (DAG), and Π includes the conditional probability tables (CPTs) for the
nodes in G.

A DAG is a graphical structure G = (X,E), where X = {X1, . . . , Xn} is the
set of relevant nodes, each of which is associated with one of the random variables
involved, and E is the set of edges connecting the nodes. Many examples of DAGs
and CPTs are given in the rest of the paper (see for instance Figure 2 and Table 2).

The structure of the DAG is essentially provided by the expert knowledge. Con-
versely, the CPTs can be specified in different ways, depending on the context.
First, epistemic probabilities elicited by experts can be used to formalise their
opinions (Spiegelhalter et al. 1993). Otherwise, in case an appropriate sample is
available, CPTs can be learned from empirical data, or specific experiments can be
performed and probabilities can be derived from the results (Aitken & Taroni 2004).

The set X includes both unobservable (such as working hypotheses) and observ-
able variables, which become pieces of evidence, once actually observed.

The set E specifies the alleged relations among the variables in G. A node that
‘points’ another is said to be a parent, whereas the node that is reached by the
arrow is a child. The set of the parents of a node X is indicated by pa(X), and the
set of its children is ch(X). The set of the nodes in the directed path leaving X are
named descendants, and is indicated by de(X).

A direct arrow drawn from the node X1 towards the node X2 does not imply
any causal effect per se, but only means that the probability distribution of X2 is
modified according to the value assumed by X1.

More specifically, this circumstance expresses the fact that the expert is will-
ing to: a) establish an explicit association between X1 and X2, and b) declare a
preference in providing the joint distribution Pr(X1, X2) through the factorisation
Pr(X1) × Pr(X2 |X1), over any other alternative specifications.

On the contrary, the absence of a direct link from X1 to X2 encodes the as-
sumption that the expert does not reckon that the conditional distribution of X1

is directly dependent on the possible values that X2 can take on. Nevertheless,
observing X1 can produce an undirect change in the probability distribution of X2,
through an open path connecting X1 to X2.

Independence among nodes is indicated by the symbol ⊥⊥, commonly used in
statistical literature (Dawid 1979), whereas the symbol 6⊥⊥ indicates dependence.
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3. Modelling genuine evidence

In this section we show how an investigation can be translated into a BN frame-
work, according to the information that successively becomes available to the in-
vestigator.

Unlike other works, such as those of Dawid & Evett (1997) and Garbolino &
Taroni (2002), our focus is not in defining a collection of formulæ to be used in
the calculation of the posterior probabilities of the relevant hypotheses and/or the
associated weight of evidence.

In fact, despite the practice to highlight the role of some epistemic and popula-
tion probabilities is quite common and formally attractive in forensic science, this
approach proves of limited help, when the practitioner has to face the solution of
his/her own case, which is invariably different from the examples provided.

On the contrary, following the suggestions of Lindley (2000), we rather aim at
providing some indications to translate a real investigative case into a BN, and
give less importance to the computational aspects, since efficient algorithms are
freely available, i.e. Hugin Lite (www.hugin.com), and the Matlab package BNets

by Kevin Murphy (www.ai.mit.edu/∼murphyk/Software/BNT/bnt.html) that we
customised to perform all the following calculations.

In this work, we focus on a single binary hypothesis H , such as ‘is the suspect
guilty? ’, which takes on the values h1 = guilty or h2 = not guilty. Nevertheless, it is
possible that more hypotheses are hierarchically related, as described by Garbolino
& Taroni (2002).

In general, a hypothesis represents a state of nature, which is not observable,
but influences probabilistically some of the other relevant variables, and is usually
the main object of the inference. For this reason, in a BN a hypothesis node is a
root of the graph, i.e. pa(H) = ∅.

3.1. One single piece of evidence. A crime is committed: a witness testifies to
have seen an individual shooting a policeman during a robbery. Next, a suspect is
individuated. A possible BN representation is depicted in Figure 1.

H

T

Figure 1: A testimony and the hypothesis of guilt

The variable H expresses the hypothesis of guilt. The variable T represents the
witness testimony and its possible values are: T = t1 in case the witness declares
to recognise the suspect as the individual he has seen shooting; and: T = t2 in case
he does not. From now on, for the sake of simplicity, all the evidence is assumed
binary, with the first state increasing the chance of guilt.

The investigator may define the CPT for the variable H , depending on the
circumstances that led to the identification of the suspect. Alternatively, one can
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instrumentally set Pr(H = h1) = Pr(H = h2) = 0.5, so that the prior odds equal 1,
and the weight of evidence is simply given by the posterior odds, directly available
as a result from the evidence propagation algorithm in the BN.

As for the testimony, the ‘flawless’ witness should be associated with the CPT
of Table 1a, i.e. his answer should be deterministically dependent on the true state
of nature regarding H , without the possibility of mis-recognition.

