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Abstract

In this paper we suggest ways to characterize the transmission mecha-
nisms of volatility between markets by making use of a new Markov Switch-
ing bivariate model where the state of one variable feeds into the transition
probability of the state of the other. The comparison between this model and
other Markov Switching models allows us to derive statistical tests stressing
the role of one market relative to another (contagion, interdependence, co-
movement, independence, Granger causality). We estimate the model on the
weekly high–low range of several Asian markets, with a specific interest in
the role of Hong Kong.
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1 Introduction
The diffusion of international investments and capital movements across borders
has marked the evolution of financial markets and has changed the profile of corre-
lations among assets denominated in different currencies which are exchanged in
geographically separated markets. A single market volatility reacts to innovations
in other markets as a result of financial integration.

Mechanisms of transmission of shocks across variables in an econometric
model have received a great deal of attention in the literature. A stream of re-
search in the financial literature has dealt with spillovers of volatility from one
market to another, focussing on shocks to volatility in a GARCH framework (En-
gle et al., 1990). In recent times, several studies have focused on some notable
financial crises (especially, Mexico, Russia, East Asia, Argentina) with the inten-
tion of analyzing the sources of the crisis: a recurring question is whether the
crises originated in one region and spilled over to other regions (contagion) or
whether they are the result of an interdependent reaction to some common shock.

In discussing the presence and the extension of contagion effects, several au-
thors have concentrated on different aspects, and hence different definitions of
contagion: the World Bank site on Financial Crises1 provides a broad definition
of cross-country transmission of shocks which may take place during both “good”
and “bad” times, whereas more restrictive definitions are centered around a spe-
cific situation of crisis and the consequent increase in the level of interdependence
across countries.

From an empirical point of view, methodologies vary considerably: according
to the taxonomy in Pericoli and Sbracia (2003) one can recognize models where
the period of the crisis is known and some explanation for its inception is sought.
In a Probit/Logit model the crisis is translated into a binary variable and conta-
gion is tantamount to the statistical significance of a dummy variable flagging an
existing crisis in another market; in a Leading Indicators model one examines
the predictive value of variables linked to economic fundamentals or to foreign
markets; in the line of Forbes and Rigobon (2002) one would detect a correlation
breakdown in correspondence to the known dates of the crisis.

A different line of research is characterized by volatility spillovers which char-
acterize the structure of interrelationships across markets: the GARCH models
put forth by Engle et al. (1990) allow to see whether conditional variances are
affected by additional information in the form of squared innovations occurring in

1http://www1.worldbank.org/economicpolicy/managing%20volatility/contagion/index.html
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other markets. This basic idea gets more involved if one considers that volatility
clustering may be characterized by the presence of regimes alternating between
low and high levels of unconditional volatility. In this respect, a further category
of models which has received considerable attention relates to Markov Switch-
ing models (MS; diffused in the econometric literature by Hamilton, 1989, and
adapted to switching volatility by Hamilton and Susmel, 1994, with a switch-
ing ARCH model, SWARCH): in the context of financial crises the presence of
sudden switches ruled by a Markov chain can be accommodated for the variance
equation, as in Edwards and Susmel (2001) and (2003), who suggest a bivariate
version of the SWARCH model for interest rates. In these models, the idea of
crisis and contagion translates into a sudden change in the volatility of stock re-
turns or interest rates measured in a pair of countries and of their correlation. The
MS model provides a framework in which regimes are associated with the various
combinations of low and high volatility in each country. The interesting feature of
their approach is that one country is ex ante considered the originator of the crisis
(dominant market) and the correlation coefficient is made dependent on the state
of such originator country. Contagion is had when the correlation coefficients
significantly change value across states.

In our approach we pursue the idea that transmission mechanisms operate in
the presence of volatility regimes. To this end, we choose to focus on the mean2 of
an observable volatility proxy measured on different markets, namely the weekly
range (log of the ratio of the highest recorded to the lowest recorded values, cf.
Alizadeh et al., 2002). We adopt a new version of the Markov Switching model
called the Multi Chain MS model (MCMS, Otranto, 2005),3 where asymmetries
of behavior can be considered by making the transition probability of each mar-
ket dependent on the state of the other markets. We prefer not to pursue mod-
elling second moments in view of the computational difficulties which character-
ize switching models in this context. Modelling the mean allows us also to make
use of the nonparametric Bayesian approach by Otranto and Gallo (2002) as a
preliminary step to detect the number of different states of nature exhibited by the
series involved.

In this context, we will study market characterizations relying on the following
definitions of contagion, interdependence and comovement. Contagion is seen as
a situation in which a switch in regime of a dominating market leads to a change

2Cf. also the application of a MS approach for the mean equation to a measure of exchange
market pressure in Fratzscher (2003).

3The idea of using dependent Markov chains in a switching framework is also used by Anas et
al. (2004) to study transmission mechanisms for the business cycle.
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in regime in the dominated market (with a lag). Interdependence is seen as a
situation in which a switch in regime of one of the markets leads a change in
regime of the other markets (in other terms, the same market could be dominated
and dominant). Finally, comovement is represented by contemporaneous change
in regimes. As detailed in what follows, the various hypotheses corresponding to
the different market features can be tested within the context of MCMS models.

