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Abstract

The a-stable family of distributions constitutes a generalization of the Gaus-
sian distribution, allowing for asymmetry and thicker tails. Its many useful prop-
erties, including a central limit theorem, are especially appreciated in the financial
field. However, estimation difficulties have up to now hindered itsdiffusion among
practitioners. In this paper we propose an indirect estimation approach to stochas-
tic volatility models with a-stable innovations that exploits, as auxiliary model,
a GARCH(1,1) with ¢-distributed innovations. We consider both cases of heavy-
tailed noise in the returns or in the volatility. The approach isillustrated by means
of adetailed simulation study and an application to currency crises.

1 Introduction

Heavy-tailedness of asset returnsis one of the most prominent stylized facts in finance:
studies questioning the Gaussian random-walk hypothesis and suggesting the use of
a-stable distributions for the modelling of financial returns started appearing in the
sixties, following the seminal works by Mandelbrot (1963) and Fama (1965). The
features and the analytic properties of «-stable distributions are especially appreciated
in the financial field: the fact that the family is closed under linear combination helps
in portfolio analysis (Ortobelli Lozza, Huber & Schwartz 2002) and risk management
(Khindanova, Rachev & Schwartz 2001); the possibility to accommodate for skewness
and heavy tails allows to appropriately measure risk, avoiding to underestimate the
probability of extremelosses; finally, the presence of acentral limit theorem constitutes
a theoretical basis which should lead to prefer the o-stable family over other heavy-
tailed alternatives: since asset returns are commonly thought of as the result of the
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aggregation of the asset allocation decisions of the market participants, the resulting
distributions should arise, in the limit, from a central limit theorem.

However, practical application of models based on «-stable distributions has been
hindered by estimation difficulties. the a-stable density function cannot be expressed
in aclosed form except for very few cases. This difficulty, coupled with the fact that
moments of order greater than or equal to o do not exist whenever o« # 2, has made
impossible the use of standard estimation methods such as maximum likelihood and
method of moments. Researchers have thus proposed aternative estimation proce-
dures, mainly based on quantiles (McCulloch 1986) or on the empirical characteristic
function (Koutrouvelis 1980, Kogon & Williams 1998); those methods however can
only estimate the parameters of the distributions, so that dealing with more complex
models (both linear and nonlinear) based on «a-stable disturbances would require a
two-step estimation approach. In the recent years the availability of fast computing
machines has made possible to employ computationally-intensive estimation; in par-
ticular, likelihood-based inference has been carried out by approximating the density
with the FFT of the characteristic function (Mittnik, Doganoglu & Chenyao 1999) or
with numerical quadrature (Nolan 1997); two indirect approaches have been proposed
by Lombardi & Calzolari (2004) and Garcia, Renault & Veredas (2004). The Bayesian
approach has aso benefited from the introduction of modern computers. simulation-
based MCMC methods have been proposed by Buckle (1995), Qiou & Ravishanker
(1998), Lombardi (2006) and Casarin (2004b).

Severa studies have highlighted that the heavy-tail edness of asset returns can bethe
conseguence of conditional heteroscedasticity (Engle 1982). ARCH models have thus
become very popular, given their ability to account for volatility clustering and, implic-
itly, heavy-tailedness at the same time. The introduction of this alternative way to deal
with heavy-tailedness, coupled with the above-mentioned estimation difficulties, has
somehow dampened the academic interest in «-stable distributions. A notable excep-
tion was an interesting analysis of the relation between GARCH models and a-stable
distributions proposed by de Vries (1991) and Ghose & Kroner (1995). However, it
must be remarked that, in practice, GARCH models are seldom able to accommodate
for the excess of kurtosis: the standardized residuals are often found to be still lep-
tokurtic. Thus, practitioners often use GARCH models with ¢-distributed innovations
(Fiorentini, Sentana & Calzolari 2003), although it has to be remarked that GARCH
models with a-stable innovations have been proposed by McCulloch (1985), Liu &
Brorsen (1995) and Panorska, Mittnik, & Rachev (1995).

A widely employed alternative to ARCH-type models is represented by stochastic
volatility models (Taylor 1986): their close relationship with continuous-time diffu-
sions makes them particularly appreciated in what they can bridge the most recent
results of the theoretical finance literature. However, even in the simplest Gaussian
SV case, the estimation is complicated by the latent structure of the model; indirect
estimation approach were proposed by Gallant, Hsieh & Tauchen (1997), Monfardini
(1998) and Calzolari, Fiorentini & Sentana (2004)

In this paper we show how stochastic volatility models with «-stable innovations
can be estimated using an indirect estimation approach. Traditionally, heavy tailsin the
setting of SV models have been accounted for using ¢-distributed innovations (Chib,
Nardari & Shephard 2002); arecent exception is Casarin (2004a), where a simulation-



based Bayesian approach to astochastic volatility model with symmetric o-stable noise
is proposed. Our opinion is that the use of «-stable distributions should be preferred:
first because of the presence of the generalized central limit theorem, second because
of the availability of formal option pricing schemes. For example, Hurst, Platen &
Rachev (1999) consider log-symmetric prices for the assets, and in McCulloch (2003)
and Carr & Wu (2003) the symmetry assumption is relaxed; Cartea & Howison (2006)
also consider the more appealing case of time-varying volatility with «-stable shocks.

