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1 Introduction

In recent years, considerable attention has been paid to ways of conducting
exact small-sample inference for discrete data. Most of this has been in the
context of the analysis of contingency tables. These methods use distributions
determined exactly rather than as large-sample approximations. To achieve
exactness, most common is a conditional inference approach whereby one
focuses on the parameter of interest while eliminating nuisance parameters by
conditioning on their sufficient statistics. For 2×2 tables, there is also some
literature on an unconditional approach.

Software is now readily available for small-sample methods. Best known
and most complete are StatXact for contingency table methods and LogXact
for logistic regression, both marketed by Cytel Inc. (Cytel 2005). Although
many statisticians are aware only of Fisher’s exact conditional test for 2×2 ta-
bles, there is now a wide variety of methods available in such software. These
include unconditional methods for comparing binomial proportions with tests
and confidence intervals, inferences for r × c tables, inferences for stratified
tables including tests of conditional independence and homogeneity of asso-
ciation, inferences for dependent samples and for clustered data, inferences
about measures of association and measures of agreement, and inferences
about parameters in logistic regression models and some of their multinomial
extensions.

StatXact and LogXact utilize network algorithms. For any algorithm, com-
putations become increasingly intensive as the sample size increases. The
StatXact 7 manual (Cytel 2005, p. 13) notes that with current capabilities,
almost all exact tests can be executed within a few seconds when the sample
size does not exceed about 30. Even for a relatively small sample size, how-
ever, the number of contingency tables that contribute to an analysis can be
huge when the number of categories is moderate. For example, the StatXact
7 manual (Cytel 2005, p. 12) notes that a 5×6 table with row margins (7,
7, 12, 4, 4) and column margins (4, 5, 6, 5, 7, 7) has a reference set of 1.6
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billion contingency tables that have the same margins and contribute to exact
conditional tests. For cases that are infeasible or that take a long time, fast
and precise Monte Carlo approximations are available.

The terminology “exact” refers to the use of exactly determined, small-
sample distributions, rather than normal or chi-squared approximations, to
obtain P-values and confidence intervals. However, the inferences are not exact
in the sense that error probabilities exactly equal the nominal values. Rather,
the nominal values are upper bounds for the true error probabilities. This
is well known for significance tests. For example, suppose a test of a simple
hypothesis H0 has nominal size 0.05, in the sense that H0 is rejected when the
P-value is no greater than 0.05. If the possible P-values for the exact discrete,
small-sample distribution are 0.02, 0.06, 0.12, ..., then the actual size is 0.02.

The same phenomenon is true for confidence intervals. Consider intervals
constructed by inverting a test (e.g., a 95% confidence interval consists of the
set of parameter values not rejected at the 0.05 significance level in the family
of tests). Inverting a test that has actual size no greater than 0.05 for each
possible parameter value results in a confidence interval having coverage prob-
ability at least equal to 0.95. The actual coverage probability varies according
to the parameter value, and so in practice it is unknown. Thus, conservatism
of exact tests propagates to conservatism of exact confidence intervals. In fact,
the situation is worse in the sense that one does not know the actual error
probability, but merely its upper bound. See Agresti (2001) for a review and
a discussion of issues that make exact inference awkward for discrete data.

Section 2 reviews small-sample inference for discrete exponential-family
distributions and illustrates with the binomial. Section 3 surveys ways to
reduce the conservatism. In theory, discreteness is not a problem if one uses
supplementary randomization to achieve the desired error probability exactly.
Section 3 also reviews this approach, which was fashionable for a time around
1950. Section 4 discusses a related approach for discrete data proposed by
Geyer and Meeden (2005), fuzzy inference, which yields exactly the desired
error rate. We then present a simpler way of conducting fuzzy inference for
discrete exponential family distributions.

The randomized and fuzzy inference approaches have connections with
inference based on the mid-P value. Section 5 reviews this approach and eval-
uates its performance for inference about a binomial parameter. We conclude
that inference based on the mid-P value provides a sensible compromise that
mitigates the effects of conservatism of exact methods yet is more useful in
practice than randomized or fuzzy inference.

