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ABSTRACT 

 

 

We study the impact of seasonal adjustment on the properties of business cycle expansion and 

recession regimes using analytical, simulation and empirical methods. Analytically, we show 

that the X-11 adjustment filter both reduces the magnitude of change at turning points and 

reduces the depth of recessions, with specific effects depending on the length of the recession. 

A simulation analysis using Markov switching models confirms these properties, with 

particularly undesirable effects in delaying the recognition of the end of a recession. 

However, seasonal adjustment can have desirable properties in clarifying the true regime 

when this is well underway. The empirical findings, based on four coincident US business 

cycle indicators, reinforce the analytical and simulation results by showing that seasonal 

adjustment leads to the identification of longer and shallower recessions than obtained using 

unadjusted data. 
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1. Introduction 

The analysis of business cycle regimes has been a focus of interest for economists for many 

decades, dating back at least to the seminal work of Burns and Mitchell (1946). The essential 

implication of this stream of research is that expansions and recessions have distinct 

characteristics, which was interpreted by Hamilton (1989) in terms of a Markov-switching 

model with regime-dependent mean growth rates. A huge literature has subsequently 

developed, studying the nonlinear aspects of business cycle fluctuations in key indicators 

such as gross domestic product (GDP) and industrial production. Almost without exception, 

however, empirical studies of the business cycle employ data after seasonal adjustment.  

Nevertheless, links between seasonality and the business cycle have not been ignored, 

with a number of studies showing that the seasonal patterns in important variables change 

with the stage of the business cycle (Canova and Ghysels, 1994, Cecchetti and Kashyap, 

1996, Krane and Wascher, 1999, Matas-Mir and Osborn, 2004a, Osborn and Matas-Mir, 

2003). One implication is that the use of seasonally adjusted data discards information 

relevant to the business cycle. More seriously, however, it also implies that the use of 

seasonally adjusted data may distort business cycle inferences. Perhaps surprisingly, despite a 

large literature on many aspects of seasonal adjustment, its impact on the properties of 

business cycle expansion and recession regimes appears to have been almost entirely 

overlooked.  

 Although there is now substantial evidence that nonlinearity is needed to capture the 

(nonseasonal) features of the business cycle (see, for example, Galvão, 2002 or Morley and 

Piger, 2005), it is unclear whether conventional seasonal adjustment aids or detracts from 

such analyses. This is an important question, because most macroeconomic policymakers and 

commentators in the US and other countries rely on official seasonally adjusted data, so that 

their views of business cycle expansions and recessions might be distorted, or perhaps 
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clarified, by the routine use of seasonal adjustment1. We are aware of only two papers 

relevant to this issue. In a simulation and empirical study in a Markov-switching framework, 

Franses and Paap (1999) find that seasonal adjustment reduces the estimated probabilities of 

regime switches, while the empirical analysis of US GDP conducted by Luginbuhl and de 

Vos (2003) finds seasonal adjustment to result in longer and shallower estimated recessions. 

However, the generality of these results remains an open issue.  

This paper examines the impact of seasonal adjustment on the estimated 

characteristics of business cycle regimes, focusing particularly on recessions. We complement 

and extend previous analyses by studying the impact of adjustment on business cycle phases 

from an analytical perspective, which produces the novel finding that the effect of adjustment 

depends on the length of the regime. In the simulation analysis that follows, we consider 

whether adjustment distorts the detection of business cycle regimes and the extent to which 

the regime-dependent mean growth rate is affected. To assess the empirical validity of these 

findings, we analyse the properties of estimated regimes in quarterly GDP, industrial 

production, employment and sales data for the US. 

We primarily focus on the widely-used linear version of the X-11 seasonal adjustment 

program of the US Bureau of the Census, which remains the core of the Census X-12-ARIMA 

program (Findley et al., 1998). We make no assumptions about seasonality changing over the 

business cycle, but focus on the implications of adjustment for the detection and properties of 

regimes. Quarterly data are assumed throughout, since this is the frequency typically 

employed when modelling business cycle regimes. 

The plan of the paper is as follows. Section 2 examines the effect of adjustment on 

recession characteristics in the context of a simple regime-dependent model with known 

                                                 
1 Christiano and Todd (2002) claim that a simple model of seasonality independent of the business cycle can 
capture key characteristics of the short-run dynamic relationships between observed US macroeconomic time 
series. However, their conclusions are based on a linear model and may not extend to a nonlinear regime-
dependent business cycle model. 

 4



turning point dates. Subsequently nonlinear Markov switching models are applied to 

simulated data (Section 3), with both known and stochastic regimes, and considering a range 

of plausible values for the regime means. The empirical analysis in Section 4 verifies earlier 

findings through a comparison of the implications of models estimated using unadjusted and 

official seasonally adjusted data. Conclusions (Section 5) complete the paper. 

 

 

2. Seasonal Adjustment Filters and Regimes 

After some general points about the X-11 filter, Subsection 2.2 contains our analysis of the 

effect of the filter in a simple regime-dependent model.  

 

2.1 The X-11 Filter 

Many statistical agencies across the world base seasonal adjustment on procedures developed 

within the US Bureau of the Census, specifically the X-11 program.  The X-11 filters are also 

incorporated into statistical software programs, allowing other users ready access to them. 

Although now further developed as X-12-ARIMA, the adjustment filters of X-11 remain the 

essence of this new program (see Findley et al., 1998, or Ghysels and Osborn, 2001, Chapter 

5). Due to their widespread use, we concentrate our analysis on the X-11 filters, whose 

properties and implications have been studied by many authors, including Bell and Hillmer 

(1984), Burridge and Wallis (1984), Franses and Paap (1999), Ghysels and Perron (1993, 

1996), Sims (1974) and Wallis (1974).  

 As discussed in a number of studies, including Ghysels and Osborn (2001, Chapter 4), 

seasonal adjustment involves the application of a sequence of moving average filters. 

Therefore, denoting the original observed time series as yt, the seasonally adjusted (or 

filtered) series yt
SA is obtained as 
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   yt
SA = ν(L) yt        (1) 

where, when applied to historical data, X-11 can be well approximated2 by a symmetric two-

sided linear moving average filter 

  ∑
−=

=
m

mi

i
i LL νν )( .       (2) 

The coefficients νi sum to unity over leads/lags mmi ,,0,, KK−= , with specific values for 

quarterly series given in Laroque (1977) and Ghysels and Perron (1993), with the latter also 

presenting those for the monthly case. Although often referred to as “weights”, it should be 

noted that some filter coefficients in (2), especially at seasonal lags, are negative. 