More effectively, the witness may be tested by means of a psychological procedure
to assess his capability to recognise a person, and the result can be used to build
the CPT actually used for the node T , as in Table 1b.

H = h1 H = h2

T = t1 1 0
T = t2 0 1

(a)

H = h1 H = h2

T = t1 0.9 0.3
T = t2 0.1 0.7

(b)

Table 1: The CPT for the testimony T , given the hypothesis H . In case (a) the
possibility of mis-recognition is not considered, whereas it is in case (b)

Notice that the figures in Table 1b are defined with specific reference to the
witness of this case. In particular, when defining the CPT, the investigator should
take into account any other information about the witness (i.e. his visual capacity,
his criminal records, and so on).

Given the evidence E1 = {T = t1}, i.e. that the witness claims he recognizes the
suspect, it is straightforward to update the hypothesis of guilt as Pr(H = h1 |E1) =
0.75.

3.2. More pieces of conditionally independent evidence. Usually, the in-
vestigator is not satisfied with just one evidence, and is likely to look for other
observable variables that can confirm (or disprove) its suggestions.

The most natural choice is to look for other variables directly influenced by H ,
but conditionally independent on the other evidence. A classical choice could be to
question the suspect alibi.

Suppose, for instance, that the suspect declares that he was home watching TV
with his wife, who is then interrogated.

The variable W in Figure 2 represents the woman testimony, and takes on the
values w1 in case she declares that her husband was not home by the beginning of
the 6 o’clock news, exactly half an hour after that the crime was committed, and
w2 in case she declares that he was home by that time.

The graphical structure of Figure 2, known as diverging connection, encodes the
relation W ⊥⊥ T |H , i.e. the distribution of the wife’s statement is independent on
the testimony, given that the value of the hypothesis H is actually known.

The CPT provided for the variable W from the investigator is shown in Table 2.
Several experiments are performed to simulate the time needed to go from the crime
scene to the suspect’s house, and the possibility of doing so in less than half an hour
is judged as very unlikely (only 2% of the simulated trials).

To assess the CPT in case H = h2, the investigator also evaluates the journey
from the suspect’s work to his house. In the 80% of the simulated trials, the time
needed would easily allow the suspect to be home by the news beginning. This
result is used to build Table 2.
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H

W T

Figure 2: A working hypothesis H on a suspect’s guilt, a witness testimony T , and
the statements of the suspect’s wife, W

H = h1 H = h2

W = w1 0.98 0.20
W = w2 0.02 0.80

Table 2: The CPT for the suspect’s wife testimony W , given the hypothesis H

The Bayes theorem can be directly used to infer about H , but even in this simple
case, a specialized BN algorithm can be used to accomplish the calculations more
straightforwardly.

The woman provides his husband with an alibi, i.e. W = w2: the new available
evidence is E2 = {T = t1, W = w2}, so that Pr(H = h1 |E2) = 0.0698. Notice that
the two testimonies have not the same impact on the hidden hypothesis, yet being
on the same level within the network structure. This circumstance depends on the
definition of the CPTs. In fact, the probability distribution of W |H = h1 is almost
degenerate, and the observation of the value W = w2 almost makes impossible the
hypothesis of guilt.

3.3. Adding a control evidence. Since the conflict between the two testimonies,
the investigator needs to find other variables in order to check on them. To gain
more understanding of the testimony T , the investigator seeks for a control evidence,
i.e. a variable in the set ch(T )∩ch(H), which is probabilistically influenced by both
the testimony and the hidden hypothesis.

The investigator notices a surveillance camera set at a cash dispenser just in
front of the crime scene, and finds out that the CCTV video is available.

The original BN can be modified accordingly, to take into account this new vari-
able, as in Figure 3, where the variable A is the observation of the ATM surveillance
video. Notice that in this case, the presence of the direct link between T and A is
such that these two nodes are not independent, even in case H was known.

Let the possible values for A be: a1, if the suspect appears in the video, although
it is not possible to detect any criminal action; and: a2, if the suspect is not shown
in the video.

The investigator assigns the probabilities of Table 3 to these events. In case that
the suspect is actually innocent, then the fact that he is shown in the video becomes
independent on the witness testimony. The probability of this event is set to a low
value, since the ATM is not on the way from the suspect’s work to his house.

Suppose that the person under investigation appears in the video. The BN
updates the probability of guilt, given the evidence E3 = {T = t1, W = w2, A = a1}
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H

W T A

Figure 3: A working hypothesis H on a suspect’s guilt, a witness testimony T , the
wife statement W , and the video recorded by a CCTV of an ATM nearby the crime
scene, A

H = h1 H = h2

T = t1 T = t2 T = t1 T = t2

A = a1 0.9 0.7 0.1 0.1
A = a2 0.1 0.3 0.9 0.9

Table 3: The CPT for the variable A, given the testimony T and the hypothesis of
guilt H

gathered by the investigator as Pr(H = h1 | E3) = 0.4029. This new evidence
increases the posterior probability of guilt, although uncertainty remains on whether
the suspect is actually the culprit of the crime. The two testimonies are in conflict,
and the control evidence is not enough to explain away this contradiction.