2 Small-Sample Inference for Discrete Distributions

Exact inference about a parameter θ requires the actual error probability to
be no greater than the nominal level, which we denote by α. For a significance
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test of a hypothesis H0, the actual size is no greater than α. That is, the
P-value satisfies

Pθ(P-value ≤ α|H0) ≤ α

for all α and for all θ in H0. For a confidence interval, the actual coverage
probability must be at least 1− α for all possible values of θ.

Let T be a discrete test statistic with probability mass function f(t|θ) and
cumulative distribution function F (t|θ) indexed by the parameter θ. For each
value θ0 of θ let A(θ0) denote the acceptance region for testing H0: θ = θ0.
This is the set of values t of T for which the P-value exceeds α. Then, for each
t, let C(t) = {θ0 : t ∈ A(θ0)}. The set of {C(t)} for various t are the confidence
regions with the desired property. In other words, having acceptance regions
such that

Pθ0 [T ∈ A(θ0)] ≥ 1− α

for all θ0 guarantees that the confidence level for {C(t)} is at least 1 − α.
For a typical θ0, one cannot form A(θ0) to achieve probability of Type I error
exactly equal to α, because of discreteness. Hence, such significance tests and
confidence intervals are conservative. The actual coverage probability of C(T )
varies for different values of θ but is bounded below by 1−α (Neyman 1935).
In technical terms, the bound results from the distribution of F (T |θ) being
stochastically larger than uniform when T is discrete (Casella and Berger
2001, pp. 77, 434).

2.1 One-parameter exponential families

In this article we will assume that the observations x1, x2, ..., xn are indepen-
dent from a single-parameter exponential family distribution with probability
mass function,

f(x|θ) = h(x)c(θ) exp[w(θ)t(x)].

The minimal sufficient (and complete) statistic is T =
∑

i t(xi). Let FT (t|θ) =
P (T ≤ t|θ). Below for specificity we discuss one-sided inference in terms of a
significance test and two-sided inference in terms of confidence intervals.

Standard results found in statistical theory texts such as Casella and
Berger (2001) include the following: If w(θ) is nondecreasing, the family of
distributions has monotone likelihood ratio. This is true in the standard cases,
and we’ll assume it below. Then, for testing H0: θ ≤ θ0 against Ha: θ > θ0, for
any t, the test that rejects H0 if and only if T ≥ t is a uniformly most powerful
(UMP) test of size α = Pθ0(T ≥ t). With observed test statistic value tobs,
the P-value for the test is Pθ0(T ≥ tobs). If FT (t|θ) is a decreasing function of
θ for each t (which is true when there is monotone likelihood ratio), and if

P (T ≤ t|θU (t)) = α/2, P (T ≥ t|θL(t)) = α/2, (1)

then [θL(T ), θU (T )] is a 100(1− α)% confidence interval for θ. That is, it has
probability at least 1−α of containing θ. This method of forming a confidence
interval is often called the tail method.
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2.2 Illustration for the binomial distribution

For n independent, identically distributed Bernoulli observations with param-
eter θ, T is the “number of successes” and has binomial distribution with index
n and parameter θ. To test H0 : θ ≤ θ0 against Ha : θ > θ0, the UMP test
rejects for sufficiently large values of T .

Fig. 1. Actual sizes of exact (—) and mid-P (- - -) binomial tests of H0 : θ ≤ 0.50
against Ha : θ > 0.50, plotted as a function of n between 5 and 200
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For the case θ0 = 0.50, which is most common in practice, Figure 1 shows
the actual size of a nominal size α = 0.05 test, plotted as a function of n for
n between 5 and 200. The conservatism is quite marked for small n, which is
precisely when one would not want to rely on large-sample asymptotics, but
it persists even for moderately large n.

In a standard application of the above confidence interval theory, Clopper
and Pearson (1934) proposed the following 100(1 - α)% confidence interval
for the binomial parameter: The endpoints (θL, θU ) satisfy

n∑

k=tobs

(
n
k

)
θk

L(1− θL)n−k = α/2 and
tobs∑

k=0

(
n
k

)
θk

U (1− θU )n−k = α/2,

except that θL = 0 when tobs = 0 and θU = 1 when tobs = n. This confidence
interval is based on inverting two one-sided UMP binomial tests.

