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Abstract

Most of the approaches developed in the literature to elicit
the a-priori distribution on Directed Acyclic Graphs (DAGs)
require a full specification of graphs. Nevertheless, expert’s
prior knowledge about conditional independence relations may
be weak, making the elicitation task troublesome. Moreover,
the detailed specification of prior distributions for structural
learning is NP-Hard, [7], making the elicitation of large net-
works impractical. This is the case, for example, of gene ex-
pression analysis, in which a small degree of graph connectivity
is a priori plausible and where substantial information may re-
gard dozens against thousands of nodes.

We propose an elicitation procedure for DAGs which ex-
ploits prior knowledge on network topology, and that is suited
to large Bayesian Networks. Then, we develop a new quasi-
Bayesian score function, the P-metric, to perform structural
learning following a score-and-search approach.
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1 Introduction

The complete specification of a prior distribution on the topology of
a Bayesian Network (BN) is NP-Hard [5]. Most of the approaches in
the literature require a complete specification of a prior probability
distribution on the space of Directed Acyclic Graphs (DAGs).

Nevertheless, there are problem domains in which such complete
elicitation is difficult or infeasible, due to the lack of enough infor-
mation to completely specify one network. A prior state of partial
knowledge about network’s topology may take several forms, like a in-
dependence relations among subsets of variables or an ordering relation
for just a subset of nodes.

In this paper we develop a method to elicit partial beliefs about
network structure without requiring the a-priori complete specification
of structures. Elicited beliefs are refined by means of dissimilarity
measures on network’s topology.

In order to perform structural learning in a score-and-search frame-
work, we propose a new score function to evaluate causal Bayesian
Networks: the P-metric. It is a quasi-Bayesian score obtained by mod-
ifying the Bayesian Dirichlet Equivalent metric, [11]. The peculiarity
of a likelihood equivalent metric is to assign the same likelihood value
to structures entailing the same conditional independence assertions.
The P-metric exploits prior information to discriminate among causal
structures within equivalence classes, thus it is not likelihood equiva-
lent.

In section 2 we shortly review some basic concepts about Bayesian
Networks. Section 3 contains the description of early approaches to
elicit prior information on structures, and in section 4 we detail our
approach. A new elicitation procedure using the P-metric is presented
in section 5. Numerical results from the analysis of some Machine
Learning benchmark datasets are presented in section 6. Finally, in
section 7, we present preliminary conclusions and issues to be addressed
by further research.

2 Graphs and Bayesian networks

A review of some important definitions in graph theory and of Markov
properties are provided. Comprehensive accounts on probabilistic net-
works may be found in [14] and [9].

A graph G is an ordered pair (V, E), with V a finite set of nodes
{v1, v2, . . .} and E ⊂ V × V the set of edges. If (vi, vj) ∈ E and
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(vj, vi) /∈ E then there is a directed edge from vi to node vj, also
indicated as vi → vj.

Given (vi, vj) ∈ E we say that vi and vj are adjacent or neighbor-
hoods of each other: vi is said parent of vj and vj is also called a child
of vi. By iterating the two definitions of parent and child recursively,
the set of ancestor nodes and descendent nodes are defined. An an-
cestral set A of node α is a subset of V in which for each node in A
all its parents are in A as well. The smallest ancestral set containing
a node α is indicated as An(α). A node is called root if it does not
have any parent. For every vi ∈ V it holds that (vi, vi) /∈ E because a
node cannot originate an arrow pointing to itself. If (vi, vj) ∈ E and
(vj, vi) ∈ E then the edge is said undirected. A directed graph GDG

contains only directed edges, (vi, vj) ∈ E ⇒ (vj, vi) /∈ E. A path con-
necting two nodes whatever the direction of edges on the path is called
adjacency path or chains, to distinguish it from the directed path, dp,
where edges are all oriented in the same direction, i.e. edges meet head-
to-tail for each node. A Directed Acyclic Graph (DAG) GD = (V, ED)
is a directed graph without cycles, i.e. no directed path originated by
vi leads back to the starting node vi.

A Bayesian Network B is a graph-based representation of a joint
probability distribution P which is Markov with respect to the graph.
Random variables are labelled by nodes in the graph, e.g. xvi

with
state space χvi

. For shortness, sometimes labels also indicate random
variables. In this paper we will only consider discrete random variables.