Moreover, the suspect claims to have been framed, and that in fact, yet having
cashed some money at that ATM, he is not the culprit of the crime, and the witness
declared to recognise him only in order to make him considered guilty. How should
the investigator handle this situation?

4. Handling manipulated evidence

4.1. Modelling external interventions. The case of external intervention on
a variable within a stochastic system is one of the paradigms of causal inference
(Holland 1986). Despite many scholars are still working with different approaches,
a point of agreement is that causality mechanisms are mimicked by external in-
terventions, which modify the natural behaviour of the stochastic system under
study.

Two major contributions to the literature are those of Spirtes et al. (1993) and
Pearl (1993), among the first to apply BNs to the study of causality. In order to
do so, a new semantic is defined that takes into account the fact that one or more
variables are subjected to intervention.

In case of intervention, any direct link between the intervened node and its
parents has to be removed. If the link H → T is suggestive of a causal mechanism,
there is no point in modifying H after that T is set to a given value, since the
observation of T = t is not attributable to that causal mechanism, but rather to
the intervention.

If we make reference to the forensic case, this feature has relevant practical
implications. If evidence is not genuine, removing the link with the hypothesis
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node avoids inappropriate inference, and the aim of the person who made the
intervention is thwarted.

Conversely, the descendants remain dependent on T , either it arose naturally or
by intervention. This circumstance has a special relevance when a descendant of
the possibly manipulated node is also in the set de(H), and its origin is not under
suspicion (see Figure 4).

H

W T A

H

W T A

a) Natural model b) Intervention model

Figure 4: The DAG representation of the external intervention. In case the evid-
ence arose by means of external manipulations, the direct connections between the
intervened node T and its parent is removed. The rest of the graph is unchanged

Under the natural model, the observation of T = t modifies the distribution of
A both directly and through updating the distribution of the unobservable node
H . Therefore, the most likely value of A is the one that is most consistent with the
observed value of T , and the distribution of H induced by T = t.

However, if T did not arise genuinely, the distribution of A is only modified by
T itself, as the distribution of H is not updated, since T and H are marginally
independent in the intervention model.

Consequently, using the natural model when the evidence is not genuine assigns
a higher probability to values of A that in fact are not as likely to occur. Therefore,
the value of A that becomes available after observing T can be in conflict with the
previous evidence, suggesting the possibility of manipulation.

For instance, when the genuine model of Figure 4a holds, the event A = a2

becomes unlikely after observing T = t1: Pr(A = a2 | T = t1) = 0.18. On the
contrary, using the intervention model of Figure 4b, the same value becomes much
more plausible: Pr(A = a2 || T = t1) = 0.50. The operator ||was introduced by
Lauritzen (2000), to highlight the fact that the value of T is determined by an
external intervention. The probability is calculated conditioning ‘by intervention’,
rather than ‘by observation’.

4.2. Modelling interventions with Augmented DAGs. Dawid (2002) pro-
posed a unified representation of the two alternative regimes, using a decision the-
oretic approach based on an Augmented DAG (ADAG). This is a graphical model
in which a possibly manipulated variable T is explicitly associated with an external
intervention variable, FT , which is used to rule its demeanour. This representation
is depicted in Figure 5.

The possible external intervention is modelled as a decision variable FT , repres-
ented as a square. Unlike a random node, FT is not associated with a CPT, as its
state is always decided by the experimenter. Therefore, it serves as a switch and it
is used to allow the experimenter to activate a given scenario.
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W H

FT T A

Figure 5: The ADAG representation of the intervention model

The variable FT takes on the elements of the set {T ∪ ∅}, where T is the set of
values that the possibly intervened node T may assume. When FT = ∅, then the
intervention is void, and hence T is a random variable governed by its conditional
probability distribution Pr(T |pa(T )).

Conversely, when FT = t, t ∈ T , then an intervention occurred. As a result, T

becomes a degenerate variable, whence Pr(T = t |pa(T )) = 1, for every configura-
tions of the variables in pa(T ), so that the parents are not updated by T = t.

Back to the simple example of § 3.3, if the observed evidence was genuine, then
FT would be set to ∅, and the DAG representation implicit in the ADAG of Figure 5
would be the same as that depicted in Figure 4a.

On the contrary, should the investigator believe that the testimony is not genuine,
then FT would be set to the value t1, and so would T . However, in this case, the
knowledge of T should not update the CPT of its parent H . In other words, in case
that FT 6= ∅, the correspondent DAG is modified as in Figure 4b.