Nevertheless, the smoothing involved in this filter at nonseasonal lags is not trivial; for 

example, the coefficients for the quarterly case imply positive weights of 5.5 and 3.4 percent, 

respectively, for observations five and six quarters away from observation t in both directions.  

The two-sided filter (2) cannot be used to seasonally adjust the most recent 

observations, since it then requires unknown future values3. This problem is solved in X-12-

ARIMA, as well as in X-11-ARIMA used by Statistics Canada (Dagum, 1980), by employing 

an ARIMA (autoregressive integrated moving average) model to generate forecasts of the 

required future values, with the two-sided filter then applied; see Findley et al. (1998). 

Therefore, the two-sided filter of (2) plays a fundamental role in X-11 seasonal adjustment for 

both concurrent and historical data. 

                                                 
2 Various options are available in both X-11 and X-12-ARIMA to deal with outliers, additive versus 
multiplicative adjustment, etc, which make the filter nonlinear; see Ghysels, Granger and Siklos (1996). 
Although nonlinearities introduced by seasonal adjustment are potentially important, our focus is on the impact 
of the linear filtering which is the core of seasonal adjustment. 
3 The Monte Carlo analysis in an early version of this paper, Matas-Mir and Osborn (2004b), also analysed the 
implications of the one-sided X-11 filter. 
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2.2 Seasonal Adjustment of Regimes 

A simple regime-dependent business cycle model is given by 

ttdt xsy ++= µµ0        (3) 

where st is a binary regime indicator, µ0 is the mean of yt in the regime when st = 0, µd is the 

difference between the means in regimes st = 1 and st = 0; the properties of the zero-mean 

series xt (which may be seasonal) are, for convenience, assumed to be invariant over regimes. 

With the usual convention µd > 0, st = 1, 0 can be interpreted as relating to expansions and 

recessions, respectively.  

 To focus on a single recession episode, consider the sequence 

⎪
⎩

⎪
⎨

⎧

+=
−+=

−−=
=

...,1,1
1...,,1,0

1,2...,1

CC

CBB

BB

t

TTt
TTTt

TTt
s      (4) 

Since recessions are typically of relatively short duration, the filter of (2) applied at the points 

t = TB and t = TC (immediately subsequent to a peak and trough, respectively) may have a 

substantial overlap. A single switch between business cycle regimes can be regarded as a 

structural break, for which Ghysels and Perron (1996) examine the effect of seasonal 

adjustment. In such a context, (4) can be interpreted as a reversed structural break. However, 

the overlap of the adjustment filters applied t = TB and t = TC implies that the effect of 

adjustment on the regime indicator (4) before, during and subsequent to recessions may differ 

from the effects implied by two distinct (and distant) regime switches4.  

 Since the weights in (2) sum to unity, seasonal adjustment of (3) yields  

SA
t

SA
td

SA
t xsy ++= µµ0       (5) 

where xt
SA retains its zero mean property. Of principal interest for our analysis, the regime 

indicator st is transformed in (5) to become 
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t
SA
t sLvs )(=         (6) 

which is no longer binary. This immediately suggests that, compared with (3), seasonal 

adjustment leads to a blurring of the distinction between regimes. 

 Given the timing of the regime switches as defined in (4), together with the properties 

of the seasonal adjustment filter (specifically symmetry and unit sum for the weights), it is 

relatively straightforward to show that (see Appendix 1) 

     (7) 
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when we assume that TC < TB + m, so that the second regime-switch at TC occurs within the 

period where the filtered values are affected by the initial switch at TB. Since m = 28 for the 

quarterly X-11 filter, this is a realistic assumption in the context of a recession.  

 Figure 1 plots the values given by (7) for the two-sided linear quarterly X-11 filter for 

cases where TC = TB + k for k = 2, 3, 4, 5, corresponding to recession durations between two 

and five quarters. The vertical scale sets TB = 0, with the interpretation that periods are 

considered in relation to the start of a recession. As implied by (7), the transformed state 

variable is symmetrical around the recession. 

 Except for the case when the recession lasts exactly one year, seasonal adjustment 

leads to substantial distortion. Considering first this one-year special case, Ghysels and Perron 

                                                                                                                                                         
4 The relatively long duration of expansions implies that the filters applied at the trough and subsequent peak 
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(1993) show that the strong seasonal pattern in the filter weights of X-11 result in an annual 

cycle of distortions when a single structural break occurs. However, when this structural 

break is reversed after one year, the two annual cycles of distortions effectively cancel out, so 

that seasonal adjustment then has little impact on either turning point detection or on the 

magnitude of the intermediate regime.  

 A number of features are common to the other cases examined, when the recession 

regime has a duration of two, three or five quarters. Firstly, seasonal adjustment reduces the 

magnitude of the shift in mean between regimes, so that the depth of recessions is reduced. 

This is most marked when the duration is two quarters, when st
SA ≈ 0.1 during the recession, 

instead of the true value of zero. Interpreted in terms of (3), this implies a reduction of around 

10 percent in the mean shift, so that a recession of six months duration appears shallower after 

seasonal adjustment than actually the case. Interestingly, when the duration is five quarters, 

the regime shift is enhanced for the central three quarters of this regime, but nevertheless is 

reduced on average over the five quarters by around 3 percent. Since the filter weights sum to 

unity, any reduction (on average) of the recession depth implies a decrease in the average 

value in expansions. However, as expansions are generally of relatively long duration, this 

effect will generally be negligible.  

 Secondly, the magnitude of the regime change is reduced at the actual turning points. 

More specifically, Figure 1 implies a reduction of the step change by approximately 20 

percent for all three relevant durations. This effect is a mixture of the reduction in the value of 

the regime indicator for the last period of an expansion and the “leakage” of expansion 

indicator values into the first seasonally adjusted recession value. A symmetrical effect also 

occurs at the end of the recession. While the two constituent parts differ for different regime 

                                                                                                                                                         
will typically not overlap. 
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durations, the total effect remains effectively constant for the cases considered (except, of 

course, for the special case of a one year duration, already discussed).  

 The third noteworthy feature is the distortion of the regime indicator for expansion 

observations shortly before and after recessions. In particular, this follows a marked seasonal 

pattern. Indeed, the pattern of increase followed by decrease shown in Figure 1 four and five 

quarters after the end of a recession (except for the case k = 4) gives spurious indication of a 

business cycle peak and a return to the recession regime.  