As auxiliary model, we will employ a GARCH model with skew-t-distributed in-
novations; this in a sense mimics the approach followed by Calzolari et al. (2004) for
the indirect estimation of stochastic volatility models. We will first examine the com-
pliance of the auxiliary model with the conditions required to ensure consistency; then,
adetailed simulation study aimed at assessing the properties of the estimators will be
conducted. An application to exchangerate crises will conclude the paper.

2 «-Stabledistributions

The a-stable family of distributionsisidentified by means of the characteristic function

p1(t) = )

exp
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which depends on four parameters: « € (0, 2], measuring the tail thickness (thicker
tails for smaller values of the parameter), 5 € [—1, 1] determining the degree and sign
of asymmetry, v > 0 (scale) and §; € R (location). The distribution will be denoted as
S1(a, 8,7, do).

While the characteristic function (1) has a quite manageable expression and can
straightforwardly produce severa interesting analytic results, it unfortunately has a
major drawback for what concerns estimation and inferential purposes: it is not con-
tinuous with respect to the parameters, having apoleat o = 1.

An dternative way to write the characteristic function that overcomesthis problem,
dueto Zolotarev (1986), is the following:
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Inthis case, the distribution will be denoted as Sy («, 3,7, dp). The formulation of the
characteristic function is, in this case, more cumbersome, and the analytic properties
have less intuitive meaning; but it is much more useful for statistical purposes and,
unless otherwise stated, we will refer to it in the following. The only parameter that
needs to be “trandated” according to the following relationship is ¢:
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On the basis of the above equations, a S;(a, 8,1, 0) distribution corresponds to a
So(e, 3,1, — 3~ tan =2 ), provided that o # 1.

Unfortunately, (1) and (2) cannot be analytically inverted to yield a closed-form
density function except for very few cases: o = 2, corresponding to the normal distri-
bution, « = 1 and ﬁ = 0, yielding the Cauchy distribution, and oo = 275 41 for the
Lévy distribution. We remark that, in the case of the normal distribution, 3 becomes
unidentified.

Despite the computational burden associated with the evaluation of the probability
density function, stably distributed pseudo-random numbers can be straightforwardly
simulated using the agorithm proposed in Chambers, Mallows & Stuck (1976) and
Chambers, Mallows & Stuck (1987). Let W be arandom variable with exponential dis-
tribution of mean 1 and let U be an uniformly distributed random variableon [—%, Z].
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has Sy (a, 6,1, 0) distribution. Random numbers for the general case containing also
thelocation and scale parameters § and -y may be strai ghtforwardly obtained exploiting
thefactthat, if X ~ S1(«, 5,7,9),thenZ = T ~ 81(a, 5,1,0). Similarly, random
numbers from an «-stable distribution expressed in parametrization (1) can be readily
obtained using (3). Inwhat follows, we will often omit the subscript and the parameters
~ and d; we will use the shorthand notation

S( ﬁ) Sl( 76) 70)

2.1 «-Stablestochastic volatility models

Stochastic volatility models have been studied extensively by Taylor (1986) as an al-
ternative to ARCH models. Their main advantage is that they can be regarded as the
discrete time analog of the continuous time stochastic processes for instantaneous log
volatility frequently used in the theoretical finance literature. A standard stochastic
volatility model is composed of a latent volatility equation and of an observed return
eguation:;

Inh; = 0+¢lnhi_1+ opvy, (5)

e = wey hy;
in the most simple case, the noise terms v; and w; are assumed to be Gaussian and
uncorrelated. The latent structure of the model makes inference troublesome, as the

likelihood cannot be expressed in closed form. The estimation is therefore carried out
using QML and the Kalman filter (Harvey, Ruiz & Shephard 1994), Bayesian MCMC



techniques (Jacquier, Polson & Rossi 1994, Kim, Shephard & Chib 1998) or indirect
approaches (Gallant et al. 1997, Monfardini 1998, Calzolari et a. 2004).

The Gaussian assumption is often unsatisfactory for applied purposes, as observed
series tend to be heavy-tailed and display discontinuities. Therefore, several studies
(Chib et al. 2002, Jacquier, Polson & Rossi 2004) have considered the possibility to
employ ¢-distributed innovationsin the return equation. Nevertheless, the use of ¢ dis-
tributionsisarbitrary and in a sense dampens most of the theoretical appea of SV mod-
els: the resulting continuous-time process is not anymore a Brownian motion, whichis
arequirement of most of the theoretical finance literature.

In order to account for possible discontinuities which may result from surprise
events, it has also been proposed to introduce jump components in the observation
equation or in the variance equation; the role of jumpsin the structure of the model is
discussed in detail by Eraker, Johannes & Polson (2003). Thedecision to includejumps
in the observation or in the state equation (or in both) is not neutral and has different
effects on the pattern of the volatility. Most of the research up to now has concentrated
on heavy tails and jumpsin the observation equation. Thisimpliesthat shocks are tran-
sient and, contrary to what would happenin a GARCH framework, have no subsequent
impact on volatility. Therefore, using Gaussian innovations in the volatility equation,
in order to achieve arapid increase in volatility similar to that observedin real datasets,
one would need an unlikely long sequence of positive innovations. Instead, jumpsin
volatility have been widely documented (Bates 2000): in order to account for that, one
can either introduce jJumps or consider distributions with heavier tails.