In the next two sections the multivariate models used and their interpretation
will be explained; in section 4 the methodology exposed will be applied to analyze
the characteristics of the Asian markets in the period 1993-2004, including the
East Asian crisis of 1997. Concluding remarks follow.

2 Multivariate MS
The presence of multiple regimes can be acknowledged using a popular multi-
variate model introduced by Hamilton (1990) where parameters are made de-
pendent on a hidden state process ruled by a Markov chain: such a model, the
multivariate Markov Switching Model (MS), considers an n-dimensional vector
yt ≡ (y1t, . . . , ynt)

′, which is assumed to follow a VAR(p) with time-varying pa-
rameters:

yt = µ(st) +
p∑

i=1

Φi(st)yt−i + εt

(1)
εt ∼ N (0,Σ(st))

where the parameters for the mean equation µ(st) and Φi(st), i = 1, . . . , p, as
well as the variances and covariances of the error terms εt in the matrix Σ(st)
all depend upon the state variable st which can assume a number q of values
(corresponding to different regimes). The transition probability matrix P contains
the probabilities of being in a generic state j at time t given that the state at time
t− 1 was i, namely, for a generic element

pij = Pr(st = j|st−1 = i), i, j = 1, . . . , q

The properties of this model are well known by now and need not be discussed
here: we refer to Hamilton (1994) for the estimation, filtering and smoothing
procedures for this model. For this model it is crucial to keep in mind that all
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variables in the process y depend on the same state variable st, and as such they
are subject to a common switching.

Such a model is of limited use in deciding whether there is contagion or in-
terdependence, in that it can only signal the common switch of all the variables
analyzed from one state to another. In this respect, this model is a good candi-
date to represent common contemporaneous changes across markets, which we
have defined as comovement. For the same reasons, it is going to be misleading
in cases in which variables are ruled by different states which may be temporally
dependent on one another (mutually or in one direction only) or even independent.

3 The Multi–Chain Markov Switching Model
The idea behind a Multi–Chain Markov Switching model (MCMS), as suggested
by Otranto (2005), is to consider a multivariate process in which the switching
mechanism across regimes makes the state for one variable be dependent on the
lagged states of all variables. This case could be considered as representative of
the situation of interdependence, because the change in the state of each variable
can be transmitted to all the others with a certain probability. As a special case,
one can consider a process in which one variable is assumed to be dominant on the
others and the switching dynamics intrinsically asymmetric: a particular state for
one variable alters the probability of other variables to change states, but not vice
versa. This feature is suitable to describe transmission mechanisms occurring in
financial crises, but also to any relationship where a leading variable is present (in
Otranto, 2005, new orders are assumed to be leading the turnover at the aggregate
level) thus representing the case of contagion. Finally, the reciprocal dependence
on the state of the other variables could turn out to be not significant, representing
the case in which markets are ruled by independent state variables.

To fix ideas, let us consider a bivariate case with two latent states for each vari-
able: the dynamics of the two variables are thus subject to state dependence. The
transition from one (multi–) state to another is ruled by a Markov chain obtained
by letting the transition probabilities for one variable be a function of the (lagged)
state of both variables.

In formal terms, as before, yt is assumed to follow a VAR(p) process (note
that st is now a vector):

yt = µ(st) +
p∑

i=1

Φi(st)yt−i + εt
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(2)
εt ∼ N (0,Σ(st))

where the parameters for the mean equation µ(st) and Φi(st), i = 1, . . . , p, as
well as the variances and covariances of the error terms εt in the matrix Σ(st) all
depend upon the state vector st ≡ (s1t, . . . , snt)

′ with sjt representing the state
associated with variable yjt. Each state can assume a number q of regimes (in
principle these could be different across states). The difference with respect to
the classical multivariate MS models is that y1,t and y2,t depend on separate but
potentially related state variables.

To illustrate how the asymmetric behavior of the variables can be embedded in
the model, let us consider the transition probability matrix P with generic element
representing

P = {Pr [st|st−1]} .

If we consider, for simplicity, the case n = q = 2, the state vector st can assume
four different values {(0, 0), (0, 1), (1, 0), (1, 1)} and the matrix P is a 4× 4 ma-
trix. Let us suppose that, conditional on (s1t−1, s2t−1), the states s1t and s2t are
independent, so that:

Pr [s1t, s2t|s1t−1, s2t−1] = Pr[s1t|s1t−1, s2t−1] Pr[s2t|s1t−1, s2t−1] (3)

The right hand side of equation (3) can be parameterized with logistic func-
tions where the functional dependence on past states is made explicit as follows:

Pr (s1t = h|s1t−1 = h, s2t−1) =
exp[α1(h, .) + β1(h, 1)s2t−1]

1 + exp[α1(h, .) + β1(h, 1)s2t−1]

(4)

Pr (s2t = h|s1t−1, s2t−1 = h) =
exp[α2(., h) + β2(1, h)s1t−1]