 These effects occur because X-11 implicitly assumes evolving seasonality. When a 

regime shift (or structural break) occurs, the filter is unable to distinguish fully between 

changing seasonality and the nonseasonal break, and hence it effectively allocates part of the 

regime change to a change in the seasonal pattern, as illustrated in Figure 1.  

 In summary, seasonal adjustment by X-11 reduces the average depth of recessions and 

marginally decreases average gowth during expansions, makes the detection of business cycle 

turning points more difficult by reducing the magnitude of the regime change when it occurs, 

and introduces spurious evidence of business cycle turning points one and two years before 

and after a recession. In combination, these effects may reinforce each other. For example, the 

combination of the reduction in the magnitude of change at a trough and the spurious 

evidence of a turning point one year later may, in practice, lead to the trough being dated later 

than it actually occurred. This will further conflate recession and expansion observations, 

thereby reinforcing the tendency for seasonal adjustment to reduce the depth of a recession.  
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3. Seasonal Adjustment and Markov Switching Models: A Monte Carlo Study 

The analysis of the previous section treats the turning point dates as known, whereas the true 

regimes are in fact unobserved. In common with much business cycle regime literature, we 

now estimate (3) through the use of a two-regime Markov switching model. The results are 

discussed after the methodology of our Monte Carlo study is outlined5. 

 

3.1 Method  

The simple model (3) is used as the data generating process (DGP), with xt = εt ∼NID(0, 1) 

and µd > 0. Seasonally adjusted values are obtained by applying the quarterly linear X-11 

seasonal adjustment filter for observations t = 30, …, T – 29, where initial and final values are 

lost due to the two-sided nature of the filter. To ensure comparability, the initial and final 29 

observations are also discarded when analysing the unadjusted data. All experiments employ 

10,000 replications. 

Estimation employs a first-order Markov switching assumption for st with constant 

transition probabilities, so that: 

  
( ) ( )
( ) ( ) qssPqssP

pssPpssP

tttt

tttt

−======
−======

−−

−−

10100
11011

11

11     (8) 

Although our DGP has no dynamics, seasonal adjustment induces serial correlation. 

To control for this, we adopt autoregressive augmentation with both adjusted and unadjusted 

data. Thus, our Monte Carlo experiments are based on estimating the model 

( ) ttdt esyL ++= δδφ 0 ,  t = 34, …, T – 29   (9) 

                                                 
5 Estimation is conducted in GAUSS, based on the procedures of van Norden and Vigfusson (1996). Further 
details can be found in the earlier version of this paper, Matas-Mir and Osborn (2004b). 
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with φ(L) being a fourth-order polynomial in the lag operator6 and et is a disturbance term 

which the researcher assumes to be an iid normal variate. This specification implies that the 

switching process changes the intercept7 and has been considered by, among many others, 

Hamilton (1990). For both filtered and unfiltered data, an additional four observations are 

required to create the autoregressive lags for the estimation of (9). 

To further investigate the analytical implication of Section 2 that seasonal adjustment 

makes regime identification more difficult, our first set of simulations of (3) examines its 

impact on the detection of given business cycle regimes. For this purpose, the regimes are 

based on the National Bureau of Economic Research (NBER) business cycle chronology for 

the US8. We assume the use of quarterly data over 1951:I to 1996:IV, yielding T = 183 values 

for a growth rate yt. There are five NBER recessions in this period, with durations from two to 

five quarters. We set µ0 = –0.5 and µd = 1.2, implying expected negative annual growth of 

approximately 2 percent in recessions, with positive annual growth of approximately 2.8 

percent in expansions.  

A second experiment employs a Markov switching DGP. While this analysis also 

considers regime identification before and after filtering, the focus here is on the implications 

for regime means and transition probabilities. It is intuitively obvious that if seasonal 

adjustment adversely affects separation of recessions and expansions (and consequently 

affects their estimated characteristics), the effects may be accentuated when the underlying 

regimes are relatively close. Therefore, we investigate values of µd from 1.2 to 2.5 (with σ = 1 

for both regimes). Here, in line with the typical sample size in empirical studies with 

                                                 
6 Although the lag length of four is frequently used in empirical analysis of quarterly data, whether seasonally 
adjusted or not, it only approximately removes the autocorrelation induced by seasonal adjustment. However, 
this fixed lag length is adopted for reasons of practicality in our Monte Carlo analysis. 
7 The intercept-switching model is more practical than a mean-switching one in the context of a large Monte 
Carlo study, because it avoids the dependence of the conditional distribution of yt on lags of the state process. 
8 NBER turning point dates are converted to regimes by assuming that the new regime starts at the beginning of 
the quarter after the month of the turning point.  
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quarterly data, we generate T = 160 observations per replication using transition probabilities 

p = 0.9 and q = 0.65, which are also representative values for quarterly data.  

Regimes are identified for the Markov switching model using the full-sample smoother 

probabilities ( )θ̂;Tt jsP Y= , which deliver the optimal probabilistic inference that state j 

applied at time t, based on complete sample information on yt to time T (Hamilton, 1989). 

These probabilities are a by-product of parameter estimation, with  being the vector of 

maximum likelihood parameter estimates for the Markov switching model of (8)/(9).  

θˆ

When regimes are stochastic, the performances of filtered and unfiltered data cannot 

be compared over replications for specific regime episodes. In this case, we summarise 

regime identification performance using the quadratic probability score (QPS), given by 

  ( )[ ]∑
=

−=
+−

=
U

L

T

Tt
tTt

LU

ssP
TT

2ˆ;1
1

2QPS θY     (10) 

with TL and TU being (respectively) the lower and upper sample observations for which 

regime inferences are obtained. The series and parameter estimates in (10) relate to filtered or 

unfiltered data, as appropriate. 

 For the estimated intercept-switching models, the implied regime-dependent means for 

st = 0, 1 are recovered using the weighted means 

1,0,
)ˆ;(

)ˆ;(
ˆ

1

1 =
=

=
=
∑
∑

=

= j
jsP

jsPy
T

t Tt

T

t Ttt

j
θ

θ
µ

Y

Y
.    (11) 

 

3.2 Results 

This subsection first discusses the results relating to regime detection and then examines the 

impact of adjustment on the estimation of regime means and transition probabilities.  
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3.2.1. Regime detection 

Regime identification results obtained from the simulations using the NBER chronology as 

the true regimes are shown in Figure 2, which summarises the empirical distributions for the 

full-sample probabilities for the filtered and unfiltered data sets corresponding to the 

recession (lower) regimes, with vertical lines denoting actual recession observations. The 

distributions of estimates are summarized by graphing the third quartile, median and first 

quartile values corresponding to each quarter.  

