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Robust ANalysis Of VAriance
an approach based on the 

Forward Search
Bruno Bertaccini Roberta Varriale

Department of Statistics “G. Parenti”
University of Florence (Italy)1

Abstract
We  present  a  simple  robust  method  for  the  detection  of  atypical 
observations  and  the  analysis  of  their  effect  in  the  ANOVA 
framework. We propose to use a forward search procedure that orders 
the observations by their  closeness to the hypothesized model.  The 
procedure can be applied following two different strategies: one that 
adds units maintaining the relative group dimension and the other that 
adds only one new unit at each step of the search. The assessment of 
the goodness of the method is carried out through a simulation study. 
The  method  is  then  applied  to  a  dataset  collected  by  the  Italian 
National University Evaluation Committee for the evaluation of the 
effectiveness  of  the  degree  program  reform  applied  during  the 
academic year 2001/02. Results are always presented through easy to 
interpret  plots  which are  powerful  in  revealing the structure of  the 
data.
Key words: ANOVA, Fisher F test, forward search, graphical methods 
outliers, policy effectiveness, robustness.

1.  Introduction
One of the most important topic in statistical inference is the presence of outliers 
in  the  data.  Outliers  can  be  defined  as  observations  which  appear  to  be 
inconsistent with the reminder of that set of the data (Hampel et al., 1986; Staudte 
and  Sheather,  1990,  Barnett  and  Lewis,  1993).  Outliers  can  be  contaminants 

1 To contact the authors, send an e-mail to: brunob@ds.unifi.it
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(arising from other distributions) or can be atypical observations generated from 
the assumed model (see also Barnett, 1988). They often can be masked and should 
always be examined to see if they follow a particular pattern, come from recording 
errors, or could be explained adequately by alternative models. Although outliers 
are often synonymous with “bad” data, they are frequently an important part of the 
data.  They need  a  very  special  attention  because  a  small  departure  from  the 
hypothesized  model  can  have  strong  negative  effects  on  classical  estimators 
efficiency (Tukey, 1960).

The key statistic in the ANOVA is the F test of group means difference. The 
test is very powerful under classical assumptions, but it is strongly affected by the 
presence of outliers, due to the fact that it is based on the sample group mean that 
is not a robust statistic. 

The purpose of this article is to implement the Forward Search method in the 
ANOVA framework. The method, first proposed by Atkinson and Riani (2000) 
for linear  regression models,  is  a  general  powerful  approach for detecting and 
investigating the effect of observations that differ from the bulk of the data. The 
starting point is to fit the model to very few observations chosen in some robust 
way, order all the observations by their closeness to the fitted model, increase the 
subset size, refit and continue until all the data are entered in the model. Through 
the search we try not only to identify the outlying observations but also to analyse 
their effect on the estimation of parameters and on inferences on the model. Our 
proposal is thus the following: at every step of the search we compute parameters 
estimates, residuals, classical F values and all the other considerable statistics. The 
collection of these information is analysed (graphically or otherwise) in order to 
identify  a  cut-off point  that  divides  the  group  of  outliers  from  the  other 
observations.  Since at  the moment  there are  no rules that  allow the automatic 
identification of this point; we advocate the use of a graphical approach. The  F 
value obtained at the cut-off point should be used to get a robust F FS  test. In this 
context,  the  robustness  of  the  method  does  not  derive  from  the  choice  of  a 
particular  estimator  with  an  high  breakdown  point  but  from  the  progressive 
inclusion of units into a subset which, in the first steps, is outlier free.

After  a  brief  review of  the  classical  one-way ANOVA, in  paragraph 3  we 
underlay the problems of the classical F test in presence of atypical observations. 
In the paragraph 4,  we present  the proposed  Forward Search algorithm in the 
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ANOVA framework, showing the application and the advantages of the proposed 
approach in identifying outliers through a simulation study. In paragraph 5 we 
illustrate the results of a Montecarlo study simulating a forward search analysing 
the significance of the F FS  test. Finally, we show an application of the proposed 
approach to real data, using a set of information referring to the performance of 
the Italian university system. 