The Markov property allows the factorization of the joint probabil-
ity distribution following the child-to-parents structure:

p(x) =
∏
vi∈V

p(xvi
| xpa(vi)) (1)

It follows that the joint probability distribution may be represented
by a collection of conditional probability tables (CPTs) one for every
pair (vi, pa(vi)) in the graph, with pa(vi) the parent nodes of vi. To
every pair vi, pa(vi) of a given network Bs is associated a CPT whose
parameters are here indicated as θs,vi,pa(vi). Given the structure s, the
vector of all parameters is θs = {θs,vi,pa(vi)}vi

.
A graph GD does not always represent all the conditional indepen-

dence relations entailed by the probability distribution P . If it does,
we say that P and GD are faithful to each other. The conditional inde-
pendence relations which are not determined by “numerical accident”
may be represented by a DAG. In a faithful DAG all the conditional
independence relations encoded by a BN are revealed by assessing the
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direction dependent separation property [10], also called d-separation,
[19].

Given a DAG GD = (V, E), with vi, vj ∈ V , and vj 6= vi, let C be a
subset of V , C ⊂ V \{vi, vj}. We say that vi and vj are d-separated in
GD given C, if and only if there exists no adjacency path ap between
vi and vj such that: (i) every collider on ap is in C or has a descendent
in C; (ii) no other node on path ap is in C. The subset C is the so
called cut-set. If vi and vj are not d-separated given C we say that vi

and vj are d-connected given C. The definition of d-separation of two
nodes can be easily extended to the d-separation of two disjoint set of
nodes X ⊂ V and Y ⊂ V by iterating the above definition for each
pair (vi, vj), with vi ∈ X and vj ∈ Y .

3 Earlier Approaches

The elicitation problem for prior beliefs on network’s structure has been
not much considered in the literature. A straightforward elicitation of
prior beliefs on complex structures is performed element-by-element
assigning (subjective) probability values to graphs defined on a given
set V of nodes. The enumerative approach is infeasible out of net-
works with a very small set of nodes because the space of DAGs has
superexponential cardinality while increasing the number of nodes in
V .

A simpler approach puts a uniform prior distribution on a subset
H of all possible DAGs, [12], therefore some structures are a-priori
excluded from the scoring procedure. Bounds on the number of par-
ents/children are established to set hard constraints on elements in
H.

Two more elaborated approaches have been proposed by [4, 6] to
define a prior distribution on the space of BN structures. Both of them
require a complete specification of beliefs over the network making their
implementation not very practical in large networks.

In the so-called Buntine approach, [4], an initial partial theory pro-
vided by the expert is transformed into a prior probability over the
space of theories. The partial theory consists of: (1) a total ordering
≺ on variables, such that if node y is in the set of parents of node x
then y ≺ x in the relation set; (2) a full specification of beliefs for each
edge in the directed graph, measured in units of subjective probabil-
ity. The joint prior distribution conditioned on the total ordering of
variables is defined by assuming the independence of parents sets. The
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joint prior probability distribution is factorized as:

p(Bs |≺, ξ) =
n∏

i=1

p(πi |≺, ξ) (2)

By expanding the generic term p(πi |≺, ξ), we have:

p(πi |≺, ξ) =
∏
y∈πi

p (y → xi |≺, ξ) ·

∏
y/∈πi

(1− p(y → xi |≺, ξ)

 (3)

In the approach proposed by Heckerman, [6], the expert builds a
complete a-priori network, Bsc, (s for structure and c for complete),
and the conditional probability of the next case to be seen (observation
on a statistical unit) is defined. The joint probability distribution
on the domain U of random variables is obtained at this purpose,
p(U | Bsc, ξ), where Bsc is the complete network. Informative prior
distributions for model parameters are built in a peculiar way to obtain
the so called Bayesian Dirichlet Equivalent metric (BDe metric).

The prior distribution on BN structures is independent from the
prior network, Bsc, but, in their approach, structures closely resembling
to the prior network receive a high prior probability, otherwise they are
penalized. The number of nodes in the symmetric difference of πi(Bs)
and πi(Bsc) is:

δi = |{πi(Bs) ∪ πi(Bsc))} \ {πi(Bs) ∩ πi(Bsc)}| (4)

It follows that the number of different arcs δ between the prior network
Bsc and a network Bs is δ =

∑n
i=1 δi. By introducing the constant

0 ≤ k ≤ 1, the prior distribution penalizing networks not much close
to the a-priori network is

p(Bs | ξ,Bsc) = c · kδ (5)

where c is a normalization constant.