The third quartile, shown in panel (a), indicates that seasonally adjusted data tend to 

point to the onset of recession too early and delay the recognition of recovery. Although there 

is a tendency for these features to occur also with unfiltered data, the pattern is more marked 

after seasonal adjustment. In other words, the filtered data obscures the dates of the regime 

changes, as predicted by the analysis of Section 2. However, although that analysis indicates 

symmetry for the distortion prior to the beginning of the regime and subsequent to its 

completion, the estimated regimes for the Markov switching models in Figure 2(a) show that 

filtered data capture the start of recession regimes more adequately than their end. This 

asymmetry presumably results from an interaction of the effects of seasonal adjustment with 

regime inference within the Markov-switching model.  

At the same time, however, it is also clear that once an expansion regime is well under 

way, the third quartile lower regime probabilities after adjustment are generally (and 

correctly) closer to zero than their unfiltered counterparts. Therefore, the smoothing inherent 

in filtering reduces the chances that low-valued observations generated within an expansion 

are mistakenly attributed to a recession regime.  

 Turning to the median and first quartile of probabilities, panels (b) and (c) respectively 

of Figure 2, seasonal adjustment has the desirable effect of signalling recession periods more 

strongly than the unfiltered data. This effect is most noticeable when the lower regime lasts a 
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year or longer (see those after t = 74, t = 90 and t = 122 in the graph). Interestingly, the 

median and first quartile probabilities during the short recession of two quarters (commencing 

after     t = 114) are very similar whether filtered or unfiltered data are used.  

Although not associated with seasonal adjustment, it is also notable that the Markov 

switching model may completely miss genuine recessions. More specifically, when the 

recession duration is a year or less, the first quartile values in Figure 2(c) never rise above 0.5 

during the recession whether adjusted or unadjusted data are employed, and they do not reach 

0.5 using unadjusted data even when the recession duration is five quarters. Indeed, within the 

short recession of two quarters, the median probability barely reaches 0.5 for either type of 

data. 

For the Markov switching DGP, the overall QPS of (10) is computed for each 

replication, with separate QPS values also computed for observations in the upper and lower 

regimes, classified according to the actual st. Table 1 summarises the results, using the 

median QPS. It is not surprising that, in all cases, regime detection as measured by QPS 

deteriorates as the difference between regime means is reduced; that is, QPS increases as µd 

decreases. 

Table 1 also shows that the effects of filtering are not negligible. The median overall 

QPS is up to 21 percent larger with adjusted data, with the unadjusted data performing 

relatively better in terms of overall QPS when there is a larger distance between the regimes. 

In expansions, QPS can be increased by up to 50 percent by filtering, which is at least partly 

due to the later recognition of business cycle troughs. However, when the regime means are 

relatively close, with µd = 1.2, 1.4, 1.6, filtered data performs better than unfiltered data in 

detecting the occurrence of recessions, which is compatible with the performance in Figure 2 

using the NBER dates. Nevertheless, in such cases both perform poorly. For example, a QPS 
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of 0.5 (approximately the median value for both adjusted and unadjusted data when µd = 1.6) 

would result from a recession probability being 0.5 throughout the regime. 

In summary, seasonal adjustment acts against timely detection of regime switches and 

Figure 2 indicates that this cost is particularly evident in the belated recognition of the 

beginning of recovery from recession. Similarly, it unambiguously worsens performance 

according to QPS both overall and within expansions. However, it can improve identification 

of a recession when expansion and recession regimes are relatively close in terms of their 

underlying mean growth rates, although identification of the true regime is then poor 

irrespective of whether seasonal adjustment is applied or not.  

 

3.3.2 Regime means and transition probabilities 

Table 2 summarises the empirical distributions of estimation errors (estimated less actual) for 

the regime means and transition probabilities, in terms of median, mean, skewness and 

kurtosis. Due to the large skewness exhibited in many cases, the median and mean values 

often differ substantially. Kurtosis is also a feature for estimation of the regime means. Due to 

this substantial non-normality, the discussion focuses on the median estimation error as 

providing a more representative summary measure than the mean. 

The median estimate of the recession regime mean, µ0, in panel (a) always 

underestimates the true (negative) value when seasonally adjusted data are used. The 

magnitude of this underestimation ranges from 0.22 to 0.12, implying estimated mean 

declines (at an annual rate) of between approximately 1.1 to 1.5 percent rather than the true 2 

percent. The extent of underestimation is greatest when µd is largest, with this being the 

balance of two opposing effects. That is, the better identification of the recession regime that 

occurs in this case is outweighed by the greater impact of contamination from the expansion 

regime that occurs when the regime means differ substantially.  
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It is worth noting that the (sample) mean error is always less than the median error for 

estimation of the lower regime mean when filtered data are used. For example, when µd = 1.4, 

the median error is 0.14, compared with a mean error of 0.06. However, the practical 

importance of the latter is questionable, since the median error implies a 50-50 chance of 

underestimating the depth of the recession by 0.55 percent in annual growth terms. There 

seems little comfort in the average error being substantially lower due to the possible 

occurrence of very large errors in the opposite direction. 

In contrast to the filtered case, the recession regime mean is always estimated 

relatively accurately by the median value when unfiltered data are employed.  

Not surprisingly, seasonal adjustment plays much less role for estimation of the upper 

regime mean, µ1 = µ0 + µd, in panel (b). Nevertheless, whether the data are filtered or not, 

there is an increasing tendency for the median value to overestimate the true mean as µd 

declines. Further, in terms of the absolute value of the median error, filtering leads to more 

accurate estimates in all cases except the relatively extreme one where  µd = 2.5. 