The use of the ADAG translates into a more compact representation of the
problem, since both the situations are handled by the intervention node. The CPT
of the variable T is then built as in Table 4 and comprises both the natural and
the intervention cases.

FT = ∅ FT = t1 FT = t2
H = h1 H = h2 H = h1 H = h2 H = h1 H = h2

T = t1 0.9 0.3 1 1 0 0
T = t2 0.1 0.7 0 0 1 1

Table 4: The CPT of the possibly manipulated variable T . When the evidence is
genuine, the CPT is that specified by the expert; in case of manipulation, the distri-
bution of the variable becomes independent on the other parent, H , and degenerate
to the value specified by FT

Dawid’s model has been originally used to deal with standard causal inference
problems, where the objective is to estimate the effect of a ‘treatment’ T over a
‘response’ A, discarding all the factors, defined as ‘potential confounders’, which
can generate spurious relations between them.

In the situation of Figure 5, a standard causal model would use the observations
of the treatment T and of the confounder H to infer the desired causal effect on
the unobserved response A. The graph of Figure 5 also encodes the assertions
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highlighted by Dawid (2002) that allow the identifiability of such causal effect:

FT ⊥⊥ H,(1)

A ⊥⊥ FT |T, H.(2)

As compared to the causal framework, the objective of our analysis is reversed,
being to evaluate how the unobservable variable H is modified whether T is genuine
or not, after observing the available evidence, including A.

The nature of assumption (1) is not modified, as it makes sense to assume that
given that it is known whether the testimony is manipulated or not, no matter what
the witness declares, the investigator’s uncertainty over the hypothesis of guilt will
remain the same.

Assumption (2) simply means that the knowledge of the actual value of H and
of the testimony would be sufficient to guarantee that the control evidence A has
a clear origin with respect to the testimony, being independent on FT without the
need of any further information.

Obviously, the actual value of H is hidden, and its probability evaluation is
the objective of our analysis. However, assuming the validity of assumptions (1)
and (2), the investigator takes the responsibility to ensure the absence of other
unmeasured factors that can be connected to both A and T , which could confound
the inference on H . This feature entitles the investigator to use A in order to check
on T .

If the evidence is considered as genuine (FT = ∅), the observation of both T and
A updates the distribution of H , whereas in the intervention case only the control
evidence can modify the distribution of the hypothesis of guilt.

For instance, after the suspect claim of having been framed, we suppose that the
origin of the variable T is now unclear to the investigator. The evidence would be
E = {FT = t1, W = w2, A = a1}. Using a propagation algorithm on the ADAG of
Figure 5, we obtain that Pr(H = h1 ||E) = 0.1837, whereas, by definition, using the
natural model for which the evidence is E = {FT = ∅, T = t1, W = w2, A = a1} the
posterior probability of guilt would be Pr(H = h1 |E) = 0.4029, the same inference
described in § 3.3.

4.3. Model assessment: the probabilistic evaluation of the intervention

node. Even more interesting is the possibility of evaluating probabilistically the
two competing models:

• m1: the unclear origin evidence T is in fact genuine;
• m2: the unclear origin evidence T is manipulated,

conditionally on all the observed variables.
To this aim, it is necessary to define a further specialised version of the ADAG

representation, as the one depicted in Figure 6. We term this graph Model Assess-
ment DAG (MADAG), and we characterise the model node as a dashed circle. In
this case, we define a new random variable MT , which takes into account the two
possibilities described above.

The model node is a root of the graphical representation. This assumption is
useful to characterise it as an unobservable conjecture about the data generating
process, whose uncertainty is updated by the evidence.

Just like FT in the ADAG, MT acts on the possibly intervened node so that the
update of its parents is avoided, in case of manipulated evidence (i.e. when model
m2 holds). Yet, since the investigator is in doubt whether the observed evidence is
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W H

MT T A

Figure 6: The Model Assessment DAG (MADAG) representation of the problem.
The intervention node is now modelled as a random variable, rather than a decision
node, in order to take into account the fact that a probabilistic evaluation is needed

genuine or invalidated by some intervention, T must remain a random variable in
either case.

The use of the MADAG requires the following operations. First, the investigator
must provide a prior CPT for the model node. Again, if the interest is in the
evaluation of the weight of evidence with respect to the competing models, it is
useful to choose Pr(MT = m1) = Pr(MT = m2) = 0.5. Obviously, in case that the
investigator has different prior knowledge about the origin of the unclear evidence,
it is easy to modify the CPT accordingly.