In this setting, a-stable distributions are peculiar in what they generate processes
with discontinuities (McCulloch 1978) that can, in a way, be interpreted as jumps. It
is also interesting to remark that the inclusion of a jump component yields an uncon-
ditional mixture of normals representation; this parallels with the fact that symmetric
a-stable distributions can actually be represented as scale mixtures of normals.

To the best of our knowledge, the first explicit appearance of «-stable distributions
in the setting of stochastic volatility model isin Casarin (2004a), in which a stochastic
volatility model with symmetric a-stable innovations in the returns equation is esti-
mated via Sequential Monte Carlo methods:

Inh; = d+elnhi_y+opvy, v ~N(0,1), (6)

T = Wt ht, we ~ S(O{, 0)

Such a model represents a very natural way to incorporate a-stable distributions but
it presents a number of inconvenients. In the first place, it does not allow heavy tails
to interact with the volatility pattern: contrary to GARCH models, in a SV framework
the evolution of the volatility is determined uniquely by its past values. Therefore,
the spikes observed in the returns have no impact on the volatility pattern. This can
in certain cases be a positive feature, but our feeling is that in the majority of the
situations extreme returns are supposed to impact positively on the volatility. A second
shortcomingisthat allowing for a-stableinnovationsin the returnsequationis bound to
deterioratethe quality of the estimates, as heavy tails make more difficult to reconstruct
the latent volatility pattern. Another remark is that, whereas returns are conditionally
a-stable, their unconditional distribution is a scale mixture of a-stable distributions



with mixing weights given by the square root of a log-normal distribution; this yields
an unknown distributional form. Wewill refer to this model with the shorthand notation
SV SR (Stochastic Volatility with Stable Returns).

de Vries (1991) examines the relation between GARCH and stable processes and
proposes an a-stable quasi-GARCH specification:

hy = @hi 1+ opve1, vtND(Oal)v (7)
e = wiy Ry, thD(OJ),

where D(0, 1) denotes a generic distribution with zero mean and unit variance. When
onesats vy—1 = w—1, the above specification is very similar to a GARCH (1, 1). If
instead one employs

hy = ¢hi1+opvi1, v ~S(2,1), (8)
e = Wt ht, we ~ N(O, 1),

it is shown (de Vries 1991) that the unconditional distribution of the returnsis a-stable
with characteristic exponent o. The model is indicated as Stable Subordination with
Conditiona Scaling (SSCS), but can in actual facts thought of as a particular form of
stochastic volatility. This model has very nice theoretical properties, as returns are
conditionally Gaussian and unconditionally stable. However, it must be remarked that
having perfectly skewed innovations in the volatility equation may be undesirable, as
shocks are necessarily positive, and may also yield unrealistic patterns of volatility. A
consequence of the positivity of the shocksis that the estimates on real dataindicate a
very small degree of persistence’: since negative innovations are not allowed, in order
for the volatility to decrease redlistically after a shock it is necessary to have alow .
We furthermore remark that the specification above does not include a constant in the
volatility equation, and the unconditional distribution of /; isS(%,+,0), where

2

o
1

Y=® o :
1—0}?

It follows that, contrary to what happens in traditional stochastic volatility specifica-
tions, in this case the scale of the returnsis determined uniquely by ¢ and o, whichis
definitely not desirable.

An dternative approach could be to consider a more traditional SV specification
alowing for a-stable innovations in the volatility equation, but without necessarily
restricting « to be less than one:

Inhy = d+plnhi_1 +opvy, v ~S(a,1), 9
e = wiy e, wy ~ N(0,1).

Such a model aso allows for negative shocks in the volatility whenever o > 1 and
yields a smoother pattern of volatility. Of course, positive jumps that tend to be less

1The estimates reported in de Vries (1991) point to values between 0.15 and 0.45, and our application to
real datayields similar results.
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Figure 1. Simulated volatility (left panels) and returns (right panels) for model (6) (top
panel, a = 1.9), model (8) (central panel, o = 1.8) and (9) (bottom panel, o = 1.7).

frequent as o approaches 2, since the skewness parameter 3 |oses relevance aswe move
towards a Gaussian distribution. In this case, the returns have conditional Gaussian
distribution, but their unconditional distribution is unknown, as it is given by a scale
mixture of normalswith weights given by alog-stable distribution. This model will be
denoted a Stochastic Volatility with Stable Volatility (SVSV).