Further light is shed on these issues by the estimation errors in the transition 

probabilities, shown in panels (c) and (d) of Table 2. From panel (c) it is clear that filtering 

leads to overestimation of the lower regime transition probability q, with (not surprisingly) 

this being most acute when the regimes are relatively close and hence regime identification of 

individual observations is most difficult. This effect is not negligible: when µd = 1.2, the 

median error of 0.115 for this transition probability implies a mean recession duration of 4.25 

quarters rather than the true 2.8 quarters. In turn, the overestimation of this probability under 

unfiltered data is much less pronounced, with the estimated duration at the median for µd = 

1.2 being 3.3 quarters. The pattern of overestimation of the recession transition probability q 

is, of course, inherently linked with the delayed recognition of troughs evident in Figure 2, 

which (as already noted) is particularly marked after seasonal adjustment.  

 17



The median error in estimating the expansion regime transition probability p is 

relatively small, compared both with the corresponding recession probability and in relation 

to the true DGP value p = 0.95. Nevertheless, as with the expansion regime mean, the 

smoothing property of seasonal adjustment acts to improve the accuracy of estimation of the 

corresponding transition probability when µd = 1.2, 1.4. 

Therefore, these simulations results confirm the implication of Section 2 that seasonal 

adjustment leads to underestimation of the depth of a recession. This appears to be due partly 

to the Markov switching model belatedly recognising the occurrence of a business cycle 

trough (and hence mis-classifying initial expansion observations as being part of the 

recession) and to the smoothing in seasonal adjustment leading to “leakage” of a portion of 

expansion regime observations into ones from the lower regime, as analysed in Section 2. 

 Our simulation results substantially extend those of Franses and Paap (1999) relating 

to the estimation of transition probabilities. From a business cycle analysis perspective, their 

simulations consider only an extreme case, which correspond to µd = 4 when σ  = 1. Indeed, 

such a set-up is not representative of any of the key US business cycle indicators analysed in 

Section 4. As evident from Table 2, the largest (median) errors in estimating the transition 

probabilities, and hence regime duration, occur when regimes are in relatively close 

proximity, so that the empirical relevance of results based on large values of µd is 

questionable.   

 

 

4. Seasonal Adjustment and the US Business Cycle 

In order to investigate the empirical impact of seasonal adjustment on the estimated 

characteristics of business cycle regimes, we apply Markov switching models to quarterly 

seasonally adjusted and unadjusted values of four variables that are key to the decisions of the 
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NBER Business Cycle Dating Committee, namely real GDP, industrial production (IP), 

employment and sales9, in order to investigate the impact of adjustment on regime inference. 

Data issues are discussed in Appendix 2, but it is important to note that published seasonally 

adjusted values are used and hence the results provide a check on the analysis of earlier 

sections based on the linear X-11 filter. All series are analysed as quarterly growth rates, 

namely after taking the first differences of the logarithms. 

Although some individual indicators, particularly GDP, may mimic the NBER dates 

better than others, NBER turning point dates are nevertheless estimates obtained using 

seasonally adjusted values for a range of series. Therefore, it is appropriate to consider 

separately the four variables above when examining business cycle effects.  

Business cycle regimes are here derived from a Markov-switching model where the 

mean switches with the regime10, so that  

( ) ( )[ ]( ) tttt zssyL σµµφ =+−− −+
11 1 ,     (12) 

where zt ~ NID(0, 1) and st again represents the unobserved Markov process with transition 

probabilities defined in (8). For reasons of parsimony in estimation, deterministic seasonality 

in the unadjusted series is removed by a prior regression. As discussed in Appendix 2, this 

prior regression is also used to investigate, and where appropriate take account of, changes in 

the deterministic seasonal pattern. For both adjusted and unadjusted data, the autoregressive 

lag order k in (12) is determined by minimizing11 BIC over k = 1,…,5, with estimation by 

maximum likelihood. 

However, the assumption of constant disturbance variance over time in (12) may be 

invalid, since there is now a large body of evidence documenting a break in the variance of 

                                                 
9 Although personal income is also used by the NBER, seasonally unadjusted data for this series could not be 
obtained. 
10  Estimation of this model is feasible in this context, since we do not face the same constraints as in the Monte 
Carlo analysis of Section 3. 
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US real output growth around the mid-1980s (see, among others, McConnell and Perez-

Quiros, 2000, Sensier and van Dijk, 2004). To capture this, our models for IP and GDP follow 

McConnell and Perez-Quiros (2000) by allowing an endogenous break in the variance 

through a second unobservable Markov process, so that the models for these variables have 

the form 

( ) [ ] [ ]{ }( ) ( )[ ] tttttttttt zrrssrssryL 212211 1)1()1()1( σσµµµµφ +−=+−++−−− −+−+       (13) 

where st and rt are independent Markov switching processes determining the state of the 

economy (expansion or recession) and the state of the variance (high or low)12, respectively. 

Following McConnell and Perez-Quirós (2000), (13) also allows the strength of expansions 

and recessions to change in the low-variance state compared to the high-variance one.   

Table 3 presents the estimated models for both seasonally adjusted (SA) and 

seasonally unadjusted (NSA) data. For all four series, and in accord with the simulation 

results in Section 3, the use of seasonally adjusted data leads to recessions that are more 

persistent compared with unadjusted data, with estimated recession transition probability q 

larger after seasonal adjustment. This is reflected in the estimated expected recession regime 

duration, also shown in Table 3. Note, in particular, that GDP recessions are estimated to last 

less than three quarters on average using seasonally adjusted data, but over a year using 

adjusted data.  

Although the estimated expansion regime transition probabilities are generally similar 

irrespective of seasonal adjustment, they result in substantially different estimated average 

expansion regime durations, due to the proximity of these values to unity. Indeed, for IP and 

                                                                                                                                                         
11 For GDP, both seasonally adjusted and unadjusted, this procedure led to high-order AR models whose 
smoothed probabilities did not reflect satisfactorily US expansions and recessions. Therefore, the reported 
results derive from models using the second-best BIC in each case.  
12 Our results for the variance process are very similar to those of McConnell and Perez-Quirós (2000), with the 
high-variance state dominating up to 1984:I and a low-variance period in force for the remainder of the sample, 
with this being the case irrespective of whether seasonally adjusted or unadjusted data are used.    
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sales, the use of filtered data leads to expansions that are estimated to last 6 and 9 quarters 

more, respectively, compared with NSA data13.  

Figure 3 presents the estimated smoothed probabilities for the recession regime, with 

the NBER recessions indicated by shading. It is unsurprising that the use of adjusted data 

leads to recession regimes more closely corresponding to those dated by the NBER, due to 

their use of such data when constructing the NBER turning point chronology. However, it is 

also evident that the use of unadjusted data would sometimes result in a shorter recession; see, 

for example, the regime probabilities for GDP during the recession around 1970. Again for 

GDP, it is also clear that seasonal adjustment conflates what would be identified with 

unadjusted data as a “double dip” (or perhaps “triple dip”) recession during 2000 to 2002, 

with this pattern also evident for IP. It is also interesting to note that the recession dates for 

1990 are more closely matched using unadjusted than seasonally adjusted GDP. 