4 From prior information to score func-

tions

The specification of a complete prior network with beliefs over all pos-
sible edges is quite infeasible for large networks. The elicitation of
expert’s prior information element-by-element is performed through
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the assignment of (subjective) probability values to all possible arrows
of a Bayesian Network, as in [4], but it becomes very difficult due to
the superexponential cardinality of the space of structures for an in-
creasing number of nodes. In large networks, a coherent and complete
specification of a prior distribution on the space of networks [6] seems
very difficult.

In this section a score function, Sprior(Bs), mirroring prior beliefs is
defined to drive score-and-search algorithms for structural learning. It
requires far less elicitation of prior beliefs from the expert than [4, 6].

Expert’s prior information on a large problem domain may be
strong but partial, for example it may deal with the orientation of
some edges over hundreds (thousands), or with global network traits
like the size of the graph. In gene expression analysis, for example, a
small degree of graph connectivity is a priori expected and substantial
knowledge may regard the partial order of ten against thousands genes.
In order to fully exploit the a-priori structural information both local
and global features have to be taken into account. In our approach the
expert is expected to express: (1) beliefs over some, but not all, possi-
ble edges of the network; (2) beliefs over some features of the network
topology, like the expected number of node parents or the degree of
network connectivity.

Given these assumptions, we propose to elicit the a-priori belief on
the structure of a candidate network Bs by a score function Sprior(Bs)
capturing local and global network features. The score component
Sδ

p(Bs) refers to edges elicited one at a time. The second score com-
ponent, Sτ

p (Bs), describes global network features, related to DAG
connectivity.

4.1 Encoding local features

The score component Sδ
p(Bs) encodes expert’s belief on the presence

of oriented edges, each one marginally considered.
DAG’s structure is specified by the subset E ⊂ V ×V . We conven-

tionally indicate a pair of nodes (vi, vj) in the canonical order i < j,
and we use deponent i · j to refer to the edge between nodes vi and vj.
A structure is more parsimoniously represented by a collection M of
F ≤ n(n− 1)/2 variables M = {m1, . . . mf , . . . ,mF} each one taking
values on χ = {−1, 0, 1} for each pair of nodes (vi, vj), i < j, in V .
Values in the range χ respectively indicate: an arrow i← j, no arrow,
an arrow i → j. Expert’s belief takes the form of a set of probability
distributions {p(xmf

| ξ) : mf ∈M}.
The distributions are now coded as vectors of probability values
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P T
i·j = (pi·j,−1, pi·j,0, pi·j,+1) so that 1T Pi·j = 1. Connectivity vectors

Ci·j are introduced to indicate the value taken by variables. It follows
that 1T Ci·j = 1. The probability value associated to the oriented edge
for a pair i · j is CT

i·jPi·j.
The above construction leads to the specification of a probability

distribution on the set of directed graphs GDG in which the candidate
directed graph BD has a prior probability value equal to:

P (BD | ξ) =
∏
{i·j}

CT
i·jPi·j

The above factorization refers to our prior judgment about the ex-
istence of a causal link between vi and vj without considering other
nodes.

The space of DAGs is contained in the space of Directed Graphs,
GD ⊆ GDG, therefore the above construction also induces a probability
distribution over DAGs contained in the space of directed graphs, Bs ∈
GDG :

P (Bs | ξ) ∝ IDAG(Bs) ·
∏
{i·j}

CT
i·jPi·j (6)

with IDAG(Bs) taking value one if Bs is a DAG, zero otherwise. The
proportionally is due to an omitted constant depending on directed
graphs which are not DAGs because of cycles. We remark that there
is no difficulty in calculating the value of the normalization constant
but the huge cardinality of spaces may be unworkable.

We define the score Sδ(Bs) of a candidate Bayesian Networks using
(6):

Sδ(Bs) = log

(
P (Bs)

P ({∅})

)
(7)

with P ({∅}) the probability assigned to the Bayesian Network in which
E is empty (graphs without edges). By straightforward algebra it may
be shown that the computation of the normalization constant c is not
needed in order to search in the space of networks, (Appendix 1). If
the expert’s belief leaves some edges unspecified, than the elicitation
is completed using uniform distributions.