1 + exp[α2(., h) + β2(1, h)s1t−1]
,

for h = 0, 1. From (4), it is apparent that the state of the variable i at time t − 1
influences the probability of variable j to stay in the same regime, and vice versa.
Obviously,

Pr (sjt = k|sjt−1 = h, sit−1) = 1− Pr (sjt = h|sjt−1 = h, sit−1)

for h, k = 0, 1, h 6= k, and i, j = 1, 2, i 6= j. Hypothesis testing can be performed
on the estimated model (2)–(4) in order to assess the relevance of the dependence
structure assumed for the states and whether the presence of asymmetric effects
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in the dynamics of regimes is supported by the data. Statistical significance of all
parameters in (4) will provide evidence in favor of the case of interdependence.
If the coefficient βj(h, k) = 0, the state of the variable i at time t − 1 influences
the probability of variable j to stay in the same regime, but not vice versa, this is
evidence in favor of the dominant status of variable i or contagion. This property
gives meaning to our envisaging contagion as a stable asymmetric relationship
between markets and not necessarily related to the effects of single shocks. Fi-
nally, the non significance of all the coefficients βj(h, k) and βi(h, k) would show
evidence for independence between markets.

In this way, the estimated probabilities in (4) will show the impact of the
regime of variable i on the transition probabilities for variable j; moreover, we
would expect the signs of coefficients β1(0, 1) and β2(1, 0) to be negative and
those of coefficients β1(1, 1) and β2(1, 1) to be positive.

Disposing the estimated transition probabilities (3) in a matrix, with rows rep-
resenting the multiple state at time t− 1 and columns the multiple state at time t,
it is possible to evaluate the most probable scenario (a particular combination of
s1t and s2t) at time t, given a certain state at time t− 1.

The properties of the model from a theoretical point of view coincide with
those of a standard Markov switching model: estimation filtering and smoothing
can be performed according to the procedures described by Hamilton (1990) and
Kim (1994). It should be clear that in practice some restrictions will have to be
imposed on the general model (2) in order to make it tractable from a computa-
tional point of view, also to retain interpretability of the results according to the
specific application at hand.

4 Hong Kong’s Role in Asian Markets
The Asian markets are a classical example for which there is a large debate to es-
tablish the nature of the relationship among markets subject to sudden changes in
volatility. For example, Forbes and Rigobon (2002) note that the shock originat-
ing from Hong Kong in October 1997 has not implied a significant increase in the
correlation coefficients of the other main Asian markets: the conclusion reached
is that the series analyzed cannot be considered as subject to a form of conta-
gion from Hong Kong, but rather the markets considered exhibit interdependence.
Let us now see what our analysis allows us to say, in view of a more articulate
definition of contagion, interdependence, independence and comovements.

7



4.1 The Data
We analyze the stock market indices of 5 Asian countries starting from daily data
spanning a period between November 29, 1993 and April 26, 2004; the indices
are the Hang Seng index (Hong Kong-HSI hereafter), the KOSPI index (South
Korea-KS11), the KLSE composite index (Malaysia-KLSE), the Straits Times
index (Singapore-STI), the Thailand SET index (Thailand, SETI). The proxy of
the volatility is computed as the weekly range of the logarithm of the data (highest
recorded minus lowest recorded value) and results in 544 observations.
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Figure 1: Hang Seng volatility

The proxy used delivers the HSI series shown in Figure 1; the East Asian crisis
shows its most evident effect in the third week of October 1997, in which the
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Figure 2: Volatility of Asian markets
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volatility increased by almost 300 percent. The dramatically high volatility of this
period is a common feature of all the series analyzed (Figure 2), with a different
degree of persistence and depth, but a similar general behavior. In particular the
Korean market seems to suffer dramatically from the October crisis, increasing
its volatility by 81 percent and never really reverting to lower volatility levels in
successive periods. Other series seem to absorb the shock, albeit gradually.

4.2 The Presence of Regimes
The existence of at least two regimes is clear observing these graphs, as is the
presence of some sort of common feature, with possible lags. The presence of
regimes can be detected by means of the nonparametric Bayesian procedure of
Otranto and Gallo (2002). With this approach, using diffuse priors for the distri-
butions of the number of regimes, we obtain the posterior distributions shown in
Table 1.4 The series HSI, KS11 and KLSE show a strong evidence in favor of
three regimes, whereas STI seems to exhibit only two regimes. The case of SETI
is not clear, since very similar probabilities are present for 3 and 4 states. At any
rate, for each series the situation of no regimes (1 state) is ruled out; these results
are therefore consistent with the proposed approach.

Table 1 approximately here

4.3 The Empirical Results
The first step of our approach is to estimate a MCMS model without constraints
on the parameters in the transition probability specifications (4) and then to test
some restrictions. We shall consider bivariate models keeping HSI as the second
variable in all models and letting the data suggest which type of relationship it
holds with other markets, given the great influence exerted by Hong Kong on the
other Asian economies.