2.  Univariate One-Way Analysis of Variance 
(a review)

The ANalysis Of VAriance is one of the most widely used statistical techniques to 
test means difference of several populations.

In this paper we are going to study the simplest type of ANOVA, the one-way 
ANOVA typically characterized by a sample of n i  observations i=1.. g  from 
each of the g normal populations with equal variance. 

The model for each observation is
y ij=iij  

=iij ,  j=1, 2, ... , ni ;

where   is the common mean level of the treatments and i=i  is the i-th 
population mean2. 

Classical assumptions on this model are:
E ij =0

var ij=2∞  for all i , j , 

ij  are independent and normally distributed.

So, the  g samples are assumed to be independent.  The ANOVA provides a 
useful  way  of  thinking  about  the  way in  which  different  treatments  affect  a 
measured variable – the idea of allocating variation to different sources. This idea 
can be summarised by the decomposition of the total deviance  DT   in  'within 

2 It is common to add the restriction that ∑
i

g

i=0 , in order to make the model identifiable.
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groups' DW   and 'between groups' DB   deviance. If the hypotheses are true, 
all  y ij  come from the same population N  ,2 ; so, through DW and DB, we 
can  obtain  two  unbiased  estimates  of  2  based  the  first  one  on  the  sample 

variances  s1
2 , s2

2 , ... , sg
2 ,  and  the  second  one  on  the  sample  means 

y1 , y2 , ... , yg .
From DW, we have that:

E DW =E∑i

g

∑
j

ni

 yij−yi
2=E∑i

g

ni−1 si
2=n−g 2

and from DB we obtain:

E DB =E∑
i

g

n iyi−y2=E∑
i

g

n iyi−−y 2=...=g−1 2 .

Under  the  null  hypothesis,  the  decomposition  of  the  total  deviance  is  a 
partitioning of a Chi-square random variable: when scaled from their degrees of 
freedom,  DT,  DW and  DB are distributed, respectively, as a  n−1

2 ,  n−g
2  and 

g−1
2 . This partitioning is true only if the DW and the DB are independent, which 

follows from the normality in the ANOVA assumptions.
The ratio statistics

F= DB /g−1
DW /n−g 

~F g−1  ,n−g 

only if the null hypothesis is true. Thus, the ANOVA F test is a function of the 
variance of the set of group means, the overall mean of all the observations, and 
the variances of the observations in each group weighted for group sample size. 
The larger the difference in means, the larger the sample sizes, and/or the lower 
the variances, the more likely a finding of significance.

3.  Problems relating to the presence of outliers

Due to the presence of the statistic yi  in both the DW and DB, the value of the F 
statistic is strongly affected by the presence of outliers. The sample mean, under 
normality assumptions is, in fact, the best unbiased estimator of the population 
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mean  but  it  shows  a  strong  loss  of  efficiency  in  case  of  contamination  or 
misspecification of the model3.

Consider, for example, a sampled dataset with 50 observations in each of 3 
groups (a balanced one-way ANOVA). The units in each group are generated by a 
Standard Normal distribution, but the second group is heavily contaminated by 10 
observations coming from a Uniform distribution  U(10, 11). Obviously, in this 
situation outliers are so different that are easily identifiable by any other approach: 
this difference is stressed just to illustrate clearly our proposal. 

Figure  1 shows the results of this sample.  Here, the  F statistic has 2 and 147 
degrees of freedom and its value (12.001 with p-value of 1.48⋅10−5 ) falls, due to 
the contamination, in the rejection region.