A remarkable property of the score Sδ(Bs) in equation 7 regards the
possibility of calculating scores by just considering the pair of nodes
for which the expert defined a distribution:

Sδ(Bs) = log

(
P (Bs)

P ({∅})

)
= log

(∏
f p(xBs

mf
)∏

f p(x
{∅}
mf )

)
(8)
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(see Appendix 2 for details).
It follows that the number of operations to calculate Sδ(Bs) is equal

to 2 · F + 2.

4.2 Encoding global features

Partial prior beliefs on network topology may take the form of an
expected degree of connectivity, for example if the expert has clues
about the expected number of parents/children per node. In gene
expression analysis, the regulation of one gene is expected to depend
on few other genes, although cases of regulation over many different
metabolic pathways are known. The score component Sτ

p (Bs) captures
this class of beliefs about the topology of a candidate network.

In a constructional approach the topology of a n-nodes network Bs

is encoded into a n × n connectivity matrix Cs, [15], whose element
i, j is one iff vi ∈ pa(vj), zero otherwise. Matrix Cs is one-to-one with
E, therefore it contains the whole structural information. Variables
xgf

(Bs), f = 1, 2, . . . are built to capture global network features like:
the mean cardinality of parent sets, the DAG size, the number of v-
structures appearing on a directed path, the size of a directed path dp
ending into a node which belongs to the maximal directed path dpmax.

We consider here variables {xg1 , . . . , xgn} defined to count the num-
ber of parents for each vi ∈ V :

xgi
=
∑

j

Ci,j =
∑
vi∈V

| pa(vi) | (9)

Further variables xgn+1 , . . . , xg2n count the number of children in chvi

for each vi ∈ V :

xgn+i
=
∑

i

Ci,j =
∑
vi∈V

| ch(vi) | (10)

The approach adopted here to depict prior beliefs about network
topology is based on a reference distribution Qpa representing ex-
pert’s belief about the fraction of total nodes bearing a given num-
ber of parents, (0, 1, . . .) and on the distribution Ppa,s of relative fre-
quencies calculated on the candidate network. The support of Ppa is
χ = {0, 1, 2, . . . , n − 1}. Whenever the elicitation of the probability
distribution on the canonical sample space of the auxiliary variable
xgf

is beyond expert’s ability, a partitioning of χ into a coarser grid of
values is performed before elicitation.

The distribution Ppa,s is compared to Qpa and the degree of dissim-
ilarity enters in the score function. The Kullback-Leibler divergence
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is here adopted to assess the degree of dissimilarity among the above
distributions:

KL(Ppa‖Qpa) =
∑

x

Ppa(x)log

(
Ppa(x)

Qpa(x)

)
(11)

Note that the Kullback-Leiber divergence is not symmetrical and is
equal to 0 if and only if Qpa ≡ Ppa. A small value of KL distance
means that the candidate network has a structure close to the a-priori
belief as regards the connectivity.

The score component Sτ (Bs) is defined as a function of the Kullback-
Leibler divergence:

Sτ (Bs) = (−KL(Ppa‖Qpa)) (12)

Given Ppa and Qpa and being j the number of elements in the
partition, the computation of Sτ (Bs) takes 3 · j + 1 operations.

4.3 Score function and calibration

Given the quantities in equations 8 and 12, the proposed score function
is a convex combination of two other functions:

Sprior(Bs) = αSδ
p(Bs) + (1− α)Sτ

p (Bs) (13)

with 0 ≤ α ≤ 1. By substitution, we have:

Sprior(Bs) = α log

(
P (Bs)

P ({∅})

)
+ (1− α) (−KL(Ppa‖Qpa)) (14)

The role of α is to balance the strength of the components due to edge
orientation and the strength due to network topology. A value α = 1
is suited to the lack of specific prior beliefs on network topology.

The most a-priori probable structure is the structure that max-
imizes (14). The logarithmic score is convenient for computational
reasons:

Sprior(Bs) = log

[(
P (Bs)

P ({∅})

)α

· e(1−α)(−KL(Ppa‖Qpa))

]
(15)

The numerical behavior of Sprior(Bs) under two different parameter
values is shown in Figures 1 and 2.
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Figure 1: The score prior function Sprior(Bs) for α = 0.2.