Following this hypothesis, we estimate 4 separate MCMS models with 2 ×
2 states; the value 0 represents the ordinary regime, the value 1 occurs in the
turbulent regime. In addition, we consider the autoregressive parameters in (2) not
to be state–dependent and the order p equal to 2; for these coefficients the usual
stationarity constraints hold. Finally, we suppose a structure of the covariance
matrix as:

4We use the same priors of Otranto and Gallo (2002), with the hyperparameter A, regulating
the prior probabilities of the number of regimes, equal to 0.15.
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Σ(s1,t, s2,t) =


 σ2

1(s1t, .) ρ(s1t, s2t)σ1(s1t, .)σ2(., s2t)

ρ(s1t, s2t)σ1(s1t, .)σ2(., s2t) σ2
2(., s2t)




In other terms, the variances of each variable (related to fourth moments of re-
turns) depend only on the variable’s own state, whereas the effect of the multi–
state affects the correlation coefficient, that varies in [-1,1].

We allow the intercept of model (2) to vary with both the regimes of the two
markets; in other terms, we will have four possible intercepts for each variable.

After the estimation of the models, we would like to test some proposition to
evaluate the presence of dependence on the state of the other variable, in particular
the case of contagion or independence. The testable propositions are:

State Dependence in the Mean Equation

1. No dependence of the intercept of y1 on the state of y2:

H0: µ1(0, 0)=µ1(0, 1) and µ1(1, 0)=µ1(1, 1);

2. No dependence of the intercept of y2 on the state of y1:

H0:µ2(0, 0)=µ2(1, 0) and µ2(0, 1)=µ2(1, 1)

Dynamic Dependence in the Mean Equation

3. y2 does not Granger cause y1:

H0:φ1
12=φ2

12=0

4. y1 does not Granger cause y2:

H0:φ1
21=φ2

21=0

State Dependence in the Correlations

5. No dependence of the correlation on the state of y2:

H0:ρ(0, 0)=ρ(0, 1) and ρ(1, 0)=ρ(1, 1)

6. No dependence of the correlation on the state of y1:

H0:ρ(0, 0)=ρ(1, 0) and ρ(0, 1)=ρ(1, 1)
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Characterization of Market Dependence

7. No contagion from y2 to y1:

H0:β1(0, 1)=β1(1, 1)=0

8. No contagion from y1 to y2: H0:β2(1, 0)=β2(1, 1)=0

9. No interdependence (no reciprocal contagion):

H0:β1(0, 1)=β1(1, 1)=β2(1, 0)=β2(1, 1)=0

10. Comovement between y1 and y2

H0 :

α1 (0, .) = α2 (., 0)
α1 (0, .) + β1 (0, 1) + α2 (., 1) = 0
α1 (., 1) + α2 (., 0) + β2 (1, 0) = 0
α1 (1, .) + β1 (1, 1) = α2 (., 1) + β2 (1, 1)

The last hypothesis is not intuitive because the MMS model, where s1t = s2t

for each t, is not nested into the MCMS model. Thus, the rows and the columns of
the transition probability matrix of the independent MCMS model where s1t 6= s2t

cannot be constrained so as to obtain the smaller size transition probability matrix
of the MMS model. However, one can impose that the profile of the estimated state
variable for market 1 be the same as the corresponding state variable for market 2.
The analytical derivation of these constraints is developed in the appendix at the
end of the paper.

All these hypotheses can be tested by means of classical Wald statistics and
are consistent with the idea of Granger causality for MS VAR models proposed
by Warne (2000).

The hypotheses labeled 7. to 10. are the ones which characterize the relation-
ships between markets. The various situations can be summarized as follows:

• Contagion: it occurs when hypothesis 7. cannot be rejected and hypothesis
8. is rejected or the other way around.

• Interdependence or reciprocal contagion: hypotheses 7., 8., and 9. are
rejected.

• Independence: it occurs when hypothesis 9. cannot be rejected and hy-
pothesis 10. is rejected.

12



• Comovement or common state variable: it occurs when 10. cannot be
rejected, as discussed above.

Table 2 approximately here

In Table 2 we summarize the hypothesis testing results of the Wald test statis-
tics for the ten hypotheses above; the estimated models (2)–(4) show some form of
dependence between the couples of series according to the various categories de-
tailed above. In particular, the hypotheses that the intercepts of one market do not
depend on the state of the other market, and the Granger non causality hypotheses
are rejected (strongly in all cases, except for the Granger noncausality test in the
direction Thailand to Hong Kong which is rejected at the 5% significance level).
The correlations seem to be dependent on the states in all cases except for the
Korean/Hong Kong markets.

As per market dependence as described above, we can say that the Hong Kong
market has a contagion effect on both the Korean and Thailand markets (hypoth-
esis 7. rejected and hypothesis 8. not rejected). For the Malaysia/Hong Kong
markets the evidence favors interdependence (rejection of both hypotheses 7. and
8.). The Singapore case is a puzzling one: if one follows the testing procedure
above, one finds a p-value associated with the test statistic for hypothesis 9. equal
to 0.066 and a p-value for the corresponding statistic for hypothesis 10. equal
to 0.025, which would characterize the case as borderline between independence
and (more so) comovement. Moreover, there is also mild support for the case
of contagion from HSI (the no contagion hypothesis 7. is also rejected only at
5% significance level, but not at 1%). We can direct the analysis to gather some
more evidence between the two cases of comovement (represented by a bivari-
ate MS model) or independence (represented by a bivariate MCMS model with
independent s1t and s2t). This allows us also to shed some light on the different
characteristics of the various models.