This empirical evidence also corroborates the simulation results that the regime 

probabilities obtained using seasonally adjusted data tend to delay the recognition of 

recovery, compared with unadjusted data. This is particularly evident for GDP in the 

recessions of the early 1970s, 1990s and 2000s, for IP in the 2000 recession and for 

employment in the 1990 and 2000 recessions14. Adjustment also sometimes leads to the onset 

of recession being dated earlier, which is particularly notable for GDP.  

In almost all cases, and as anticipated from the analysis of earlier sections, the use of 

unadjusted data leads to deeper estimated recessions in Table 3. The single exception is for IP 

in the high variance state. Indeed, the feature of filtering implying less severe recessions is 

especially notable for GDP in the low-variance state (after 1984), where the seasonally 

                                                 
13 The relatively long estimated average expansion regime duration for these two series in Table 3 is partly an 
artefact of the fact that the starting point of these series omits the three NBER recessions of the 1950s and 
1960s. 
14 It is interesting to note that the idea, frequently cited by commentators, that the US recovery after the 2000 
recession seems to be a “jobless recovery” is borne out by the smoother probabilities when using seasonally 
adjusted data, but substantially less so using seasonally unadjusted data. 
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adjusted estimate of the mean implies an average annual positive growth of 0.8 percent in the 

low growth (or recession) regime, whereas unadjusted data yield an estimated 0.6 percent 

decline. The estimated average decline in employment during recessions (0.36 percent in 

annual terms) is also mild compared to the 0.6 percent implied by seasonally unadjusted data.  

 

 

5. Concluding Remarks  

This paper has considered the effects of seasonal adjustment on the characteristics of business 

cycle regimes, both analytically and when these regimes are identified through the use of a 

Markov switching model. We show that seasonal adjustment distorts information about the 

extent and timing of turning points that underlie regime identification, while leading to 

apparently less deep recessions.  

Nevertheless, the picture is not entirely straightforward, because in some instances 

seasonal adjustment can have the effect of clarifying the regime. Indeed, through the 

smoothing inherent in seasonal adjustment, the filtered data tend to produce less false turning 

point signals, albeit they will detect the occurrence of actual turning points with more 

difficulty. As measured by summary statistics of regime tracking like the Quadratic 

Probability Score, however, the filtering deteriorates the fit of regimes in the Markov 

switching model overall, with this result being mainly dominated by a belated signal of the 

occurrence of a business cycle trough. Our analytical results shed light on why this occurs, as 

(except when a recession lasts exactly a year), seasonal adjustment reduces the magnitude of 

business cycle turning points by the order of 20 percent even when the turning point dates are 

known.  

Empirical analysis based on US business cycle indicators confirms that these results 

carry over to observed data series. It is particularly notable for US GDP that the use of 
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unadjusted data would, in general, imply shorter and sharper recessions than when adjusted 

data are employed, which confirms the empirical result of Luginbuhl and de Vos (2003) based 

on a different model. Interestingly, unadjusted GDP and industrial production point to a 

“double dip” recession in the US during 2000 to 2002, rather than a single recession regime. 

Although the simulation and empirical analyses employ Markov switching models as a 

convenient way to estimate business cycle regimes, the analytical results of Section 2 imply 

that seasonal adjustment will have qualitatively similar effects on regime characteristics 

irrespective of the method used to identify business cycle turning points. 

 
 
 
 

APPENDIX 1 
 

Seasonally Adjusted Regime Indicator 
 

In order to obtain (7), consider first the application of seasonal adjustment to the structural 

break indicator series 
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where the break occurs at t = TB. When the two-sided filter of (2) is applied in the context of 

the structural break (A.1), the filtered series is given by 
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where we use the symmetry of the filter and the fact that the weights sum to unity. As 

indicated by a comparison of (A.1) and (A.2), all filtered values for TB – m ≤ t < TB + m are 

influenced by the structural break. Although they do not present an expression such as (A.2), 

Ghysels and Perron (1996) graphically present the distortion implied by (A.2) compared with 

(A.1).  
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 Defining the break series bt
C, where the break occurs at t = TC, in an analogous way to 

(A.1), then the regime indicator of (4) can be obtained as 
C
t

B
tt bbs +−=1        (A.3) 

and hence, with linear seasonal adjustment, 
 

SAC
t

SAB
t

SA
t bbs ,,1 +−= .      (A.4) 

Substitution from appropriate expressions from (A.2) into (A.4) then yield (7). 
 
 
 
 
 

APPENDIX 2
 

Data Issues 
 

 

For the empirical analysis of Section 4, real GDP are obtained from the Bureau of Economic 

Analysis (BEA) over 1953:I to 2003:IV. Although the BEA does not publish seasonally 

unadjusted real GDP, we derive such a series by multiplying seasonally adjusted real values 

by the ratio of the unadjusted to adjusted nominal values, as in Miron and Zeldes (1988). As 

little seasonality is anticipated in prices relative to seasonality in real GDP, this should 

provide a good approximation (see Barsky and Miron, 1989).  

Wholesale and retail sales data cover 1967:I to 2004:II and are constructed employing 

the same procedure as for GDP. Seasonally adjusted real series are from BEA, while nominal 

seasonally unadjusted and adjusted values are obtained from the OECD Main Economic 

Indicators (MEI) database15. Wholesale and retail sales are summed to yield total sales. 

Industrial production (IP) and employment are from the OECD MEI database, over 1962:I to 

2004:II and 1960:I to 2004:II respectively, in both cases seasonally adjusted and unadjusted.  

The sample period used is the longest available in each case, with the exception of 

industrial production, where data are available from 1960:I. However, Polzehl et al. (2004) 

find evidence of a break in the variance of this series around the summer of 1961. To avoid a 

potential break early in the sample, our analysis of IP starts in 1962:I. 