To illustrate the three different approaches outlined above and convince the reader
that «-stable distributions can appropriately model jumps and generate plausible pat-
terns of volatility, we report (Figure 1) the simulated paths of volatility and returns
for each of the models under scrutiny. For the SVSR model, o was fixed to 1.9 (with
8 = 0), for model SSCS we employ the same « and 3 = 1 and finally in model SVSV
we employed o = 1.7 (with 3 = 1). The parameters of the volatility equation for
models SVSV and SVSR were fixedto § = —0.15, ¢ = 0.98, o, = 0.06, whereas
for model SSCS we use ¢ = 0.35 and o, = 0.015, values similar to the estimates
reported in de Vries (1991) on exchange rate data. We observe that the inclusion of
the heavy-tailed noise in the observation equation generates spikes in the pattern of
returns, but is unable to yield aredlistic pattern of the volatility. The SSCS model also
yields a not very persistent pattern of volatility, with very frequent spikes in returns.
On the other hand, the SVSV model yields in our opinion more redlistic patterns of
volatility, with shocks rapidly increasing the volatility and then fading away smoothly.
The volatility clustering pattern in the returns is much more visible, but no transient
shocks are allowed in the SVSV case.



To sum up, the use of a-stable distributions should be in our opinion preferable
over other heavy-tailed distributions and/or jumps for three different reasons:

— The presence of the central limit theorem should justify the arising of such a
kind of distributions in the volatility setting: if (log-)volatility is thought of as
the stream of news arriving to the market, then it is natural to assume it to be
composed of alarge number of individual contributions of each event;

— In continuous time, the «a-stable generalization of the Brownian motion (the
«-Stable Lévy moation) has been studied extensively (Samorodnitsky & Tagqu
1994, Janicki & Weron 1994). Finance theorists have widely exploited the a-
stable assumption and several models are available, ranging from asset allocation
to option pricing (see, for an excellent survey, McCulloch (1996));

— Unlike Brownian motions, Lévy mations are not aimost surely continuous, but
instead they are amost surely dense with discontinuities (McCulloch 1978); this
means they can actually account for empirically-observed jumps without having
to include a separate jJump component.

3 Theindirect estimation approach

The indirect estimation (Gouriéroux, Monfort & Renault 1993) is an inferentia ap-
proach which is suitable for situations where the estimation of the statistical model of
interest is too difficult to be performed directly while it is straightforward to produce
simulated values from the same model. It was first motivated by econometric models
with latent variables, but it can be appliedin virtually every situation in which the direct
maximization of the likelihood function turns out to be difficult.

The principle underlying “indirect inference” (Gouriéroux et a. 1993) is very sim-
ple: suppose we have a sample of T' observations y and a model whose likelihood
function L*(y; 0) is difficult to handle and maximize; the model could also depend
on amatrix of explanatory variables X. The maximum likelihood estimate of § € ©,
given by

T
0 = arg max 2 In £*(0; ),
is thus unavailable. Let us now take an aternative model, depending on a parameter
vector ¢ € Z, whichwill beindicated asauxiliary model, easier to handle, and suppose
we decideto useit in the place of the original one. Sincethe model is misspecified, the
quasi-ML estimator

T
— In £(¢;
¢ argxgeag; 0 L(C; ),

is not necessarily consistent: the idea is to exploit simulations performed under the
original model to correct for inconsistency.

The first step consists of computing the quasi maximum likelihood estimate of ¢,
which will be denoted as ¢. Next, one simulates a set of S vectors of size 7' from



the original mode! on the basis of an arbitrary parameter vector 6O Let us denote
the observations of these vectors as ¢ (/(*)). The simulated values are then estimated
using the auxiliary model, yielding

C(0) = arg maxz Zlnﬁ {C y3 (9O )} (20)
s=1t=1

Theideaisto numerically updatetheinitial guess 6(©) in order to minimizethe distance

c-co] e[t~ (1)

where Q2 is a symmetric nonnegative matrix defining the metric.
An dternative but similar approach, leading to the so-called EMM (Gallant &
Tauchen 1996), considers directly the score function of the auxiliary model:

O LGy
) It) 12
g R (12)

which is clearly zero for the quasi-maximum likelihood estimator ( Theideaisto
make as close as possible to zero the score computed on the simulated observations,
namely

S L o LGy '
argmln{zz Cy G )]|< 5}

s=1t=1

(1]

S T
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where = is a symmetric nonnegative definite matrix. This approach is especially useful
when an analytic expression for the gradient of the auxiliary model isavailable, sinceit
allows us to avoid the numerical optimization routine for the computation of the ¢ (9)s.

Indirect estimators are consistent and asymptotically normal under certain regular-
ity conditions. The most difficult oneto establish isthat the binding function, that isthe
function that maps the parameter (sub-)space of the auxiliary model onto the parame-
ter space of the true model, is one-to-one. In general, the binding function cannot be
expressed analytically and the above condition needs to be verified numericaly. It is
clear that the choice of the auxiliary model is crucia for the successful implementation
of the algorithm: see for instance Heggland & Frigessi (2004) for further details con-
cerning the desirable properties of the auxiliary model for the “just-identified” case and
Gallant & Tauchen (1996) for a particular and “ over-identified” choice of the auxiliary
model producing efficient estimators.

Once one manages to specify an adequate auxiliary model, indirect estimators for
the parameters of «-stable distributions can be readily implemented and exploited by
relying on the pseudo-random number generator of Chambers et a. (1976).

3.1 Indirect estimation of stochastic volatility models

We will here discuss the indirect estimation of the three stochastic volatility specifi-
cations outlined above, namely the SVSR (6), the SSCS (8) and the SVSV (9). The



characteristic exponent o will be constrainedinsidetehinterval (1, 2) for modelsSVSR
and SVSV and inside (0, 1) for model SSCS; the persistence parameter o will also be
constrained inside (—1, 1) to ensure stationarity of the volatility.