Second, while the CPTs under the natural model m1 are provided by the expert,
the ones for the intervention model are to be defined so that consistency between
the two regimes is maintained. More specifically, the requirement is that, if the
origin of a piece of evidence is under suspicion, the investigator cannot update
his uncertainty on which is the model that generated the data, by means of the
observation of that node only. Consequently, we require that:

Pr(MT = m1 |T = t)

Pr(MT = m2 |T = t)
=

Pr(MT = m1)

Pr(MT = m2)
,

which holds if:

Pr(T = t|MT = m2) = Pr(T = t|MT = m1)

= EP [Pr(T = t|P = p, MT = m1)]

=
∑

p∈P

Pr(T = t|P = p, MT = m1) Pr(P = p)(3)

for any t ∈ T . The set P = {pa(T ) \ MT } includes all the parents of T except the
model node, and the average EP is taken over all the possible configurations of the
variables in P, indicated by the set P .

The model m2 can be seen as nested within m1 (cfr. O’Hagan 1994): the latter
includes the former, and they differ only in the fact that m2 does not depend on the
variables in the set P, whereas m1 does. By means of the requirement expressed
by (3), they are marginally equivalent, marginalisation being over that set. This
procedure of setting prior distributions for nested models is consistent with that
discussed by Giudici (1996).

The definition of the CPT for the variable T essentially renders the testimony
independent on the model node MT , even if this property cannot be read off by the
graph. Moreover, despite condition (2) is assumed to hold, since only T is known
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and H is unobservable, then A 6⊥⊥ MT , which allows to update also the uncertainty
over the data generating process when the control evidence is made available.

In the example of § 3.3, P = {H} whence P = {h1, h2}, and the distribution of
T under the natural regime m1 is that of Table 1b. Therefore, applying (3), the
coherent CPT of the variable T is that shown in Table 5.

MT = m1 MT = m2

H = h1 H = h2 H = h1 H = h2

T = t1 0.9 0.3 0.6 0.6
T = t2 0.1 0.7 0.4 0.4

Table 5: The CPT of the possibly manipulated variable T . When the evidence
is genuine, the CPT is that specified by the expert; in case of manipulation, the
distribution of the variable becomes independent on the other parent, H , and the
two distributions are marginally equivalent, by definition

Given the observed evidence E3 = {T = t1, W = w2, A = a1}, the probabilities
for the unobservable variables are updated so that Pr(H = h1 |E3) = 0.2728 and
Pr(MT = m1 |E3) = 0.4060.

As compared to the inference obtained using the ADAG, the results derived here
are subjected to an additional source of variability, i.e. that related to the model
itself. The probability of guilt is a mixture of the natural and of the intervention
case, with weights given by the posterior probability of the model node.

In general, it would be appropriate to check on the possibly manipulated node
by means of several pieces of evidence. This situation could be easily handled by
extending the MADAG of Figure 6 with other nodes whose origin is not under
suspicion.

5. More complicated situations

5.1. More than one manipulated pieces of evidence. Let us now concentrate
on the case where the investigator is not certain about the origin of more than one
piece of evidence. Given the increasing complexity of the case and the growing
conflict among the evidence, the investigator decides to regard the wife’s testimony
W as possibly manipulated as well.

In order to assess the latter testimony, the investigator also questions the door-
man of the suspect’s building to check whether he saw the suspect coming home
that night. In Figure 7, this is represented by the variable D, assuming the possible
values: d1, in case that the doorman declares that, unlike his usual habits, the sus-
pect just passed by and ran home; and: d2, in case that the doorman declares that
the suspect stopped by and chatted with him for about 10 minutes, like he usually
does.

Since there are two unclear origin variables, there are also two model nodes MT

and MW , which respectively rule the behaviour of the nodes T and W , just as
described in the previous section.

While the CPT for the variable T as a function of its own model node MT is that
of Table 5, the distribution of the variable W , in the natural and in the intervention
case, as derived by the application of condition (3) is shown in Table 6. As for the
variable D, suppose that the CPT provided by the investigator is that of Table 7.
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D H A

W T

MW MT

Figure 7: The case goes on: the investigator gathers more pieces of evidence,
some of which have uncertain origin. For each possibly manipulated variable, the
investigator defines a model node, and seeks for a suitable control evidence

MW = m1 MW = m2

H = h1 H = h2 H = h1 H = h2

W = w1 0.98 0.20 0.59 0.59
W = w2 0.02 0.80 0.41 0.41

Table 6: The CPT of the possibly manipulated wife’s testimony, under the genuine
and the intervention model

H = h1 H = h2

W = w1 W = w2 W = w1 W = w2

D = d1 0.8 0.9 0.2 0.5
D = d2 0.2 0.1 0.8 0.5

Table 7: The CPT for the variable D, representing the doorman’s declaration

In case that the suspect is actually guilty, then it is quite unlikely that he had
the time to stop by and chat with the doorman. If, in addition, his wife declares
that he was home by the beginning of the 6 o’clock news, this event becomes even
less likely. Conversely, if the suspect is innocent, depending on his wife statement,
there is a higher probability that he actually stops by the doorman.