Figure 2: The score function Sprior(Bs) for α = 0.5.
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5 The P-metric

Structural learning of BNs may be performed using the score function
(14) in a Bayesian-inspired metric, called P-metric, which mixes prior
beliefs and experimental information following [6]. The BDe metric
is peculiar in assigning the same likelihood value to structures which
are likelihood equivalent, i.e. DAGs encoding the same assertions on
conditional independence relations. The equivalence is obtained by
estimating the parameters through a prior procedure in which Dirichlet
hyperparameters are defined using the notion of equivalent sample size.

The BDe function defined in [6] may be used both in causal and
acausal networks. In order to work with acausal networks, the score
equivalence condition must be fulfilled. Nevertheless, a prior equiva-
lent score is needed to obtain a score equivalent metric. Neither the
prior function proposed in [6] nor Sp(Bs) are prior equivalent functions,
therefore the proposed P-metric can be only used for causal Bayesian
networks.

Using the BDe function, the P-metric inherits all the assumptions
described in [6]: (1) the database of cases D is a multinomial sample
from a Bayesian Network with parameters θ; (2) missing data are not
allowed; (3) the structure Bs defines the number of CPTs needed,
each CPT with its own parameter θ; (4) parameters for each CPT are
independent; (5) given two networks B1 and B2 with p(B1 | ξ) > 0
and p(B2 | ξ) > 0, if they are equivalent, then they have the same
likelihood value; as shown in [6], these five assumptions imply that the
prior distribution over parameters of each CPT is Dirichlet [8].

We propose the P-metric below to assess the score of a candidate
structure Bs, given a complete database of cases D:

SP-metric(Bs) = Sp(Bs)
βz · PBDe(D | Bs, θ) (16)

that may be rewritten as:

log (SP-metric(Bs)) = βz · log(Sp(Bs)) + llBDe(D | Bs, θ) (17)

The role of the parameter βz is to calibrate the strength of the prior
score with respect to the likelihood function. The value of βz depends
on the size of the problem domain and on the sample size of cases as
well as on the elicited belief. Even if heuristics to set βz are still under
investigation, here we propose to set βz as a function of the score prior
and the likelihood computed for the empty structure:

βz = z · llBDe(D | {∅}, θ)
log (Sp({∅}))
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with 0 ≤ z ≤ 1. Clearly when z = 0 then βz = 0 and the P-metric is
equal to the BDe metric when uniform prior distribution over struc-
tures is assumed.

The P-metric makes easy to quantify beliefs taking the form of
both global network features and (marginal) causal assertions on pairs
of variables. The joint use of the score prior Sp(Bs) and of the BDe
likelihood enables the detection of score differences in causally distinct
structures, even if they would be collapsed into the same equivalence
class by using a uniform prior distribution over structures. As shown
in section 3, although several methods are available to define prior
distributions on structures, [4, 6], Sp(Bs) makes the elicitation easy
even in large networks.

Numerical explorations on benchmark case studies suggest that the
P-metric is a valuable tool for large and structured domains, like gene
expression studies. Note that the proposed approach is one step beyond
the use of hard constraints, which may cause a loss of information and
even biased elicitation.

6 Results

We implement the P-metric on top of package DEAL, [3], coded in
the R environment, [13]. DEAL is a software package which includes
several methods for analyzing data using Bayesian Networks and con-
ditionally Gaussian networks (CG-BNs), [2]. We numerically investi-
gated the proposed metric by means of two benchmark datasets which
are often referred to in the machine learning literature. One is the
famous ASIA network, proposed by [16] and the other is a subnet-
work from the Hepatic Glucose Homeostasis network proposed by [17].
These are two discrete networks, which handle respectively 8 and 20
variables. We run the learning algorithm over three different sample
of: 500, 1500, 3000 observations and we test the P-metric for different
combinations of parameters z ∈ βz and α.