Also in the presence of more realistic contaminations, test F will often leads us 
to erroneously reject the null hypothesis.  Let us consider, for example, datasets 
with  three  balanced  groups  of  increasing  sample  size  n i  

3 Only one unit can be moved towards infinity to cause an arbitrarily large change in the estimate 
of  : the breakdown point of this estimator is zero.
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Figure 1. Boxplot that shows the composition of the generated  
example: group2 is strongly contaminated.
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ni=20,40, ... , 200 ; i=1,2,3  observations  coming  from  a  Standard  Normal 
distribution.  Only  the  second  group  is  contaminated  by  increasing  rates    
=0.05, ... , 0.10  from a N 2, 1  distribution; so the distribution of this group 
is 1−N 0,1N 2,1 .

Table 1 shows the relative frequencies rf ni ,  over 10000 simulations in which 
the F test falls in the rejection area at the nominal significance level of =0.05 , 
giving an approximation of the true type I error probability:

Pr F n i ,
F 0.95 ; df 1=2, df 2=3n i−1≈rf ni ,

.

For example, for the pair ni= 100, = 0.08  there are 8 contaminants in the 
second group, and the classical test F reject the null hypothesis 1629 times, giving 
an approximate   value of 0.1629.

The  larger  is  n i  and  the  bigger  is   ,  the  stronger  is  the  effect  of  the 
contamination on the F test. 

6

= 5% 6% 7% 8% 9% 10%

ni= 20 0.0492 0.0492 0.0492 0.0648 0.0648 0.0648

40 0.0572 0.0572 0.0733 0.0733 0.1018 0.1018

60 0.0687 0.0845 0.0845 0.1080 0.1080 0.1441

80 0.0761 0.0985 0.1240 0.1240 0.1548 0.1921

100 0.0882 0.1106 0.1348 0.1629 0.1982 0.2389

120 0.970 0.1177 0.1405 0.2018 0.2386 0.2801

140 0.1096 0.1293 0.1839 0.2175 0.2926 0.3368

160 0.1191 0.1651 0.1933 0.2555 0.2934 0.3735

180 0.1297 0.1731 0.2328 0.2663 0.3394 0.4262

200 0.1441 0.1895 0.2468 0.3142 0.3923 0.4689

Table 1. Approximation of the true type I error probability of the F test in  
presence of contamination.



4.  Forward Search in the Analysis of Variance
One methodology useful not only to detect and investigate observations that differ 
from the bulk of the data, but also to analyse their effect on the estimation of 
parameters  and  on  aspects  of  inference  about  models  is  the  forward  search, 
proposed by Atkinson and Riani in year 2000. The basic idea of the “forward” 
procedure is to order the observations by their closeness to the fitted model. The 
starting point is to fit the model to very few observations chosen in some robust 
way, order all the observations by their closeness to the fitted model, increase the 
subset size and refit the model. The process continues with increasing subset sizes 
until, finally, all the data are fitted.

During the search, at each stage, it is possible to monitor some quantities, such 
as parameter estimates, residual plots, F value and other informative statistics, to 
guide the researcher in the identification of the outliers. In the absence of outliers, 
for  example,  both  parameter  estimates  and  residuals  are  expected  to  remain 
sensibly  constant  during  the  search;  in  the  presence  of  outliers,  instead,  this 
quantities will remain constant until the outliers enter the subset to be fitted.

The forward search algorithm is made up of three steps: the first concerns the 
choice of an initial  subset,  the second refers to  the way in which the forward 
search progresses and the third relates to the monitoring of the statistics during the 
search. 

The methodology used in this paper is adapted to the peculiarity of the model 
under study, in particular it has to take into consideration the presence of groups in 
the  data  structure  of  the  model.  We  implemented  a  proportional  and  non 
proportional approach: the difference is basically in the number of units that join 
the  model  during  the  search  and  points  out  some  characteristics  of  the  data 
structure. Furthermore, we proposed a procedure to obtain a robust forward F test, 
individuating a cut-off point of the collection F FS  of the classical F test in each 
step of the search that divides the group of outliers from the other observations. 
We derived from a Montecarlo simulation study that with the proposed method 
the probability of the the type I error is lower than with the classical ANOVA. 