In view of the results in Table 1, where we assessed that STI seems to pos-
sess two regimes and HSI three, we will estimate two MS models, one with two
regimes and one with three. We will follow Hamilton and Susmel (1994) in car-
rying out a comparison based on in-sample goodness of fit performance using the
Mean Square Error (MSE) and Mean Absolute Error (MAE) or their equivalents
for the variables expressed in logs ([LE]2 and |LE| respectively, following Hamil-
ton and Susmel’s notation). The results are shown in Table 3 (the boldface figures
indicate the best performance).

Table 3 approximately here
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The MS model with 3 states (labels henceforth are to states 1, 2, and 3) clearly
performs better than the others, with the MS model with 2 states coming in as
second: we interpret this to be evidence in favor of a case of comovement between
STI and HSI.

We show the estimation of the selected models for each pair of markets in
Tables 4, 5, 6, 7, reporting in the last rows the p-values relative to the Jarque-Bera
test (JB), the Ljung-Box test (LB(10)) and the Ljung-Box test on squared residuals
(LBS(10)), both calculated with 10 lags.

Table 4 approximately here

Table 5 approximately here

Table 6 approximately here

Table 7 approximately here

The residuals of HSI exhibit non normality in all cases, but this is not surpris-
ing given that we are modelling the conditional expectation of a positive valued
process and the distribution of residuals is often asymmetric and affected by ex-
ceptionally high values (cf. also Figures 1 and 2).

It is interesting to note that many correlation coefficients between estimated
innovations are equal to zero which may suggest that the consideration of the
regimes captures the main features of the strong relationship seemingly exhib-
ited by the variables. To investigate this issue, we have estimated a bivariate VAR
model on the four pairs of variables as well: the residuals in each case are strongly
correlated. To support our claim that undetected regimes induce spurious corre-
lations in the residuals, we ran a few Monte Carlo experiments. The outcome is
that when MS and MCMS models with uncorrelated disturbances are simulated
and then estimated by a VAR the residuals are cross-correlated (the results are not
reported here for the sake of space, but they are available upon request).

We can note that the signs of the parameters of the logistic functions are con-
sistent with our expectations. In the KS11/HSI case the state of HSI has an impact
just on the probabilities in state 0. For the STI/HSI case, the switch to state 3 from
state 1 or 2 is not likely, whereas the change from state 3 to state 1 is more likely
than the change to state 2; we can interpret the state 1 as the case of low volatility
and the state 2 as the high volatility one, whereas the state 3, given its infrequent
occurrence accompanied by low persistence, can be considered as an extremely
turbulent state. All the intercepts of the MCMS models exhibit a gradual change
from the (0,0) to the (1,1) state (note that in the Malaysia case - Table 6 - the
intercept does not change between (1,0) and (1,1)).
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5 Concluding Remarks
In this paper we propose a new model, based on correlated Markov chains, to
represent the case of interdependence among financial markets, with the case of
contagion and independent markets as particular cases. The fact that the two last
cases are nested in the more general model provides the possibility to test statis-
tically the various scenarios. The case of comovement among variables, though,
which is characterized by a classical Markov Switching model is not nested in the
MCMS model: we resorted to a separate test for common dynamics of the two
state variables.

The applications show the relevant role of Hong Kong as a dominant mar-
ket over the period considered: it turns out that a plausible market characteriza-
tion from the estimated models and the hypothesis testing performed is that Hong
Kong has a leading role relative to Korea and to Thailand. Malaysia shows some
form of interdependence while for the case of Singapore the estimated models and
the evaluation of several loss functions in one-step-ahead prediction points rather
to a situation of comovement between the two markets.

The estimation of a bivariate model is forced by the difficulty of increasing
the number of variables in the model without stumbling into the usual numeri-
cal problems encountered in Markov Switching models with higher number of
regimes. A n-variate model with k states per variable would have a transition
matrix of order kn, which is rapidly intractable (flat likelihood function) for even
moderate numbers of n or k above 2. There is therefore a trade-off between the
depth of the economic interpretation which one would have available if more than
two markets were to be compared and the numerical difficulties which accompany
such an effort.

The definitions of contagion, interdependence, comovement and independence
are consistent with large part of the literature, but we should stress that their prac-
tical characterization is different in terms of the statistical instruments utilized.
For example, Forbes and Rigobon (2002) base their analysis only on the behav-
ior of the correlation coefficients, and on a significant increase changing from a
state of low to another of high volatility (with the periods of low and high volatil-
ity established a priori). In our approach, the analysis is not limited to specific
episodes of crisis, the periods of high and low volatility are selected by the model
itself. An important result is that the presence of correlation between the residuals
disappears if one takes into proper consideration the existence of regimes and the
peculiar structure of the dynamics behind them.
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Appendix
In this Appendix we demonstrate that testing the null of comovement against the
hypothesis of MCMS model is equivalent to verifying a set of linear restrictions
on the MCMS model.