Cazolari et a. (2004) employ a GARCH with Student’s ¢ innovations as an over-
identified auxiliary model for the indirect estimation of a Gaussian stochastic volatility
model. This choice could be fruitful also in our case, as the degrees of freedom of the ¢
distribution are naturally linked to the characteristic exponent « in determining the tail
thickness.

We will express the ¢ distribution in terms of n = v~!, where v are the degrees
of freedom, and we constrain n on (0.01,1). On the lower bound, the auxiliary dis-
tribution is very close to the Gaussian, while on the upper bound it corresponds to an
a-stable distribution with o = 1. It isimportant to remark that here, contrary to Cal-
zolari et al. (2004), we do not employ the standardized version of the ¢ distribution and
we allow for values of 7 that giverise to distributions with infinite variance (n > 0.5).
Thischoicewas madewith the goal of avoiding the degreesof freedom to clash ontheir
lower bound because of the heavier-tailedness of the true model. Theonly caveat isthat
h cannot be interpreted anymore as a conditional variance: when v < 2 the variance
isinfinite and when v > 2 the conditional variance will be determined as Vh_'é. There-
fore, wewill see h; asascale parameter. Thefact that the auxiliary model may produce
infinite variancesis not a limitation in our opinion: in the case of a-stable noisein the
observation equation (6), the variance of the returns is infinite in the true model as
well and the volatility equation yields only atime-varying scale parameter. When the
a-stable noise is employed in the variance equation, on the other hand, the returns do
havefinite variance— given by h, — but the variance of the volatility, whichisrelated to
the fourth moment of returns, isinfinite because of the a-stable innovations. Therefore
the parameter o5, would not be interpreted as the variance of the (log-)volatility, but
rather as a simple scale coefficient.

To sum up, the auxiliary model will be:

hy = w+ 1117}2,1 + Bhi—y (14)

ry = ug\/ he, Ut ~ 1 /)

In order to ensure non-negativity of the conditional variancein the auxiliary model,
we will imposew > 0,4 > 0and 5 > 0 (Nelson & Cao 1992); to safeguard against
weird asymptotic behavior of the QML estimator (Lumsdaine 1996) we will also en-
force the constraint ¢ + 5 < 1. Inthe case v = 0, it turns out (Andrews 1999) that
[ gets asymptotically unidentified; we will thereforeimpose ¢ > ¢, with ¢ arbitrarily
small.

Sections of the binding functionsfor models (6), (8) and (9) are plotted in Figure 3,
4 and 5, respectively, and signal that such auxiliary model could be appropriatein all
cases. In particular, we observe that the persistence parameter ¢ is, as expected, linked
to both 8 and ¢. Also the scale of the innovations in the volatility equation depend
on the ARCH and GARCH coefficients, abeit in a different fashion: an increase in
o, causes an increase in 3 and a decrease in ¢». This effect is caused by the fact that
bigger innovationsin the volatility in the SV model cannot be captured by the ARCH
coefficient, which is related to innovationsin the returns, and need to be discounted by

10



the past volatility dynamics which is controlled viathe GARCH coefficient.

We also remark that the binding function seems to behave quite similarly for all
three models; some differences arise with respect to the sections o — v. The relation
between the tail-thickness parameters is more smooth in model (9) and the degrees of
freedom of the auxiliary model do not appear to explode to co. This could be caused
by thefact that, when allowing for heavy tailsin the volatility equation, also very small
shocks may, by means of the multiplicative effect, yield a pattern in the returnsthat can
be captured only viatails heavier than the Gaussian.

3.2 Simulation results

In order to evaluate the performance of the proposed estimator, we have conducted
a simulation exercise; all the results are based on a set of 1000 replications of the
indirect estimation, with S = 10. We will use three different sample sizes. 1000, 3000
and 5000 observations.

For models SV SR and SV SV, which are more traditional stochastic volatility spec-
ifications, we will use two sets parameters in the stochastic volatility equation with
various choices of the characteristic index «, namely one that roughly matches typical
values obtained on weekly returns (6 = —0.7, ¢ = 0.9, o, = 0.35) and one roughly
matching daily returns (6 = —0.15, ¢ = 0.98, o, = 0.06); the simulation design is
therefore similar to that of Jacquier et al. (1994) and Calzolari et a. (2004). For the
model SSCS, we will instead use values similar to the estimates reported by de Vries
(1991), namely ¢ = 0.3 and o}, = 0.015.

Asremarked by Jacquier et al. (1994) in the SV setting, a parameter set yielding a
low signal-to-noise-ratio (SNR) is bound to give rise to estimation difficulties. In the
a-stable case, however, some caveats are necessary. In the Gaussian SV model, the
(power) SNRis:

Var(hy)  Var(hy)
SNRz = Var(r;)  E(hy)?’

Employing the above expression under model (6) yields a SNR of zero, whereas for
models (8) and (9) the SNR becomes infinite. An aternative which is often use in
signal processing isto consider

E|ht|

SNRjp = Blre|

When the a-stable noise is in the observation equation (6), this choice would lead to
anonzero quantity aslong as « > 1. In the other two cases, however, the numerator
would be the expected value of, respectively, a perfectly skewed stable and alog-stable
random variable, which are unfortunately infinite.