For instance, the 95% confidence interval when x = 5 in n = 5 trials
is (0.478, 1.000). This means that θ0 must be below 0.478 in order for the
binomial right-tail probability in testing H0 : θ = θ0 against Ha : θ > θ0
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to fall below 0.025. In fact, when n = 5 this exact 95% confidence interval
contains 0.50 for every value of x. Thus, the actual coverage probability of
this exact interval when θ = 0.50 is 1.0, not 0.95.

Various evaluations have shown that the Clopper–Pearson confidence in-
terval tends to be extremely conservative for small to moderate n. See, for in-
stance, Newcombe (1998), Agresti and Coull (1998), and Brown et al. (2001).
When tobs = 0, it equals [0, 1 − (α/2)1/n]. The actual coverage probability
necessarily exceeds 1−α/2 for θ below 1− (α/2)1/n and above (α/2)1/n. This
is the entire parameter space when n ≤ log(α/2)/ log(.5), for instance n ≤ 5
for α = 0.05.

Fig. 2. Actual coverage probabilities of Clopper–Pearson (—) and mid-P (- - -)
confidence intervals for binomial parameter θ, plotted for n between 5 and 200 when
θ = 0.50
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Figure 2 plots the actual probability of coverage of the 95% Clopper–
Pearson confidence interval, as a function of n, when the actual parameter
value is 0.50. Again, the degree of conservatism is quite severe, even when n
is moderately large.

3 Ways of Reducing Conservatism

This section mentions some ways that have been proposed of reducing the
degree of conservatism of exact, small-sample inference. We’ll illustrate these
for the case of two-sided interval estimation of the binomial parameter.
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3.1 Confidence intervals not based on the tail method

Inverting a family of tests corresponds to forming the confidence region from
the set of θ0 for which the test’s P-value exceeds α. The tail method (1)
requires the stronger condition that the probability be no greater than α/2
that T falls below A(θ0) and no greater than α/2 that T falls above A(θ0).
The interval for this method is the set of θ0 for which each one-sided P-value
exceeds α/2. One disadvantage of the tail method is that for sufficiently small
and sufficiently large θ, the lower bound on the coverage probability is actually
1 − α/2 rather than 1 − α. For sufficiently small θ, for instance, the interval
can never exclude θ by falling below it.

Alternatives to the tail method exist for which intervals tend to be shorter
and coverage probabilities tend to be closer to the nominal level. One approach
inverts a single two-sided test instead of two equal-tail one-sided tests. For in-
stance, a possible two-sided P-value is min[Pθ0(T ≥ tobs), Pθ0(T ≤ tobs)] plus
an attainable probability in the other tail that is as close as possible to, but
not greater than, that one-tailed probability. The confidence intervals based
on inverting such a test necessarily are contained in confidence intervals ob-
tained with the tail method. Blaker (2000) used this approach for the binomial
parameter and gave S-plus functions for implementing it. See Agresti (2003)
for an example of the improvement this provides over the Clopper–Pearson
method.

Another two-sided approach forms the acceptance region A(θ0) by entering
the test statistic values t in A(θ0) in order of their null probabilities, starting
with the highest, stopping when the total probability is at least 1−α; that is,
A(θ0) contains the smallest possible number of most likely outcomes (under
θ = θ0). In its crudest partitioning of the sample space, the corresponding P-
value is the sum of null probabilities that are no greater than the probability of
the observed result. When inverted to form confidence intervals, this approach
satisfies the optimality criterion of minimizing total length. Sterne (1954)
proposed this approach for interval estimation of a binomial proportion.

Yet another way to invert a two-sided test orders points for the acceptance
region and forms P-values according to a statistic that describes the distance
of the observed data from H0. One could use a statistic T based on a standard
large-sample criterion, such as the likelihood-ratio statistic, the Wald statistic,
or the score statistic.

These various two-sided approaches do not have the tail method disadvan-
tage of a lower bound of 1−α/2 for the coverage probability over part of the
parameter space. However, some methodologists find discomforting the lack
of information about how each tail contributes to the analysis.