6.1 The ASIA network

Asia is a small fictitious Bayesian network, [16], to calculate the prob-
ability of a patient having tuberculosis, lung cancer or bronchitis given
values taken by some other variables, like visit-to-Asia which is one
if the patient recently visited Asia. All variables in this network are
binary. The ASIA network is implemented in the software HUGIN,
[1], which is also used to generate the database of cases. The problem
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P (A→ [S, L, X]) = 0.01 P ([all]→ A) = 0.01
P (S → [B, L]) = 0.6 P (S · · · [E, X]) = 0.98

P (B → D) = 0.6 P (B → [L, X]) = 0.01
P (D → [E, L, T, X]) = 0.01 P (X → [L, T, D]) = 0.01

P ([L, T ]→ E) = 0.98 P (E → S) = 0.01

Table 1: Expert’s domain for the ASIA network.

domain is here quite rich: shortness-of-breath, dyspnoea (D), may be
due to different factors, i.e. tuberculosis (T), lung cancer (L), bronchitis
(B). Then a recent visit to Asia, (A), increases the risk of tuberculosis,
while smoking, (S), is known to be a risk factor for both lung cancer
and bronchitis. Results of a single chest X-ray, (X), do not discrim-
inate between lung cancer and tuberculosis, (E), as neither does the
presence or absence of dyspnoea.

The above prior information is supposed to be partially quantified
by experts as listed in the expert domain of Table 1.

In the adopted expert domain, the node ”Visiting Asia” (A) is
defined as root and is not reputed to change Smoking habits; Lung
Cancer and X-ray, as well as Smoking, are believed to have an effect
on Bronchitis and Lung Cancer. Bronchitis (B) is supposed to have
an effect on Dyspnoea (D) and no effect on Lung Cancer and X-ray.
Dyspnoea (D) is believed to have no effect on variables E,L,T,X; X
can not provoke Lung Cancer, Tuberculoses and Dyspnoea. Variables
L and T have an effect on E by construction; E does not have any
effect on Smoking. As regards the network topology, we believe that
80% of network nodes has at most one parent.

We repeated the learning process under three different sample sizes,
respectively of 500, 1500 and 3000 cases. We also evaluated the algo-
rithm’s behavior with different combinations of parameter values for z
and α. The comparison among the actual network and those learned
by means of the P-metric and the DEAL score has been performed
in terms of number of correctly/incorrectly learned arcs. Results of
the learned network using the BDe metric implemented in DEAL are
shown on Table 2, furthermore results of the performance of the P-
metric are shown in Tables 7,8,9. The P-metric seems to improve the
overall performance of the BDe metric implemented in DEAL. In all
the samples, the best network found by the P-metric correctly identi-
fies all the arcs of the ASIA networks and one incorrect arc is added;
in the best case with DEAL, just two arcs are correctly identified, six
arcs are identified but with wrong orientation, and nineteen incorrect
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sample Tot. Arcs Cor.Arc Wr.Dir. I.Ad. I.Mis.
500 27 2/8 6 19 0
1500 26 1/8 7 18 0
3000 26 1/8 7 18 0

Table 2: The ASIA network, [16], learned by DEAL.

arcs are added.
Results about the calibrating parameters suggest that by increasing

the sample size the best network is obtained even with smaller values
of z. Small values of α seems to improve the overall performance of
the search.

6.2 The Hepatic Glucose Homeostasis network: A
case study in functional genomics

We test the P-metric with the Hepatic Glucose Homeostasis network
(HGH) in [17]. The HGH depicts a model for the genetic network con-
trolling glucose metabolism in perinatal hepatocytes, where specific
focus is placed on the effects of insuline, glucagon and glucocorticoid
hormones. In addition, several transcription factors known to be im-
portant in controlling the expression of key genes are also thoroughly
incorporated in the model. The interactions between the hormones
signaling pathways and liver-specific transcription factors define the
genetic network that controls the expression of genes maintaining glu-
cose homeostasis in the liver. Each gene is here modelled as a node,
for a total of 35 nodes in the network. In the original HGH network a
directed edge from a parent node to a child is added into the network
when a published resource indicates that the parent gene has a direct
effect on the transcription process of the child gene. In the HGH net-
work a total of 52 modelled regulatory interactions are added. In [17],
the data are randomly generated using the HGH network, as it would
be obtained from experiments involving microarrays.

In order to re-construct the HGH genetic network using the pro-
posed P-metric, we considered a sparse structure in which the cardi-
nality of pa(vi) is small for each vi ∈ V .

For computational reasons we consider here a reduced version of the
HGH network composed by 20 genes and 33 regulatory interactions.
Prior information take the from of a partial order among few variables
and high structural sparsity.