In Tables 1 and 2 we report, respectively, the outcome of the simulation experiment
on the model (6) with the first and the second parameter set and for different values
of . We remind that in this case we only consider symmetric distributions, therefore
(3 is fixed to 0. First of all, we remark that in the case with high SNR (Table 1), the
estimation went smoothly and the results are very satisfactory. While the parameter «
is estimated with strong precision, the parametersin the volatility equation have larger

11



Table 1. Monte Carlo mean and standard error (in parentheses) for the first set of
parameters (6 = —0.7, ¢ = 0.9, o, = 0.35) and various values of «;, SV SR model (6).
Therows“Time” report the average time to convergence (in seconds) of one iteration.

a=1.8 a=1.9
T =1000 T =3000 7T =5000|7T=1000 T =3000 T = 5000

« 1.8279 1.8145 1.8096 1.9104 1.9052 1.9040

(0.0848) (0.0551) (0.0447) (0.0593) (0.0384) (0.0304)
6 —1.0493 -0.8785 -0.8351 -0.8682 -0.7528 —0.7449

(1.0936) (0.7286) (0.6373) (0.6778) (0.3757) (0.3076)
® 0.8502 0.8744 0.8807 0.8762 0.8924 0.8936

(0.1559) (0.1042) (0.0909) (0.0964) (0.0535) (0.0439)
on 0.4038 0.3816 0.3720 0.3737 0.3590 0.3577

(0.2599) (0.1829) (0.1569) (0.1710) (0.1071) (0.0891)
Time 6.5613 6.2942 5.7529 3.1315 3.0858 2.7685

a=1.95 a=1.99
T =1000 T =3000 7T =5000|7T=1000 T =3000 T = 5000

« 1.9515 1.9526 1.9525 1.9798 1.9851 1.9870

(0.0440) (0.0304) (0.0249) (0.0279) (0.0177) (0.0147)
é -0.8019 -0.7349 -0.7299 -0.7201 -0.6967 -0.7017

(0.4879) (0.2687) (0.2148) (0.2898) (0.1772) (0.1380)
® 0.8856 0.8950 0.8958 0.8974 0.9005 0.8998

(0.0696) (0.0382) (0.0306) (0.0411) (0.0251) (0.0196)
on 0.3609 0.3564 0.3555 0.3377 0.3437 0.3465

(0.1234) (0.0806) (0.0661) (0.0792) (0.0535) (0.0426)
Time 4.1063 45971 4.7299 49718 10.8701 15.9124

standard errors, especially in the presence of heavier tails. Thisis of course consistent
with theimpact of heavy tails onthe SNR we have discussed above. For what concerns
the execution time, we notice aweird effect: for smaller values of « the a gorithm takes
lesstimeto estimate larger sample sizes. Thisisrelated to thefact that, when heavy tails
are involved, having more observations implies a clearer picture of the tail behavior:
therefore, working with smaller sample sizes may imply convergence difficulties. On
the other hand, we remark that, not surprisingly, slow convergence arises also when
a isvery close to 2. In that case, since no heavy-tailed behavior has to be observed,
the sample size constitutes an hinderance and considerably increases the computational
time.

When the lower SNR is concerned (Table 2), the performance of the indirect es-
timator worsens dramatically. While the performance of the estimator for oo remains
satisfactory, we have found a considerable distortion and inefficiency for the estima-
tors of the parameters in the volatility equation. As we have previously remarked,
smaller values of o do impact negatively on the performance of the estimator as they
imply aneven smaller SNR» . A control experiment? aimed at assessing the asymptotic

2Resuilts are not reported here for the sake of brevity, but are available upon request.
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Table 2: Monte Carlo mean and standard error (in parentheses) for the second set
of parameters (0 = —0.15, ¢ = 0.98, o}, = 0.06) and various values of «, SVSR
model (6). Therows“Time” report the average time to convergence (in seconds) of one
iteration.

a=1.8 a=1.9
T =1000 7T =3000 T =5000|7T=1000 T =3000 T = 5000
« 1.8238 1.8171 1.8152 1.9105 1.9087 1.9079
(0.0697) (0.0474) (0.0433) (0.0527) (0.0340) (0.0280)
1) -0.5966 -0.5100 -0.4879 -0.6110 -0.4651 -0.41%4
(1.5701) (1.4438) (1.4170) (1.3140) (1.0989) (1.0787)
%) 0.9206 0.9320 0.9351 0.9187 0.9381 0.9448
(0.2086) (0.1924) (0.1884) (0.1748) (0.1459) (0.1431)
on 0.1006 0.0880 0.0831 0.1001 0.0871 0.0807