Programming codes for R and S-Plus, developed by the authors, are available 
on demand.
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4.1.  Step 1: choice of the initial subset
The first step of the forward approach is the choice of an initial outlier free subset 
of observations. Many robust methods were proposed to sort the data into a clean 
and a potentially contaminated part; our proposal4 in the ANOVA framework is to 
start with the observations y ij  that satisfy:

min∣yij−med i∣
in each group i, i=1..g  , where med i  is the group i sample median.

The dimension of the initial subset S ∗  is, therefore, almost surely equal to g. 
Since we need at least  g1  observations in order to have residual degree of 
freedom for the estimate of the standard error, the algorithm enters in the starting 
subset, the next unit with the minimum residual from the medians.

4.2.  Step 2: adding observation during the search
At each step, the forward search algorithm adds to the subset the observations that 
are closer to the previously fitted model. This can be accomplished following two 
different strategies: the first, called  non proportional, adds just one new unit at 
each  step,  while  the  other,  proportional,  enters  the  minimum  number  of 
observations necessary to respect the overall composition (the groups proportions) 
of the sample. 

Formally, in the first procedure, given the subset S m   of dimension m=∑
i=1

g

mi  

where the mi 's are the number of observations in group i at this stage, the forward 
search moves to S m1  in the following way: after the ANOVA model is fitted to 
the S m   subset, all the n observations are ordered inside each group according to 

their squared residuals eij
2= yij−y ij , Sm 2 .

For each group i we choose the first mi  ordered observations and we add to the 
m observations so chosen the one with the smallest squared residual among the 
remaining. The ANOVA model is now fitted to  S m1  and the procedure ends 
when all the n observations are entered the model.

4 The  forward search is not sensitive  to the  method used to select an initial subset,  provided 
unmasked outliers are not included at the start (Atkinson and Riani, 2000, pag 32).
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In  moving  from  S m   to  S m1 ,  most  of  the  time  just  one  unit  joins  the 
previous subset.  It may also happen that two or more new units enter  S m1  as 
one or more leave, however such an event is quite unusual, occurring only when 
the search includes one unit that belongs to a cluster of outliers5. 

With the proportional procedure, the only difference is  that,  given the  S m   
subset of dimension m, the forward search moves to the next step adding l units, 

where  l=∑
i=1

g

li  under the condition  li /l≈ni−li−1/n . Also in this case it  may 

happen (more often than with the previous strategy) that more than  l new units 
join the subset as one or more leave.

4.3.  Step 3: monitoring the search
Both the proportional and non proportional strategies, at each stage of the search, 
offer  the  possibility of  collecting information  on  parameter  estimates,  residual 
plots, analysis of some statistics of interest, to guide the researcher in the outliers 
detection and in the analysis of their effect.

If  the  monitoring  of  the  two  strategies  shows  a  different  behaviour  of  the 
examined statistics, this will be evidence of the presence of different variance in 
the groups. In fact, with the non proportional strategy, the observations belonging 
to the groups with the minimum variance will  enter before the others.  Hence, 
presumably the outliers  will  enter the model  last,  no matter  which group they 
belong to. In the proportional strategy, instead, outliers are forced to enter together 
with “good” observations in order to maintain the proportionality. 

4.4.  Non Proportional vs Proportional Forward Search
In order to illustrate the application and the advantages of the forward search 

approach we will show the methodology using the sampled dataset described in 
Figure 1. That dataset is composed by 3 balanced groups generated by a Standard 
Normal distribution, with the second group heavily contaminated by a 20% of the 
observations coming from a Uniform distribution U(10, 11). As said before, with 
the classical approach the F statistic “erroneously” falls in the rejection area.

5 At the next step the remaining outliers in the cluster seem less outlying and so several may be 
included at once.
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We will illustrate, with the help of graphs, the non proportional approach first, 
describing the proportional one underlining only the relevant differences and its 
most important aspects.