3.2 Confidence intervals based on less discrete statistics or
P-values

In constructing a test or a confidence interval based on a test, the test statis-
tic should not be any more discrete than necessary. For instance, a sample
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proportion of θ̂ = 0.40 gives less evidence in testing H0 : θ = 0.50 than in
testing H0 : θ = 0.30, because the null standard error is smaller in the second
case. It is better to base tests and subsequent confidence intervals on a stan-
dardization, such as by dividing the difference between the sample proportion
and its null value by the null standard error, or the relative likelihood values.

Likewise, it is sometimes possible to reduce conservativeness by using a less
discrete form of P-value. For instance, instead of including the probabilities of
all relevant samples having T = tobs in the P-value, Kim and Agresti (1995)
included only probabilities of those samples that are no more likely to occur
than the observed one. For an example of estimating a common odds ratio
in 18 2×2 tables for which the tail method gave a 95% confidence interval of
(0.05, 1.16), the interval based on this less discrete P-value was (0.09, 0.99).

3.3 Confidence intervals based on an unconditional approach with
nuisance parameters

For comparing parameters from two discrete distributions, the conditional
approach eliminates nuisance parameters by conditioning on their sufficient
statistics. This approach, however, increases the degree of discreteness. More-
over, it is limited to the natural parameter for exponential family distributions.

An alternative approach to eliminating the nuisance parameter is uncondi-
tional. For a nuisance parameter ψ, let p(θ0; ψ) denote the P-value for testing
H0 : θ = θ0 for a given value of ψ. The unconditional approach takes P-value
= supψp(θ0;ψ). This is a legitimate P-value (Casella and Berger 2001, p. 397).
If p(θ0; ψ) is relatively stable in ψ, this method has the potential to improve
on conditional methods. See, for instance, Suissa and Shuster (1985), who
showed improvement in power over Fisher’s exact test for testing equality of
two independent binomials. Agresti and Min (2001) used the unconditional
approach to form a confidence interval for the difference of proportions, based
on inverting the score test. Agresti and Min (2002) used the unconditional
approach for interval estimation of the odds ratio.

3.4 Randomized tests and confidence intervals

In the statistical theory of hypothesis testing, for discrete problems one can
achieve the exact size by randomizing appropriately on the boundary of the
critical region (e.g., Lehmann 1986, p. 71-76). One uses a critical function
φ(t) for the probability of rejecting the null hypothesis. It equals 1.0 for t
in the interior of the rejection region, 0.0 outside that region, and a value
between 0 and 1 on the boundary of the rejection region determined so that
the size equals the desired value. For testing H0 : θ = θ0 against Ha : θ > θ0

for an exponential family with test statistic T and observed value tobs, this
corresponds to using P-value

Pθ0(T > tobs) + U × Pθ0(T = tobs) (2)
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where U is a uniform(0,1) random variable (Cox and Hinkley 1974, p. 101).
To construct a confidence interval that achieves exactly (a priori) probabil-

ity (1−α) of covering the unknown parameter value, one can invert two such
randomized tests. The upper and lower endpoints of the confidence interval
are the solutions to the equations

PθU
(T < tobs) + U × PθU

(T = tobs) = α/2 (3)

and
PθL

(T > tobs) + (1− U)× PθL
(T = tobs) = α/2. (4)

This was suggested by Stevens (1950) for the binomial parameter, but the
same argument works for other exponential family distributions. This confi-
dence interval inverts tests for which (as in the case of continuous random
variables) the one-sided P-values sum to 1 and each have a uniform null dis-
tribution, unlike the ordinary one-sided P-values used in the tail-method con-
fidence interval.

In order to achieve the nominal size exactly, a randomized confidence in-
terval must have some counterintuitive behavior at the boundary T values.
When T takes its minimum possible value, the lower bound exceeds the small-
est parameter value when U > 1 − α/2; when T takes its maximum possible
value, the upper bound is less than the largest parameter value when U < α/2.