The case of comovement corresponds to the case in which the state of y1t and
y2t is the same for each t; this situation can justify the adoption of a classical MS
model. The MS model is not nested into the MCMS model given the different
number of states: hence the classical tests based on the likelihood function cannot
be applied.

In view of Hamilton (1994), a Markov chain can be represented as an AR(1)
process:

ξt+1 = P ′ξt + vt+1,

where ξt is a vector containing 1 in correspondence of the state at time t, P is the
transition probability matrix and vt is a vector innovation with zero mean. In our
case, the multiple states are (0,0), (0,1), (1,0), (1,1); correspondingly, for example,
ξt = [0, 0, 0, 1]′ points to a value of the multiple state at time t as (1, 1).

The conditional expectation of ξt+1 is:

E(ξt+1|ξt) = P ′ξt.

If we are interested in the behavior of the single regimes s1t and s2t, let us note
that they can be represented as the vectors ξ∗t , respectively, ξ∗∗t . Correspondingly,
their expected values are given by the 2× 1 vectors:

E(ξ∗t+1|ξ∗t ) =

[
1 1 0 0
0 0 1 1

]
P ′ξt

E(ξ∗∗t+1|ξ∗∗t ) =

[
1 0 1 0
0 1 0 1

]
P ′ξt.

To investigate the presence of comovement, as defined in the main body of the
paper, let us test the equality of the two previous vectors, that is,

[
1 1 0 0
0 0 1 1

]
P ′ =

[
1 0 1 0
0 1 0 1

]
P ′. (5)

It is easy to verify that the two rows provide equal constraints: once it is verified
that the first element of ξ∗t is equal to the first element of ξ∗∗t for each t, automati-
cally the second elements of the two vectors will be equal, as each of them are the
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complements to 1 of the previous corresponding elements. Let us denote the prob-
ability Pr[s1t = i, s2t = j|s1t−1 = w, s2t−1 = z] by p(ij|wz); as a consequence,
the P matrix is:




p(00|00) p(01|00) p(10|00) p(11|00)
p(00|01) p(01|01) p(10|01) p(11|01)
p(00|10) p(01|10) p(10|10) p(11|10)
p(00|11) p(01|11) p(10|11) p(11|11)




Developing the first (or the second) equation of (5), the four constraints to be
verified are:

Pr [s1t = 0, s2t = 1|s1t−1 = 0, s2t−1 = 0] = Pr [s1t = 1, s2t = 0|s1t−1 = 0, s2t−1 = 0]

Pr [s1t = 0, s2t = 1|s1t−1 = 0, s2t−1 = 1] = Pr [s1t = 1, s2t = 0|s1t−1 = 0, s2t−1 = 1]

(6)
Pr [s1t = 0, s2t = 1|s1t−1 = 1, s2t−1 = 0] = Pr [s1t = 1, s2t = 0|s1t−1 = 1, s2t−1 = 0]

Pr [s1t = 0, s2t = 1|s1t−1 = 1, s2t−1 = 1] = Pr [s1t = 1, s2t = 0|s1t−1 = 1, s2t−1 = 1]

Recalling the hypothesis of conditional independence (3) and the parameterization
(4), we obtain that (6) corresponds to the four nonlinear constraints:

exp[α1(0,.)]
1+exp[α1(0,.)]

1
1+exp[α2(.,0)] = 1

1+exp[α1(0,.)]
exp[α2(.,0)]

1+exp[α2(.,0)]

exp[α1(0,.)+β1(0,1)]
1+exp[α1(0,.)+β1(0,1)]

exp[α2(.,1)]
1+exp[α2(.,1)] = 1

1+exp[α1(0,.)+β1(0,1)]
1

1+exp[α2(.,0)]

1
1+exp[α1(.,1)]

1
1+exp[α2(.,0)+β2(1,0)] = exp[α1(1,.)]

1+exp[α1(1,.)]
exp[α2(.,0)+β2(1,0)]

1+exp[α2(.,0)+β2(1,0)]

1
1+exp[α1(1,.)+β1(1,1)]

exp[α2(.,1)+β2(1,1)]
1+exp[α2(.,1)+β2(1,1)] = exp[α1(1,.)+β1(1,1)]

1+exp[α1(1,.)+β1(1,1)]
1

1+exp[α2(.,1)+β2(1,1)]

After simple algebraic manipulations, the previous nonlinear relationships among
the probabilities parameters are equivalent to the following linear restrictions:

α1 (0, .) = α2 (., 0)

α1 (0, .) + β1 (0, 1) + α2 (., 1) = 0

α1 (., 1) + α2 (., 0) + β2 (1, 0) = 0

α1 (1, .) + β1 (1, 1) = α2 (., 1) + β2 (1, 1)

In the simultaneous presence of these four constraints, we can think of common
dynamics for the state variables and therefore of comovement.