Formally, we assume that insuline, glucagon and glucocorticoid hor-
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sample Tot. Arcs Cor.Arc Wr.Dir. I.Ad. I.Mis.
500∗ 48 1/33 18 29 14

1500∗∗ 38 1/33 18 19 14
3000∗∗∗ 19 0/33 7 12 26

Table 3: The HGH network, [17], learned by DEAL (out of memory
error invoked after 49(*),40(**) and 19(***) iterations).

mones, (respectively IPA, CPA and GPA) precede AC3, G6P, IP1,
TAT, PEP, G6T, IP1 and that the 80% of nodes have less than 2
incoming arrows.

The adoption of a simplified version of the HGH network is jus-
tified by the computational problems arisen with the R environment,
[13]. The hardware running R is an IBM e-Server Type 325 8835-51X,
a dual processors computer equipped with 2xAMD Opteron 2.0GHz
(1MB L2 Cache) with 5giga RAMs and the operative system is Red
Hat Enterpriser Linux AS Ver.4. Two reasons forced towards the re-
duction of the original network: first of all, the way in which R manages
multidimensional arrays and the way in which networks are coded by
DEAL, which limits the number of nodes up to 27. Secondarily, the
way DEAL and R manage memory, which cause ”Out of memory”
messages during the learning process. Running the learning process
under the DEAL package, without implementing the P-metric, the out
of memory error appeared after few iterations using 27 variables. We
reduced the number of variables to 20 and the sample size was limited
to 3000 cases. Despite the above limitations, we were able to test the
P -metric.

We tested the P-metric with 3 different samples of cardinality 500,
150 and 3000 using different combinations of parameters z and α. Here
data were generated using the software HUGIN, [1], as well as in [17]
data were simulated using BNet toolbox,[18]. Results were compared
to those from the BDe metric implemented in DEAL, where a uniform
distribution over structures is assumed.

Results of the learned process under the BDe implemented in DEAL
are shown on Table 3. Even if the search of the best BN using DEAL
is stopped after almost 50 iterations due to the ”Out of Memory”
message, it is clear that our metric performed quite well. The use
of prior information indeed improved the performance of structural
learning. The small number of correct arcs found by DEAL in the
best case is probably due to the imaginary sample size that here was
automatically set high according to the large number of variables in
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sample = 500
z α Tot. Arcs Cor.Arc Wr.Dir. I.Ad. I.Mis.

0.05 0.2 37 23/33 1 13 9
0.05 0.5 50 23/33 1 26 9
0.05 0.8 50 25/33 1 24 7
0.10 0.2 37 23/33 1 13 9
0.10 0.5 37 23/33 1 13 9
0.10 0.8 37 23/33 1 13 9
0.20 0.2 37 23/33 1 13 9
0.20 0.5 37 23/33 1 13 9
0.20 0.8 37 23/33 1 13 9
0.50 0.2 37 23/33 1 13 9
0.50 0.5 37 23/33 1 13 9
0.50 0.8 37 23/33 1 13 9

Table 4: The HGH network, [17], learned by the P-metric and a sample
of size 500.

sample = 1500
z α Tot. Arcs Cor.Arc Wr.Dir. I.Ad. I.Mis.

0.05 0.2 41 22/33 1 18 10
0.05 0.5 45 22/33 1 22 10
0.05 0.8 40 19/33 1 20 13
0.10 0.2 39 23/33 1 15 9
0.10 0.5 40 21/33 1 18 11
0.10 0.8 40 19/33 1 20 13
0.20 0.2 39 23/33 1 15 9
0.20 0.5 39 23/33 1 15 9
0.20 0.8 40 23/33 1 16 9
0.50 0.2 39 23/33 1 15 9
0.50 0.5 39 23/33 1 15 9
0.50 0.8 39 23/33 1 15 9

Table 5: The HGH network, [17], learned by P-metric and a sample
size equal to 1500 observations.
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sample = 3000
z α Tot. Arcs Cor.Arc Wr.Dir. I.Ad. I.Mis.