The structure of Figure 7 encodes the assumption that the observation of only
one possibly manipulated evidence is not able to update the prior knowledge on
the data generating model.

However, when both the unclear origin nodes are made available, the BN es-
tablishes an undirect connection between them, via the nodes H , D and A. Con-
sequently, observing T and W does modify the probabilities of the model nodes,
according to how consistent the two pieces of evidence are. Besides, the observation
of the control evidence allows to produce a sharper update of the probabilities of
the unobservable variables.
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Suppose that the investigation leads to the following observed evidence E4 =
{T = t1, W = w2, A = a1, D = d2}, i.e.:

• The witness testifies that he recognises the suspect as the man he saw on
the crime scene;

• The suspect wife testifies that by the beginning of the news, she and her
husband were watching TV together;

• The suspect is shown on the video recorded at the ATM CCTV, just in
front of the crime scene;

• The doorman declares that the suspect stopped by as usual to have a little
chat with him.

Using the BN of Figure 7, the investigator obtains that the posterior probability
of guilt is Pr(H = h1 |E4) = 0.5160.

Moreover, it is possible to directly produce a joint evaluation of the unclear origin
pieces of evidence, as shown in Table 8.

Data generating
process (M)

Origin of T Origin of W Posterior probability
given evidence E4

m1 genuine genuine 0.121
m2 genuine manipulated 0.350
m3 manipulated genuine 0.223
m4 manipulated manipulated 0.306

Table 8: Probabilistic evaluation of the data generating process, given the available
evidence E4

The most likely model, given E4 is then M = m2 indicating that the wife
testimony is presumably not genuine. Should the investigator not take into account
the possibility of observing manipulated pieces of evidence, starting from the same
CPTs as for the genuine model, his inference would be that Pr(H = h1 |E4, M =
m1) = 0.1189. In fact, in this case, the testimony of the wife would be treated as
genuine and, together with the doorman’s testimony, it would tend to acquit the
suspect.

However, the probability of some form of manipulation is around 0.90, as is de-
picted in Table 8, although the evidence is not sufficient to establish which variable
has been intervened on. Therefore, the investigator cannot be satisfied with his
comprehension of the case, and looks for other pieces of connected evidence.

5.2. Evaluating two pieces of evidence by comparison. We consider finally a
very relevant situation that can occur during an investigation: the case where two
different pieces of evidence need be compared, before the investigator can assess
their actual relevance. This is a typical example involving ‘scientific evidence’ such
as a blood trace left on a crime scene. A sample of the suspect DNA is analysed,
but neither the crime sample, nor the suspect sample are relevant per se. Usually,
if the two samples match, strong evidence against the suspect is found.

Even in this situation, the investigator may be in doubt that one of the two
samples has been manipulated, and can easily specialise the BN representation of
the investigations, in order to take into account properly of this possibility.

Considering again the previous example, suppose further that a gun is found in
the suspect’s house. The bullets found on the crime scene are then analysed and
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compared to a sample of bullets exploded by the suspect’s gun, and the two types
happen to be compatible.

Since the complexity of the case, the bullets found on the crime scene are sup-
posed as possibly manipulated, to take into account of the possibility that a match
between the bullets is not genuine. Moreover, the investigator gets the suspect
tested with the paraffin glove method. A BN representation of this problem could
be that depicted in Figure 8.

D H PG G

W T A C B

MT MW MB

Figure 8: The MADAG for the comparison of two pieces of evidence. The nodes B

and G are evaluated jointly, into the node C

The node G indicates the observed characteristics of the bullets exploded by the
suspect’s gun. The possible values are g1 and g2, where the former represents a
relatively rare type, whose probability can be estimated by a suitable database as
0.1, and the latter are the remaining types, associated with a 0.9 probability of
occurrence.

The bullets found on the crime scene are represented by the node B, whose
possible values are b1 and b2. If B = b1, then the bullets on the crime scene are
compatible with the bullets exploded by the suspect’s gun, whereas in case B = b2

they are not.
In other words, the nodes B and G actually measure the same variable (the

characteristics of the bullet), only on two different situations, and B is evaluated
in comparison to G by means of the ‘compatibility’ node, C. If c = c1, then there
is a high probability of a compatibility between the two types of bullets analysed.
Conversely, C = c2 represents a mismatch, i.e. suggests that the two types of bullets
do not come from the suspect’s gun.

The variable PG indicates the result of the paraffin glove test, taking on the
values pg1, in case the test is positive, i.e. the suspect has shot within the last 5
days, and pg2 in case the test is negative. For the sake of simplicity, we also assume
that the test is very effective.

Suppose for example that the investigator defines the natural distribution of the
variable B as in the left half of Table 9.