These days statisticians regard randomized inference as a tool for the
mathematical convenience of achieving exactly the desired size or confidence
level with discrete data, but in practice no one seriously considers using it.
However, this method was originally thought to have considerable promise.
For example, Pearson (1950) suggested that statisticians may come to accept
randomization after performing an experiment just as they had gradually
come to accept randomization for the experiment itself. Stevens (1950) stated
“We suppose that most people will find repugnant the idea of adding yet
another random element to a result which is already subject to the errors of
random sampling. But what one is really doing is to eliminate one uncertainty
by introducing a new one. The uncertainty which is eliminated is that of the
true probability that the parameter lies within the calculated interval. It is
because this uncertainty is eliminated that we no longer have to keep ‘on the
safe side’, and can therefore reduce the width of the interval.”

4 Fuzzy Inference using Discrete Data

To address the conservativism issue with randomized procedures but without
the arbitrariness of actually picking a uniform random variable, Geyer and
Meeden (2005) suggested using fuzzy inference. For testing H0 : θ = θ0 with a
desired size α, they defined a fuzzy decision to be a critical function φ(t, α, θ0)
having that size, viewed as a function of the value t of the test statistic T . For
given t, they regarded φ as a function of α and called it a fuzzy P-value. For
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fixed t and α, the function [1−φ(t, α, θ)] is the fuzzy confidence interval. With
T treated as a random variable (for given θ), it has unconditional coverage
probability (1− α). We focus on the fuzzy confidence interval here.

Geyer and Meeden defined the core of the fuzzy confidence interval to be
the set of θ for which [1−φ(t, α, θ) = 1]. They defined the support to be the set
of θ for which [1−φ(t, α, θ) > 0]. Given t, rather than performing the random-
ization, they recommended merely plotting the fuzzy confidence interval. This
is a way of portraying the inference about where θ falls while guaranteeing
achieving exactly the appropriate coverage probability (unconditionally).

Geyer and Meeden proposed fuzzy inferences that are UMP in the one-
sided case and UMPU in the two-sided case, based on standard exponential
family theory. Their two-sided inference is complex to conduct. Details were
not given in their article, but a companion website (http://www.stat.umn.edu/
geyer/fuzz/) shows that computations are complex even for simple cases such
as a single binomial parameter.

In the discussion of Geyer and Meeden (2005), Agresti and Gottard sug-
gested a simpler way to construct two-sided fuzzy inferences directly uses the
randomized tests and randomized confidence interval described in Section 3.4.
We illustrate here for a fuzzy confidence interval. Consider the set of possible
randomized intervals with endpoints determined by (3) and (4). As U increases
from 0 to 1, the lower and upper endpoints are monotonically increasing. Sub-
stituting U = 0 in equations (3) and (4) gives the bounds for a randomized
interval having as lower bound the lower bound from the conservative con-
fidence interval (1). Substituting U = 1 gives the bounds for a randomized
interval having as upper bound the upper bound from the conservative con-
fidence interval (1). Thus, the support of the fuzzy confidence interval is the
ordinary conservative confidence interval (e.g., the Clopper–Pearson interval
for the binomial parameter). The core of the fuzzy confidence interval is the
set of θ values that fall in every one of the possible randomized confidence
intervals. This core goes from the lower bound of the randomized confidence
interval with U = 1 to the upper bound of the randomized confidence interval
with U = 0.

The figure for this fuzzy confidence interval is easily constructed, especially
when t is not at its minimum or maximum value. Consider an arbitrary value
U = u for the uniform random variable. The value that is the lower bound
of the randomized confidence interval with U = u is contained only in all the
randomized confidence intervals with U less than or equal to u. So, for the
given t, the probability 1− φ(t, α, θ) of containing that value is u. So, at the
value θ that is the lower bound of the randomized confidence interval with U =
u, the height of the curve to display the fuzzy confidence interval is u. Likewise,
the value that is the upper bound of the randomized confidence interval with
U = u is contained only in all the randomized confidence intervals with U
greater than or equal to u. So, for the given t, the probability 1 − φ(t, α, θ)
of containing that value is 1 − u. So, at the value θ that is the upper bound
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of the randomized confidence interval with U = u, the height of the curve to
display the fuzzy confidence interval is 1− u.