17



References
Alizadeh, S, Brandt MW, Diebold FX. 2002. Range-Based Estimation of Stochas-
tic Volatility Models. The Journal of Finance 57, 1047-1091.

Anas, J., M. Billio , L. Ferrara , M. Lo Duca. 2004. Business Cycle Analysis with
Multivariate Markov Switching Models, GRETA Working Paper n. 04.02

Edwards, S., R. Susmel. 2001. Volatility Dependence and Contagion in Emerging
Equity Markets, Journal of Development Economics, 66, 505:532.

Edwards, S., R. Susmel. 2003. Interest-Rate Volatility in Emerging Markets, The
Review of Economics and Statistics, 85, 328:348.

Engle, R.F., T. Ito, W. Lin, 1990. Meteor Showers or Heat Waves? Heteroskedas-
tic Intra-Daily Volatility in the Foreign Exchange Market, Econometrica, 58, 525:542.

Forbes, K.J., R. Rigobon , 2002. No Contagion, Only Interdependence: Measur-
ing Stock Market Comovements, The Journal of Finance, 62, 2223:2261.

Fratzscher, M., 2003. On Currency Crises and Contagion, International Journal
of Finance and Economics, 8, 109:129.

Hamilton JD. 1989. A New Approach to the Economic Analysis of Nonstationary
Time Series and the Business Cycle, Econometrica, 57, 357:384.

Hamilton JD. 1990. Analysis of Time Series Subject to Changes in Regime, Jour-
nal of Econometrics, 45, 39:70.

Hamilton, J.D. 1994. State–Space Models, in Handbook of Econometrics, vol. IV
(Engle, R.F., D.L. McFadden eds.), 3039:3080, North-Holland.

Hamilton, J.D., R. Susmel. 1994. Autoregressive Conditional Heteroskedasticity
and Changes in Regime, Journal of Econometrics, 64, 307:333.

Kim, C.J. 1994. Dynamic Linear Models with Markov-Switching, Journal of
Econometrics, 60, 1:22.

Otranto, E. 2005. The Multi–Chain Markov Switching Model, forthcoming Jour-
nal of Forecasting, available at Economics Working Papers Archive, ewp-em/0311001

Otranto, E., G.M. Gallo 2002. A Nonparametric Bayesian Approach to Detect
the Number of Regimes in Markov Switching Models, Econometric Reviews, 4,
477:496.

Pericoli,M., M. Sbracia 2003. A Primer on Financial Contagion, Journal of Eco-
nomic Surveys, 17, 571:608.

18



Warne, A. 2000. Causality and Regime Inference in a Markov Switching VAR,
Sveriges Riksbank.

19



Tables

Table 1: Empirical Posterior Distribution of the number of regimes

1 2 3 4 5 6 7 8
HSI 0.000 0.000 0.872 0.118 0.008 0.002 0.000 0.000

KS11 0.000 0.000 0.768 0.200 0.024 0.008 0.000 0.000
STI 0.000 0.806 0.182 0.012 0.000 0.000 0.000 0.000

KLSE 0.000 0.000 0.850 0.124 0.024 0.002 0.000 0.000
SETI 0.000 0.018 0.420 0.494 0.052 0.016 0.000 0.000
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Table 2: Market Characterization Based on MCMS Models

Market 1
Hypotheses KS11 STI KLSE SETI
State Dependence in the Mean Equation

1. No dependence of the intercept
of Market 1 on the state of HSI

** ** ** **

2. No dependence of the intercept
of HSI on the state of Market 1

** ** ** **

Dynamic Dependence in the Mean Equation
3. HSI does not Granger cause Mar-
ket 1

** ** ** **

4. Market 1 does not Granger cause
HSI

** ** ** *

State Dependence in the Correlations
5. No dependence of the correlation
on the state of HSI

** ** **

6. No dependence of the correlation
on the state of Market 1

** ** **

Characterization of Market Dependence
7. No contagion from HSI to Mar-
ket 1

** * ** **

8. No contagion from Market 1 to
HSI

**

9. No interdependence ** ** **
10. Comovement between Market 1
and HSI

** * ** **

Plausible Market Characterization
Contagion from Hong Kong × ×
Interdependence ×
Comovement ×
Independence ×

Note: The ‘*’ and ‘**’ symbols represent rejection of the hypothesis at 5%, respec-
tively, 1% significance level, on the basis of a corresponding Wald-type tests on estimated
MCMS models.
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Table 3: STI/HSI: Loss functions for MCMS and MS models

MSE MAE [LE]2 |LE|
MS 2 states 12.776 3.346 0.450 0.756
MS 3 states 12.734 3.337 0.447 0.751

MCMS 12.936 3.369 0.458 0.763

Table 4: Estimated parameters of the MCMS Model for Korea/Hong Kong (stan-
dard errors in parentheses)

Switching coefficients - Constant Term
Korea Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
0.714 1.307 3.446 8.222 1.760 2.336 5.260 6.103

(0.064) (0.210) (0.181) (0.264) (0.104) (0.381) (0.367) (0.426)
Autoregressive Terms