                                                 
15 To check the compatibility of these two sources, we computed the correlation of the log-differences between 
the nominal seasonally adjusted BEA and OECD series; the correlation was 0.995. All models using the BEA 
sales indicator include a dummy variable that is unity in 1997Q1 and zero elsewhere to link the real series based 
in 1992 dollars to that based in 1997 dollars, which are published separately by the BEA.   
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Two obvious approaches for allowing for deterministic seasonal effects in a Markov 

switching model for seasonally unadjusted data are to augment the model with dummy 

variables to account for deterministic seasonality, with all parameters jointly estimated, or to 

remove deterministic seasonal effects prior to estimating the Markov switching model. For 

practical reasons we adopt this second approach in the empirical application of Section 416.  

The preliminary regression starts from a simple AR model with seasonal dummies, 

where the AR lag length minimizes BIC over lags k = 1,…,5, provided that the selected model 

yields non-rejection of serial correlation using an LM test to order 5 at significance level 0.01. 

However, visual examination of some series (especially GDP) points to the possibility that the 

nature of seasonality may have changed over our sample period. Therefore, using the selected 

lag length, we test for a break in the deterministic seasonal pattern at unknown break date  

using the asymptotic critical p-values of Hansen (1997). More specifically, we apply the test 

within the model  
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where the seasonal dummies are constructed as ttiti DDD ,4,,
~ −=  (Dq,t being the conventional 

binary seasonal dummy variable for quarter q) and  is an indicator variable such that ItI t = 0, 

t < tB  and It = 1, t ≥ tB; the null hypothesis under scrutiny is .  The results are 

shown in Table A.1. For employment, sales and IP, the null hypothesis cannot be rejected at 

the 5 percent significance level, so we adopt the two-stage procedure outlined above. 

0: *
0 =iH δ

For GDP, however, there is strong evidence in Table A.1 of a break in the seasonal 

pattern. Further, there is marked visual evidence of a seasonal deterministic trend in the early 

part of the sample, which then apparently disappears. Based on this evidence we also apply 

the Hansen test in the context of the model  
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with the null hypothesis . This hypothesis is rejected at the 1 percent 

significance level, so that the first-step regression in this case is based on (A.6) including the 

break terms with t

0: **
0 == iiH τδ

B = 1977Q2.  

                                                 
16 In practice, we have found these methods usually deliver very similar results. However, on occasion we found 
that joint estimation leads to convergence problems, presumably due to the relatively large number of 
parameters in the non-linear optimisation. Therefore, we adopt the two-step approach. 
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Having uncovered evidence of a break in deterministic seasonality for GDP, (A.6) is 

applied with no autoregressive dynamics (k = 0) for the purpose of purging the series of 

deterministic seasonality. This ensures that overall seasonal mean effects are estimated, with 

dynamics then captured within the Markov switching model. 
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Table 1. Quadratic Probability Score for Business Cycle Regimes Identified in Markov 
Switching Data Generating Processes. 

 
 Filtered data Unfiltered data Ratio 

µd Overall Upper Lower Overall Upper Lower Overall Upper Lower 

2.5 0.128 0.065 0.268 0.106 0.051 0.228 1.211 1.271 1.176 

2 0.195 0.096 0.389 0.169 0.078 0.361 1.150 1.228 1.077 

1.8 0.228 0.114 0.442 0.204 0.090 0.440 1.116 1.275 1.003 

1.6 0.264 0.138 0.500 0.242 0.102 0.526 1.093 1.357 0.950 

1.4 0.307 0.170 0.556 0.285 0.118 0.622 1.078 1.444 0.893 

1.2 0.354 0.218 0.599 0.326 0.140 0.722 1.085 1.563 0.830 
Notes: Results refer to the Monte Carlo analysis based on (3) and (9) as the data generating process, 
with µ0 = –0.5, p = 0.9 and q = 0.65, for a sample of T = 160 observations. The estimated model is 
given by (9), with 10,000 replications employed. 

 29



Table 2. Properties of Estimation Errors in Markov Switching Data Generating Processes. 
 

 Lower regime mean µ0, filtered data Lower regime mean µ0, unfiltered data 
µd Median Mean Skewness Kurtosis Median Mean Skewness Kurtosis
2.5 0.224 0.200 –1.149 5.598 0.003 –0.045 –1.739 12.591 
2 0.193 0.149 –1.366 5.429 –0.006 –0.091 –1.529 5.537 

1.8 0.181 0.120 –1.489 5.301 –0.007 –0.098 –1.466 5.441 
1.6 0.168 0.093 –1.477 4.652 –0.007 –0.114 –1.666 6.267 
1.4 0.138 0.056 –1.580 5.126 –0.009 –0.129 –1.888 7.943 
1.2 0.123 0.017 –1.702 5.218 –0.028 –0.160 –1.907 7.989 

 Upper regime mean µ1, filtered data Upper regime mean µ1, unfiltered data 
µd Median Mean Skewness Kurtosis Median Mean Skewness Kurtosis
2.5 –0.047 –0.041 0.494 2.376 0.013 0.025 2.038 21.811 
2 –0.019 0.006 2.830 22.748 0.028 0.063 4.041 38.101 

1.8 –0.001 0.041 3.722 31.273 0.042 0.094 4.592 48.694 
1.6 0.025 0.073 3.249 24.61 0.065 0.139 4.272 35.777 
1.4 0.052 0.117 3.520 24.275 0.095 0.196 3.903 26.48 
1.2 0.087 0.164 3.437 22.035 0.130 0.249 3.364 18.21 

 Lower regime transition probability q, 
filtered data 

Lower regime transition probability q, 
unfiltered data 

µd Median Mean Skewness Kurtosis Median Mean Skewness Kurtosis
2.5 0.031 0.004 –1.118 1.833 -0.004 –0.031 –1.030 1.445 
2 0.048 0.009 –1.122 1.340 0.006 –0.036 –0.999 0.861 

1.8 0.057 0.012 –1.117 1.072 0.016 –0.034 –0.975 0.593 
1.6 0.072 0.022 –1.127 0.953 0.027 –0.029 –0.959 0.393 
1.4 0.094 0.033 –1.139 0.882 0.038 –0.018 –0.957 0.297 
1.2 0.115 0.046 –1.176 0.888 0.05 –0.011 –0.967 0.184 

 Upper regime transition probability p, 
filtered data 

Upper regime transition probability p, 
unfiltered data 

µd Median Mean Skewness Kurtosis Median Mean Skewness Kurtosis
2.5 0.007 –0.003 –1.595 4.760 –0.001 –0.012 –3.228 26.811 
2 0.008 –0.015 –3.208 18.877 –0.002 –0.025 –2.999 15.979 

1.8 0.007 –0.024 –3.149 15.331 –0.003 –0.036 –3.007 13.486 
1.6 0.005 –0.031 –2.637 10.52 –0.007 –0.051 –2.614 9.137 
1.4 0.004 –0.042 –2.614 9.465 –0.012 –0.070 –2.377 6.706 
1.2 –0.001 –0.055 –2.445 7.730 –0.018 –0.087 –2.104 4.766 

Notes: See Table 1. The estimation error is calculated as the estimated value less the actual value of 
the corresponding parameter. 
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Table 3. Estimation Results for Markov Switching Models for US Business Cycle Indicators. 