Under the natural model, if the bullet from the suspect’s gun are of the type g1,
in order to claim a compatibility match (C = c1), the bullet found on the crime
scene must be of type b1 with a high probability, say 0.9. Similarly, in order not to
have a match (C = c2), there must be a high probability, say 0.999, that the crime
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MB = m1 MB = m2

G = g1 G = g2 G = g1 G = g2

C = c1 C = c2 C = c1 C = c2 C = c1 C = c2 C = c1 C = c2

B = b1 0.900 0.001 0.100 0.999 0.542 0.542 0.542 0.542
B = b2 0.100 0.999 0.900 0.001 0.458 0.458 0.458 0.458

Table 9: The CPT for the variable B, given its parents G and C, for both the
natural and intervention models

scene bullets come from a different gun (i.e. B = b2). In case the bullets from the
suspect’s gun are of the much more common type g2, a similar reasoning applies.

Consequently, we suppose that the test C is not error-free. However, it can be
used reliably: in fact, the probabilities described above, possibly provided by the
producer of the measurement devices, imply that its sensitivity (the probability
that C suggests a match, given that B and G actually match) is around 90%.
Similarly, from the values of Table 9 it is possible to calculate back its specificity (the
probability that C suggests a non match, given that B and G are not compatible)
as being around 99%.

Applying condition (3) it is straightforward to derive the intervention distribu-
tion, as in the right half of Table 9.

The variable C depends exclusively from the guilt hypothesis. Suppose that the
investigator defines the CPT depicted in Table 10.

H = h1 H = h2

C = c1 0.995 0.001
C = c2 0.005 0.999

Table 10: The compatibility match between the two types of bullets. The value
c1 indicates that the bullets found on the crime scene are compatible with those
exploded by the suspect’s gun

Even in case C = c1, the investigator cannot be sure that the suspect is guilty,
given to the nature of the observed evidence. For this reason, the CPT of C is
not degenerate. However, other types of evidence, involving for example DNA
measurements in a case of rape, could allow such a result.

Finally, the distribution of the control variable PG is that depicted in Table 11.

H = h1 H = h2

C = c1 C = c2 C = c1 C = c2

Pg = pg1 0.999 0.500 0.100 0.500
Pg = pg2 0.001 0.500 0.900 0.500

Table 11: The CPT for the variable Pg, representing the result of the paraffin glove
test

The suspect tests negative to the paraffin glove test, i.e. the evidence is E5 =
{T = t1, W = w2, A = a1, D = d2, P g = pg2, G = g1, B = b1}. Allowing for
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the possibility of manipulation, the posterior probability of guilt decreases to just
Pr(H = h1 |E5)= 0.2224. However, if the investigator considered all the evidence
as genuine, the probability of guilt would be over 0.80, given that the bullets types
match, which in turn would tend to incriminate the suspect.

As for the data generating process, the posterior results given the evidence E5

are shown in Table 12.

Data generating
process (M)

Origin of T Origin of W Origin of B Posterior probability
given evidence E5

m1 genuine genuine genuine 0.005
m2 genuine genuine manipulated 0.173
m3 genuine manipulated genuine 0.078
m4 genuine manipulated manipulated 0.137
m5 manipulated genuine genuine 0.004
m6 manipulated genuine manipulated 0.343
m7 manipulated manipulated genuine 0.053
m8 manipulated manipulated manipulated 0.207

Table 12: Probabilistic evaluation of the data generating process, given the available
evidence E5

Given the prior probabilities asserted by the investigator, and the pieces of evid-
ence gathered, the most likely models is m6 (T and B manipulated, and W genuine).

As compared to the previous findings, the introduction of the paraffin glove test
and the analysis of the scientific evidence somehow explain away the inconsistencies
in the testimonies. The wife’s declaration becomes now more coherent, whereas the
compatibility of the bullets is essentially due to an intervention.

5.3. Synthesis of the case investigation. Table 13 shows an overall summary of
the case evaluation, upon varying the different information status. We consider the
situation when the investigator is not aware of the possibility that one or more evid-
ence is manipulated, and compare it to the models based on the suitable MADAG
representations.

In general, one can appreciate how the inference is changed when the possibility
of manipulation is taken into account. In particular, even when only a single piece of
evidence is considered (case number 1), the possibility that it has been manipulated
is such that the hypothesis of guilt loses strength, since the testimony does not
appear to be completely reliable.

Considering the wife’s testimony (case number 2), strongly reduces the posterior
probability of guilt. This circumstance is certainly dependent on the construction
of the CPT for W , and highlights the possible consequences of assigning (almost)
degenerate prior probability distributions to some of the evidence.

When the control evidence for the witness testimony is made available, since it is
consistent with the observed value of T (case number 3), the posterior probability of
guilt increases. However, given the inconsistency between T and W , starting from
the prior value of 0.5, the posterior probability that T is genuine is only 0.4061,
leading the investigator to question it.