(0.1625)  (0.1415)  (0.1411) | (0.1390)  (0.1215)  (0.1125)
Time | 30.401 51.324 55.424 26.958 41.921 49.806

a=195 a=1.99
T =1000 T =3000 T =5000|7=1000 T =3000 T = 5000
o 1.9557 1.9546 1.9537 1.9894 1.9907 1.9911
(0.0388)  (0.0240)  (0.0190) | (0.0168)  (0.0111)  (0.0083)
) 06050 —0.4250 -0.3442 | —0.4967 -0.3449 —0.2721
(1.0634)  (0.8120)  (0.7156) | (0.7239)  (0.4161)  (0.3416)
® 0.9195 0.9434 0.9542 0.9340 0.9541 0.9638
(0.1403)  (0.1077)  (0.0948) | (0.0961)  (0.0552)  (0.0453)
on 0.1047 0.0878 0.0787 0.0900 0.0862 0.0774

(0.1212)  (0.0917)  (0.0774) | (0.0826)  (0.0507)  (0.0412)
Time | 22538 38.572 44.821 21.043 28.319 32.605

properties of the estimator confirmed indeed its consistency, but it took over 200000
observationsto achieve reasonable accuracy. Inthiscase, it isinteresting to remark that
the weird effect of sample size on computational time highlighted aboveis not present:
smaller values of o —implying alower SNR — and larger sample sizes alwaysimply an
increase in the computational burden.

When one moves to consider model (9), the situation is completely changed. We
report only the “difficult” case (low SNR, parameter values § = —0.15, ¢ = 0.98,
on = 0.06, 6 = 1 and various values of «). In this case, as we have pointed out,
an heavier-tailed noise yields a clearer signal and therefore facilitates the estimation.
In actual facts, we observe that in this case, the estimators of the volatility parameters
are much more precise, whereas the additional uncertainty carried by the heavy-tailed
noiseis discounted in larger standard errorsfor the estimator of «.

Finaly, we will consider the estimation of the SSCS model (8). In this case we
will only consider o = 1.6 and o = 1.8, as values close to 2 have no specific interest
in this specification. The estimation of this model appears quite straightforward and
very quick, albeit it has to be remarked that this model has one parameter |ess than the
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Table 3: Monte Carlo mean and standard error (in parentheses) for the second set
of parameters (0 = —0.15, ¢ = 0.98, o, = 0.06) and various values of a, SVSV
model (9). Therows“Time” report the average time to convergence (in seconds) of one
iteration.

a=1.5 a=1.7
T =1000 T =3000 T =5000|7T=1000 T =3000 T = 5000
« 1.5454 1.5119 1.5041 1.7083 1.6826 1.6992
(0.3568) (0.3216) (0.2984) (0.3546) (0.3111) (0.2743)
1) -0.2747 -0.2252 -0.1961 -0.2235 -0.1614 -0.1604
(0.5756) (0.3133) (0.2757) (0.3240) (0.1163) (0.1046)
%) 0.9616 0.9626 0.9663 0.9691 0.9779 0.9783
(0.0753) (0.0695) (0.0662) (0.0437) (0.0145) (0.0132)
on 0.0950 0.0806 0.0712 0.0754 0.0667 0.0667

(0.1181)  (0.0935)  (0.0854) | (0.0570)  (0.0466)  (0.0437)
Time 13.969 46.351 61.503 11.819 36.843 53.529

a=1.9 a=1.95
T =1000 T =3000 T =5000|7T=1000 T =3000 T = 5000
«@ 1.7783 1.8053 1.8468 1.8020 1.8373 1.8762
(0.3204) (0.2632) (0.2134) (0.3060) (0.2418) (0.1877)
1) -0.2761 -0.1715 -0.1614 -0.2061 -0.1782 -0.1631
(0.3913) (0.0925) (0.0670) (0.3532) (0.0999) (0.0674)
%) 0.9628 0.9770 0.9784 0.9603 0.9761 0.9782
(0.0537) (0.0121) (0.0087) (0.0461) (0.0132) (0.0089)
on 0.0639 0.0574 0.0586 0.0617 0.0556 0.0560

(0.0448)  (0.0305)  (0.0248) | (0.0426)  (0.0273)  (0.0220)
Time | 12482 19.632 28.461 13.713 21.043 31.899
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Table4: Monte Carlo mean and standard error (in parentheses) for parameters = 0.3,
or = 0.015 and various values of «, SSCS model (8). The rows “Time” report the
average time to convergence (in seconds) of oneiteration.

a=1.6 a=1.8
T =1000 T =3000 7T =5000|7T=1000 T =3000 T = 5000
« 1.6125 1.6034 1.6033 1.8172 1.8048 1.8046
(0.0486) (0.0252) (0.0201) (0.0544) (0.0298) (0.0225)
® 0.2965 0.2992 0.2993 0.2860 0.2956 0.2968
(0.0679) (0.0313) (0.0248) (0.1307) (0.0668) (0.0456)
on 0.0145 0.0149 0.0149 0.0139 0.0147 0.0148
(0.0025) (0.0014) (0.0011) (0.0043) (0.0024) (0.0018)
Time 3.001 7.393 11.334 4.659 9.711 13.398

others. It is aso interesting to remark that smaller values of « imply a clearer signal
and, therefore, yield smaller standard errors.

3.3 Anempirical application

In this subsection, we will apply the models we have introduced to the analysis of two
currency crises. Thisis arather new type of application for a-stable distributions, but
we see it as very illustrative. A recent paper by Hartmann, Straetmans & de Vries
(2004) actualy points out that, when the exchange rate fundamentals are heavy-tailed,
currency crises tend to spread across different countries. Although their analysis does
not involve any kind of nonlinearity in returns, it shall nevertheless be considered as a
good argument supporting the use of heavy-tailed distributions, as most of the currency
crises that targeted a specific country eventually spread to its neighbors.