Figure 3 illustrates both fuzzy 95% confidence intervals for the binomial
parameter θ when n = 10. For t = 0, 1, . . . , 5, this plots 1 − φ(t, 0.05, θ) as a
function of θ; by symmetry, analogous plots apply for t = 6, . . . , 10. Averaged
over t for a given θ, the fuzzy confidence interval has coverage probability
0.95. Our experience shows that the fuzzy confidence interval we presented
above typically has better performance than the Geyer and Meeden UMPU
fuzzy interval, in terms of a more restricted core and support, except when t
is at or very near the boundary.

Fig. 3. Fuzzy confidence intervals (Geyer and Meeden (—) , Agresti and Gottard
(- - -) for binomial data with sample size n = 10, confidence level 1− α = 0.95, and
observed test statistic t = 0, 1, 2, 3, 4, 5.
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5 The Mid-P Quasi-Exact Approach

Our focus in this article has been on exact methods for which the nominal
error probability α is an upper bound for the actual value. In practice, it is
often reasonable to relax this requirement slightly. Conservativeness can be
reduced if the error probability is allowed to go slightly above α for some θ
values.

5.1 The mid-P-value for significance tests

One way to reduce conservatism while continuing to use the exact probabili-
ties from the small-sample distribution uses the mid-P-value (Lancaster 1949,
1961). This replaces Pθ0(T = tobs) in the P-value by (1/2)Pθ0(T = tobs). For
instance, a one-sided right-tail P-value has form

Pθ0(T > tobs) + (1/2)Pθ0(T = tobs).

This type of P-value results from forming the usual type of P-value but with
Parzen’s (1997) mid-distribution function, which is Fmid(t) = P (T ≤ t) −
0.5P (T = t). The mid-P-value = 1− Fmid(tobs).

The mid-P-value depends only on the data, unlike the randomized P-value
(2). The randomized P-value corresponds to a test that achieves the nominal
size, and the mid-P-value replaces U in it by its expected value. Under the null
hypothesis, with discrete distributions the ordinary P-value is stochastically
larger than a uniform random variable. By contrast, the mid-P-value has
null expected value equal to 1/2 (see, e.g., Berry and Armitage 1995). Also,
for the ordinary P-value the sum of the right-tail and left-tail P-values is
1 + Pθ0(T = tobs); for the mid-P-value, this sum is 1. Lancaster’s (1949)
original motivation for proposing the mid-P-value was to create a statistic
that, like the uniform P-value for a continuous random variable, could easily
be combined for several independent samples.

Unlike the P-values discussed previously in this article, the mid-P-value
does not necessarily satisfy Pθ0(P− value ≤ α) ≤ α. With it, it is possible
to exceed the nominal size. However, evaluations of the mid-P-value in a
significance testing format have been encouraging, as summarized next:

Haber (1986) showed that a modification of Fisher’s exact test using the
mid-P-value has actual size near the nominal size, and the power of the mod-
ified test is usually close to that of the randomized UMPU exact test. Hirji,
Tan, and Elashoff (1991) and Seneta and Phipps (2001) had similar size results
for this case in comparisons with various classical tests. Hirji (1991) showed
that the mid-P test worked well for conditional logistic regression (which can
be highly discrete). Hwang and Yang (2001) presented an optimality the-
ory for mid-P-values in 2×2 contingency tables, showing how this P-value is
the expected value of an optimal P-value resulting from a decision-theoretic
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approach. Strawderman and Wells (1998) showed that ordinary P-values ob-
tained with higher-order asymptotic methods without continuity corrections
for discreteness yield performance similar to that of the mid-P-value.

An awkward aspect of exact conditional inference in logistic regression
is that the relevant conditional distribution can be highly discrete. It can
even be degenerate when an explanatory variable is continuous. Potter (2005)
proposed a permutation test that is also a small-sample method but does
not have this disadvantage. The predictor of interest is replaced by residuals
from a linear regression of it on the other explanatory variables. Logistic
regressions are done for permutations of these residuals, and a P-value is
computed by comparing the resulting likelihood-ratio statistics to the original
observed value. Potter noted that in small data sets, this permutation P-value
is usually similar to the mid-P-value for the exact conditional approach.