(a) Parameter estimates. 
 

 GDP IP Employment Sales 
Parameter SA NSA SA NSA SA NSA SA NSA 

+
1µ  1.2589 

(0.1540) 
1.2655 

(0.1749) 
1.0454 

(0.2304) 
1.0653 

(0.2245) 
0.5747 

(0.0597) 
0.5539 

(0.0769) 
1.2358 

(0.1067) 
1.3010 

(0.1189) 
−
1µ  –0.2993 

(0.2634) 
–0.4246 
(0.3064) 

–3.5091 
(0.7845) 

–3.5086 
(1.1314) 

–0.0908 
(0.1410) 

–0.1469 
(0.1929) 

–1.3007 
(0.3825) 

–1.6236 
(0.4281) 

+
2µ  0.9236 

(0.0740) 
0.9268 

(0.0668) 
0.9350 

(0.1115) 
0.9928 

(0.1167) 
- - - - 

−
2µ  0.2094 

(0.2144) 
–0.1511 
(0.2964) 

–0.9813 
(0.3620) 

–1.1058 
(0.3866) 

- - - - 

2
1σ  0.7880 

(0.1306) 
1.1473 

(0.2123) 
1.6030 

(0.2601) 
2.2366 

(0.3853) 
0.1217 

(0.0164) 
0.1852 

(0.0261) 
1.1423 

(0.1516) 
1.9284 

(0.2809) 
2
2σ  0.1751 

(0.0337) 
0.2125 

(0.0477) 
0.2777 

(0.0520) 
0.4960 

(0.1242) 
- - - - 

1φ  0.0693 
(0.0984) 

–0.0874 
(0.1036) 

0.4792 
(0.0881) 

0.2879 
(0.0850) 

0.3427 
(0.0917) 

0.2858 
(0.1151) 

0.0289 
(0.1104) 

–0.2830 
(0.0901) 

2φ  - - 0.0137 
(0.0973) 

0.1210 
(0.0746) 

- –0.1917 
(0.0688) 

- - 

3φ  - - 0.1599 
(0.0963) 

–0.0857 
(0.0766) 

- –0.0095 
(0.0745) 

- - 

4φ  - - –0.0872 
(0.0852) 

0.4033 
(0.0810) 

- 0.5563 
(0.0709) 

- - 

5φ  - - –0.1850 
(0.0766) 

–0.5381 
(0.0777) 

- –0.3018 
(0.1012) 

- - 

p 0.9182 
(0.0343) 

0.9019 
(0.0395) 

0.9633 
(0.0172) 

0.9527 
(0.0288) 

0.9431 
(0.0277) 

0.9572 
(0.0304) 

0.9582 
(0.0217) 

0.9333 
(0.0336) 

q 0.7646 
(0.0914) 

0.6491 
(0.1299) 

0.6100 
(0.1341) 

0.5341 
(0.1683) 

0.8270 
(0.0998) 

0.7748 
(0.1236) 

0.6534 
(0.1513) 

0.5278 
(0.1712) 

Log-L –240.90 –276.92 –235.45 –250.81 73.62 40.87 –104.92 –149.11 

Notes: SA refers to seasonally adjusted data and NSA to non-seasonally adjusted data. Values in 
parentheses are standard errors;  refer to the estimated means in the upper and lower regimes, 
respectively; , and σ

−+
ii µµ ,

−+
22 , µµ 2 refers to the lower variance state, which is not applicable for employment 

and sales. 
 
 
(b) Estimated average durations of expansions and recessions. 
 

 GDP IP Employment Sales 
 SA NSA SA NSA SA NSA SA NSA 
Expansions 12.22 10.19 27.24 21.24 17.57 23.36 23.92 14.99 
Recessions 4.24 2.84 2.56 2.14 5.78 4.44 2.89 2.12 

Notes: Estimated average durations are expressed in quarters and are obtained using the estimated p 
and q in panel (a)  
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Table A.1. Results of Tests for Break in Deterministic Seasonality  

for US Business Cycle Indicators. 
 

Series Break date P-value AR order 

GDP 1977Q2 0.00 5 

IP 1981Q3 0.06 5 

Employment 1983Q2 0.86 5 

Sales 1974Q3 0.07 1 
Notes: Seasonal components are seasonal means for all the series 
except GDP, for which a seasonal trend is also allowed prior to the 
break date. The AR order reports the number of autoregressive lags 
used in the test. 
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Figure 1. The Business Cycle Regime Indicator after Seasonal Adjustment using the Linear X-11 Filter. 
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Notes: The graph shows the results of applying the linear X-11 quarterly seasonal adjustment filter to the 
business cycle regime indicator of equation (4) for recessions of duration two to five quarters. 
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Figure 2. Markov Switching Recession Probabilities from Monte Carlo Analysis using NBER Business Cycle Dates.  
Panel (a) refers to the third quartile, panel (b) to the median and panel (c) to the first quartile. 

 

 
Notes:  Results refer to the Monte Carlo analysis based on (3) as the data generating process, with µ0 = –0.5, µd = 1.2, for a 
sample of T = 183 observations, with true regimes given by the business cycle phases dated by the NBER over 1951:I to 
1996:IV. The estimated model is (9), with 10,000 replications employed. Horizontal lines show estimated recession 
probabilities for seasonally adjusted (dashed line) and non-seasonally adjusted (solid line) data, where seasonal 
adjustment is by the linear X-11 filter; vertical lines indicate NBER recession observations.  
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Figure 3. Estimated Recession Probabilities for US Business Cycle Indicators. 
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Notes: Lines show estimated recession probabilities for seasonally adjusted (dashed line) and non-seasonally adjusted (solid line) data for 
GDP, IP, employment, sales (respectively, from top to bottom). Shading indicates NBER recession observations. 
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