In fact, when we allow for possible manipulation over both T and W (case 4),
the BN reacts suggesting that W is actually not genuine, as T and A accord.
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Consequently, the posterior probability of guilt is increased up to 0.84 (a huge
increase, as compared to the prior value of 0.5).

Moreover, the posterior probability that T is genuine becomes 0.5579, whereas
for W it is only 0.1436 (again from the non informative prior value of 0.5). Obvi-
ously, since W has no control evidence at the moment, the model associates all the
inconsistency with the possibility that it has been manipulated.

When the control evidence D is made available (case number 5), since it agrees
with the evidence W , the posterior probability of guilt is again reduced. However,
as reported earlier, the total probability that some external intervention has oc-
curred is around 0.90, although it is not clear whether the two questioned variables
are genuine or not - the posterior probabilities that T and W are genuine are,
respectively, around 0.47 and 0.34.

In case number 6, finally, a scientific evidence is entered and controlled for.
Without the possibility of manipulation, since the compatibility test C is positive,
the suspect is associated with a probability of guilt of 0.8219. However, since the
paraffin glove tends to acquit him, the intervention model responds assigning a
posterior probability of guilt of only 0.2224.

Moreover, the external manipulations are identified as the testimony T and the
type of bullets B. The posterior probabilities that these two variables are genuine
are, respectively, 0.392 and 0.140, whereas for the testimony W it is 0.524, as
compared to the common starting point of 0.5.

Table 14 depicts the posterior probability for the hypothesis that each single
unclear variable is in fact genuine, given different status of knowledge. As appears
clear, the evidence of W is likely to be not reliable, until the scientific evidence B

is entered and its origin is questioned.

Posterior probability for H = h1

Evidence gathered Manipulable All genuine Allow for
nodes manipulation

1. t1 T 0.7500 0.6250

2. t1, w2 T 0.0698 0.0400

3. t1, w2, a1 T 0.4029 0.2728

4. t1, w2, a1 T, W 0.4029 0.8420

5. t1, w2, a1, d2 T, W 0.1189 0.5160

6. t1, w2, a1, d2, pg2, b1, g1 T, W, B 0.8219 0.2224

Table 13: The posterior probability of guilt calculated using the natural models
(without the possibility of accounting for not genuine evidence), and the MADAG
models, upon varying the manipulable nodes. The prior probability distribution is
Pr(H = h1) = Pr(H = h2) = 0.5

6. Discussion

In this paper we showed a methodology to deal with unclear origin variables,
within an investigation case. This possibility is ensured by the BN structure that
we associated with the problem.
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Evidence gathered Manipulable Posterior probability for

nodes MT =m1 MW =m1 MB =m1

1. t1 T 0.5000 − −

2. t1, w2 T 0.3440 − −

3. t1, w2, a1 T 0.4061 − −

4. t1, w2, a1 T, W 0.5286 0.1429 −

5. t1, w2, a1, d2 T, W 0.4709 0.3440 −

6. t1, w2, a1, d2, pg2, b1, g1 T, W, B 0.3927 0.5244 0.1401

Table 14: The posterior probability for the model nodes, upon varying the in-
formative status. The prior probabilities are set to a non informative distribution:
Pr(MT = m1) = Pr(MW = m1) = Pr(MB = m1) = 0.5

The very first advantage in using a BN is the fact that the overall judgement on
the working hypothesis is articulated into each single relation among the variables.

At first sight, this could be perceived as a drawback, as the investigator may
reckon that he is not able to provide a detailed assessment. However, in our opinion,
once this task has been performed, the investigator is rewarded, in that this only
makes the evaluation of the whole pieces of evidence more straightforward. Besides,
it can become clear which variables need be investigated more thoroughly, before a
sharpest opinion can be reached.

A second important feature of this method is that it explicitly models the pres-
ence of conflicting evidence. Some works in the statistical literature have focused
on this matter (Jensen et al. 1991, Jensen 1995), defining a diagnostic statistics,
which is able to detect possible conflicts between different pieces of evidence.

The model proposed in this paper provides an alternative way of quantifying
inconsistencies in the observed variables, as it directly calculates the posterior dis-
tributions for both the working hypotheses and the data generating models.

Third, unlike most standard Bayesian analysis of forensic data, the use of the
weight of evidence is not particularly useful in the framework we presented here.

In fact, the most important feature of this measure is its invariance to the choice
of the prior distribution for the hypothesis of interest. Since in our case, the working
hypothesis is evaluated jointly with the model variable, the weight of evidence
changes with the choice of the prior distributions for the model node. For this
reason, the evaluation of the posterior distribution of the unobservable variables
can be more relevant.

Finally, in our opinion, the framework described in this paper has several possible
generalisations to other research areas. The role of evidence becomes absolutely
central to our modelling, as the underlying assumptions can be explicitly questioned
and validated through both the unclear and the control evidence. This feature could
be useful also in areas such as Economics, Physics, Psychology or Medicine.
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