5.2 Mid-P confidence intervals

One can form confidence intervals that are less conservative than the tradi-
tional discrete one (1) by inverting tests using the mid-P-value. For example,
the upper endpoint of the 95% mid-P confidence interval is the solution to

PθU (T < tobs) + 0.5× PθU (T = tobs) = 0.025.

Berry and Armitage (1995) reviewed this approach. Unlike a randomized con-
fidence interval, the mid-P confidence interval necessarily has lower endpoint
equal to the smallest value in the parameter space when T takes its minimum
value and upper endpoint equal to the largest value in the parameter space
when T takes its maximum value. Mid-P-based inference has the advantage
over other approximate methods, such as large-sample methods, that it uses
the exact distribution.

Confidence intervals based on inverting tests using the mid-P-value cannot
guarantee that coverage probabilities have at least the nominal level. However,
evaluations for a variety of cases have shown that this method still tends to be
somewhat conservative, although necessarily less so than using the ordinary P-
value. For details, see Vollset (1993), Agresti and Coull (1998), and Newcombe
(1998) for the binomial parameter, Agresti (1999) for the odds ratio, Mehta
and Walsh (1992) for a common odds ratio in several 2×2 tables, Vollset, Hirji
and Afifi (1991) for parameters in conditional logistic regression, and Cohen
and Yang (1994) for the Poisson parameter.

Brown, Cai and DasGupta (2001) stated that the mid-P interval for the
binomial parameter approximates closely the most popular interval for the
Bayesian approach, which uses the Jeffreys prior distribution (beta with pa-
rameters 0.5 and 0.5). This relates to work of Routledge (1994), who showed
that for a test of H0: θ ≥ 0.5 against Ha: θ < 0.5, the Bayesian P -value given
by the posterior probability P (θ ≥ 0.5|y) approximately equals the one-sided
mid-P-value for the frequentist binomial test when one uses the Jeffreys’ prior.
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5.3 Performance of mid-P methods for binomial parameter

We illustrate the behavior of mid-P inference for the binomial case. For testing
θ = 0.50 against θ > 0.50, Figure 1 plots the actual size of a nominal size
α = 0.05 test as a function of n for the ordinary exact binomial test and for
the adaptation using the mid-P-value. For θ = 0.50, Figure 2 plots the actual
coverage probability of nominal 95% confidence intervals as a function of n,
for the Clopper–Pearson exact approach and for the mid-P adaptation. In
either case, the actual error probability for the mid-P-based inference tends
to fluctuate around the nominal value.

Fig. 4. Average and first and third quartile coverage probabilities (using a uniform
distribution for θ) of Clopper–Pearson (- - -) and mid-P (—-) confidence intervals
for binomial parameter θ, plotted for n between 5 and 200.
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Likewise, for fixed n and varying θ, the actual error probabilities for mid-
P-based inferences tend to fluctuate around the nominal value, with the vari-
ability of the fluctuations diminishing as n increases. As a consequence, if we
average error probabilities uniformly across the parameter space, the average
tends to be quite close to the nominal level. Figure 4 shows such an average
coverage probability as a function of n, for the ordinary and the mid-P-based
confidence intervals. In this average sense, the ordinary exact interval is very
conservative (even for moderately large n) while the mid-P-based interval is
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slightly conservative. This suggests the mid-P approach is an excellent one to
adopt if one hopes to achieve close to the nominal level in using a method re-
peatedly for various studies in which θ itself varies. For this, one must tolerate
the actual coverage probability being, for some θ, slightly below the nominal
level.

5.4 Software and mid-P inference

For some basic inferences for discrete data, such as tests for a binomial pa-
rameter and Fisher’s exact test for 2×2 tables, StatXact (Cytel 2005) reports
the probability of the observed result as well as the exact P-value. Thus, it is
possible to use its output to obtain the mid-P-value for tests. For inference
about a parameter of a logistic regression model, LogXact can determine the
mid-P-value using a score test or likelihood-ratio test with the exact condi-
tional distribution. However, currently neither software supplies confidence
intervals based on the mid-P-value.

We have prepared an R function for finding the mid-P confidence inter-
val for a binomial parameter. It is available at www.stat.ufl.edu/∼aa/cda/
software.html.
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