From a practical perspective, the patterns of volatility and returns generated during
currency crises are very interesting: monetary authorities who let the exchange rate
float inside a certain band are sometimes forced to switch to afree floating regime, and
it may take quite a while before the monetary authority can attempt to enforce a new
floating band. In this case, abandoning a managed floating regime has a strong impact
of volatility, and such a shock will be absorbed as soon as the new floating band is
adopted.

The exchange rate pattern of the British Pound against the Deutsche Mark is very
interesting, and in our opinion is a very good example on which the models we have
discussed can beillustrated. Britain did not enter the ERM as it was launched in 1979
and concentrated instead on controlling inflation via a tight monetary policy with free
floating exchange rate. As inflation stabilized, between 1987 and 1988, the mone-
tary authorities decided to enforce a managed floating regime shadowing the Deutsche
Mark. Findly, in October 1990, the Pound entered the ERM with a floating band of
+6%, instead of the usual +2.25% adopted by the other currencies. During Septem-
ber 1992, a speculative attack targeted the British Pound and some other European
currencies, eventually forcing the monetary authority to abandon the ERM.
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Figure 2: Exchange rate of the British pound against the Deutsche Mark (left) and
returns (right), January 1, 1987 to December 31, 1995.

In a sense, the British monetary authorities have tried, for a period of about five
years, to manage the exchange rate against the Deutsche Mark first by adopting an
informal shadowing, and later by committing themselves to the ERM. Of course, this
has exposed the Pound to strong pressure that culminated in the successful specula-
tive attack on September 16, 1992. The evolution of the exchange rate of the British
Pound against the Deutsche Mark between 1987 and 1995 (3287 daily observations) is
depicted in figure 2.

First of all, we filtered the returns on the exchange rate by means of an AR(1)
modelsin order to remove correlation in the levels. Then, the three SV specifications
outlined above were estimated using the AR(1) residuals. It is very illustrative to com-
pare the results obtained on the parameters ¢ and . For what concerns ¢, using a
Gaussian distribution in the volatility equation, as in model SV SR, yields the higher
persistence, whereas model SSCS, as already noted by de Vries (1991), has the small-
est persistence of the volatility. Model SVSV, as it could be envisaged, is somehow
in between. Turning our attention to «, we remark that, as expected according to the
theoretical considerations made above, it has nearly the same value for models SSCS
and SV SR; for model SV SV, instead, the degree of heavy-tailedness appears smaller.

4 Conclusions

In this paper, we have considered three different stochastic volatility models that al-
low for a-stable innovations in the returns equation and the volatility equation. An
indirect estimation approach has been proposed and its properties have been examined
in a simulation study. The models under consideration imply very different patterns
of volatility, and we have considered their application to currency crises. Of course,
the example we report should not be considered as evidence in favor of the very sim-
ple stochastic mechanism implied by the SV model with respect to more complex and
somehow structural approaches. We just point out that, allowing for «-stable innova-
tionsin the returns or in the volatility equation may yield realistic patterns. A similar
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Table 5: Estimate and standard error (in parentheses) of the parameters of models (9)
and (6) for the returns of the exchange rate of the British Pound versus the Deutsche
Mark; January 1, 1987 to December 31, 1995.

Model (6), SVSR
« 1) (2 Oh
1.7963 -0.0076 0.9938 0.0940
©) ©) ©) ©)

Model (8), SSCS
e’ 14 Oh
1.7940 0.2769 0.0404
©) ©) ©)
Model (9), SVSV
@ 1) ® oh

19198 -0.5877 0.5920 0.4893
) (0) () (0.
Auxiliary Model
n w v &
0.2862 0.0002 0.0367 0.9278
) (0) () (0.

issue isin a sense addressed by Davidson (2004), who shows that patterns very similar
to those observed during currency crises can be obtained by allowing a sequence of
shocksin along-memory HY GARCH model.

In our analysis, we have considered jumps either in the state or in the observation
equation. A natural extension will be, as suggested also by Eraker et al. (2003), to
alow for jumps in both; this could be accomplished by using bivariate o-stable distri-
butions. In actual facts, since the normal distribution is a particular case of a-stable
distribution, such a model would nest both a standard Gaussian stochastic volatility
framework and the models we have considered in this paper. Representing the vector
[ve, w] by means of abivariate -stable distribution would also alow to include corre-
|ation among the two innovations, as proposed for example by Jacquier et a. (2004) in
the setting of ¢-distributed innovations. Simulating random numbers from a bivariate
a-stable distribution is straightforward (Modarres & Nolan 1994), therefore an indirect
estimation approach could be fruitful also in this case. One possible shortcoming of
this approach could be that the tail-thickness parameter o has to be the same for both
terms of the noise: this could yield unrealistic results as jumps in the volatility are
usually more frequent than in returns. Another possible approach could be thereforeto
employ independent noise terms and induce correl ation by means of copulafunctions.
In both cases, however, the specification of an appropriate auxiliary model might be
lessimmediate.
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