Korea Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.284 -0.020 0.197 -0.000 0.028 0.158 -0.000 0.178
(0.007) (0.007) (0.006) (0.008) (0.009) (0.013) (0.004) (0.012)
Switching coefficients - Standard deviations Switching coefficients - Correlation Terms

Korea Equation Hong Kong Equation
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ(0, 0) ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.412 1.580 0.675 2.446 0.000 0.000 0.037 0.039

(0.012) (0.041) (0.016) (0.050) (0.050) (0.079) (0.064) (0.051)
Probability parameters

Korea Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) α2(., 1)
1.614 -1.203 1.053 0.000 1.119 0.012

(0.246) (0.362) (0.221) (0.357) (0.166) (0.188)
p-values of test statistics

Korea Hong Kong
JB LB(10) LBS(10) JB LB(10) LBS(10)

0.241 0.360 0.040 0.000 0.306 0.311
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Table 5: Estimated parameters of the MS–3 states Model for Singapore/Hong
Kong (standard errors in parentheses)

Switching coefficients - Constant Term
Singapore Equation Hong Kong Equation

µ1(1) µ1(2) µ1(3) µ2(1) µ2(2) µ2(3)
1.298 2.737 6.801 1.445 3.623 6.847

(0.056) (0.071) (0.357) (0.063) (0.092) (0.427)
Autoregressive Terms

Singapore Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.209 -0.007 0.156 -0.000 0.121 0.145 -0.004 0.163
(0.014) (0.015) (0.013) (0.011) (0.016) (0.015) (0.014) (0.012)

Switching coefficients - Standard deviations Switching coefficients
Singapore Equation Hong Kong Equation Correlation Terms

σ1(1) σ1(2) σ1(3) σ2(1) σ2(2) σ2(3) ρ1 ρ(2) ρ(3)
0.528 0.845 2.932 0.539 1.045 3.370 0.108 0.000 0.456

(0.019) (0.031) (0.082) (0.016) (0.040) (0.096) (0.041) (0.057) (0.058)
Transition Probabilities

p11 p12 p21 p22 p31 p32

0.521 0.410 0.459 0.464 0.307 0.195
(0.039) (0.040) (0.044) (0.047) (0.065) (0.064)

p-values of test statistics
Singapore Hong Kong

JB LB(10) LBS(10) JB LB(10) LBS(10)
0.058 0.013 0.003 0.000 0.129 0.938

The three states are labelled as states 1, 2, and 3.
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Table 6: Estimated parameters of the MCMS Model for Malaysia/Hong Kong
(standard errors in parentheses)

Switching coefficients - Constant Term
Malaysia Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
1.261 3.523 8.084 8.084 2.105 2.210 3.428 8.683

(0.051) (1.095) (1.091) (1.156) (0.081) (0.233) (0.190) (0.320)
Autoregressive Terms

Malaysia Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.183 0.025 0.126 0.000 0.066 0.195 0.009 0.135
(0.009) (0.010) (0.007) (0.010) (0.011) (0.016) (0.013) (0.017)
Switching coefficients - Standard deviations Switching coefficients - Correlation Terms
Malaysia Equation Hong Kong Equation
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ0,0 ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.523 3.951 0.879 2.009 0.139 0.000 0.581 0.085

(0.013) (0.222) (0.020) (0.030) (0.037) (0.055) (0.052) (0.056)
Probability parameters

Malaysia Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) β2(1, 0) α2(., 1) β2(1, 1)
2.507 -1.149 -1.077 0.950 0.963 -1.219 -0.238 0.801

(0.270) (0.365) (0.480) (0.616) (0.147) (0.403) (0.184) (0.458)
p-values of test statistics

Malaysia Hong Kong
JB LB(10) LBS(10) JB LB(10) LBS(10)

0.004 0.725 0.104 0.000 0.708 0.162
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Table 7: Estimated parameters of the MCMS Model for Thailand/Hong Kong
(standard errors in parentheses)

Switching coefficients - Constant Term
Thailand Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
0.490 1.695 3.599 5.910 2.061 2.061 3.153 7.200

(0.029) (0.299) (0.293) (0.407) (0.081) (0.273) (0.241) (0.349)
Autoregressive Terms

Thailand Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.357 -0.010 0.148 -0.000 0.038 0.230 -0.000 0.146
(0.005) (0.006) (0.005) (0.003) (0.013) (0.014) (0.012) (0.013)
Switching coefficients - Standard deviations Switching coefficients - Correlation Terms
Thailand Equation Hong Kong Equation
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ0,0 ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.261 2.898 0.933 2.154 0.000 0.000 0.546 0.044

(0.007) (0.047) (0.022) (0.036) (0.043) (0.073) (0.044) (0.054)
Probability parameters

Thailand Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) α2(., 1)
1.544 -1.261 0.199 0.468 0.889 -0.166

(0.213) (0.311) (0.202) (0.383) (0.136) (0.178)
p-values of test statistics

Thailand Hong Kong
JB LB(10) LBS(10) JB LB(10) LBS(10)

0.000 0.089 0.087 0.000 0.027 0.806
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