0.05 0.2 37 23/33 1 11 9
0.05 0.5 37 21/33 1 13 11
0.05 0.8 35 19/33 1 15 13
0.10 0.2 35 23/33 1 11 9
0.10 0.5 35 23/33 1 11 9
0.10 0.8 35 23/33 1 11 9
0.20 0.2 35 23/33 1 11 9
0.20 0.5 35 23/33 1 11 9
0.20 0.8 35 23/33 1 11 9
0.50 0.2 35 23/33 1 11 9
0.50 0.5 35 23/33 1 11 9
0.50 0.8 35 23/33 1 11 9

Table 6: The HGH network, [17], learned by P-metric with a sample
size of 3000 observations.

the network.
This problem may cause an almost constant BDe score even for

quite different networks. Unfortunately the use of larger samples of
cases was infeasible due to the computational burden. The original
HGH network and the learned network are shown in Figures 6 and 7.

7 Conclusion

In this paper we defined a new quasi-bayesian score function, called
P -metric, to score networks representing causal relations among vari-
ables. The metric component dealing with structural information takes
account of marginal causal beliefs on arcs and global network features
without requiring the elicitation of a complete network, [4, 11]. The
second component is based on the BDe metric, thus it exploits its
peculiarities well known in the literature.

The BDe metric does not distinguish structures entailing the same
conditional independence assertions, but our score function makes pos-
sible to discriminate structures belonging to the same likelihood equiv-
alence class at the price of loosing score equivalence property: the
P-metric is suited to learn causal networks, [11].

The P-metric has been tested under two different Machine Learn-
ing benchmark datasets and compared against the metric implemented
in the DEAL package. Successful numerical findings suggest that the
P -metric could be very useful in large problem domains with asso-
ciated substantial and partial information. Unfortunately, computa-
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tional constraints forbade wide numerical testing in large networks
using the R environment. Further code improvement is needed, es-
pecially an implementation under C++ or Java, in order to perform
extensive numerical testings including the analysis of calibration para-
meters with large networks.
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Table 7: The ASIA network, [16], learned by the P-metric with a
sample size of 500 observations.
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Table 8: The ASIA network, [16], learned by the P-metric with a
sample size of 1500 observations.
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Table 9: The ASIA network, [16], learned by the P-metric with a
sample size of 3000 observations.
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Appendix 1
In this note we show that the computation of the normalization con-
stant c is not needed to use the proposed score function. Let PGD

(Bs)
be the probability distribution over DAGs and PGDG

(Bs) be the prob-
ability distribution over Digraphs . By straightforward algebra, we
have:

Sδ(Bs) = log

(
PGD

(Bs)

PGD
({∅})

)
= log (PGD

(Bs))− log (PGD
({∅})) =

= log (cPGDG
(Bs))− log (cPGDG

({∅})) =

= log(c) + log (PGDG
(Bs))− log(c)− log (PGDG

({∅})) =

= log

(
PGDG

(Bs)

PGDG
({∅})

)
= log

(∏Bs CT
i·jPi·j∏{∅} CT
i·jPi·j

)
where

∏Bs CT
i·jPi·j and

∏{∅} CT
i·jPi·j refer to factorization of the prior

judgment respectively over the candidate network Bs and to the empty
structure.

Appendix 2
The score computation may be limited to pairs of nodes for which
the expert explicitly defined a probability distribution.. Let F be the
number of pairs of nodes for which the belief has been elicited by the
assignment of a distribution {p(xmf

| ξ) : f = 1, . . . , F} and let k be
the constant values assigned to the F − n(n− 1)/2 cases for which no
belief has been elicited. For any given structure Bs we have:

P (Bs) =
∏

CT
i·jPi·j =

∏
{i·j}∈F

p(xmf
) ·

∏
{i·j}/∈F

k

and by straightforward algebra we have:

Sδ(Bs) = log

(
P (Bs)

P ({∅})

)
= log

(∏
{i·j}∈F p(xBs

mf
) ·
∏

{i·j}/∈F k∏
{i·j}∈F p(x

{∅}
mf ) ·

∏
{i·j}/∈F k

)
=

= log

(∏
{i·j}∈F p(xBs

mf
)∏

{i·j}∈F p(x
{∅}
mf )

)
with constants k cancelled out.

25



Figure 3: The ASIA network, [16].

Figure 4: ASIA network learned by the P-metric with sample=500 and
parameters z = 0.2 and α = 0.5.

Figure 5: The ASIA network learned with DEAL.
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Figure 6: The HGH network learned by the P-metric with parameters
z = 0.5 and α = 0.5.
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Figure 7: The original HGH network, [17].
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