Non proportional Forward Search
Figure 2a shows how the observations join the subset S m   during the search: the 
subset size is increased by one at each step (x axis). The dotted line lying above 
the other two refers to group 3 that, by chance, is more homogeneous than the 
other two groups (see the boxplot in Figure  1): this is why the search algorithm 
generally choose its units before the others. 

Figure 2. Plots of the groups dimensions: during the search (a) and zoom of the last 50 
steps (b). 

The last 10 observations that join the subset (from step 141 to step 150) belong 
to  group  2  (Figure  2b),  giving  a  first  indication  of  the  possible  presence  of 
outliers. This behaviour is common to all the samples coming from the sampling 
design we adopted.

Figure  3 shows  how  the  estimated  coefficients  change  during  the  forward 
search. As expected, the estimates vary a lot during the first part of the search 
because with such a heavy contamination,  the medians of the three groups are 
obviously different and, furthermore, at this stage of the search the effect of the 
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small dimension of the subsets brings about a high variability of the estimates. As 
the search goes on, the estimated coefficients stabilize  and tend to zero as the 
number of steps near 140. After that, the estimate of 2  increases sharply giving 
an indication of the presence of outliers in the second group.

Figure  4 shows the  n residuals computed at each step of the forward search. 
Throughout  the  search  all  the  residuals  are  very small,  except  for  the  last  10 
entered observations, which are outliers in any fitted subset. Even when they are 
included in the last steps of the search, their residuals decrease only slightly.

11

 Figure 3. Forward plots of the estimated coefficients.



Another plot useful to detect the presence of outliers is the one shown in Figure 
5a that, at every step of the procedure, reports the changes in the estimate of  :

m=∑i=1

m

ei ,S m
2

m−g

where ei ,S m
2  are the m squared residuals of the subset S m  . Initially m  is close 

to zero,  underestimating the “real” parameter  =1  because of the selection 
rule. Obviously, the inclusion of each further unit causes an increase in the value 
of the estimate, that will tend to 1 as the number of observations tends to 140. 
After that, the estimate increases sharply giving a plot that is virtually in the form 
of  two  line  segments,  one  for  each  group  of  observations  (non  outliers  and 
outliers). The monotone form of this plot indicates that the observations have been 
correctly sorted by the forward search.  This plot,  together with the ones of the 
estimates  and of residuals  allows the identification of heteroschedasticity even 
under H0. In case of heteroschedasticity with no contamination, the estimates will 
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assume values around the true mean without big jumps during the search, while 
the residual standard error will increase (more or less sharply depending on the 
strength of the heteroschedasticity) in the final steps.

It is  also possible  to  monitor  (see Figure  5b) the  t  statistics  relating to  the 
coefficients: 

t i , Sm=
i , Sm 

s.e. i , Sm 

where i , Sm  is the estimate of the mean for the group i at step m.
Initially, when the standard error is close to zero, the statistics are very large 

and  off  the  scale  of  the  plot.  As  the  process  progresses,  the  variance  of  the 
observations becomes larger and the absolute value of the statistics  t i , Sm  keep 
decreasing until the end of the search if there is no contamination. If one or more 
groups are contaminated, instead, toward the end of the procedure there should be 
a sharp increase in one or more of the absolute values of the t statistics. 

Figure 5b reports also the 95% acceptance region (grey lines) of the three t tests 
only for step  m≥30 , when the  t can be suitably approximated by the Standard 
Normal distribution. 

Figure 5. The increasing value of  the residual standard error (RSE) and of the t  
statistics.
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Figure  6 shows the three plots  of  the  coefficient  estimates  relating to  their 
confidence interval at significance level of 5% (grey broken lines). At the end of 
the search, as 2  increases because of the introduction of observations with large 
variance, the bands become larger.

The computation of  R2= 1− DW
DT  gives us further indication of the presence 

of outliers (see Figure 7). In the graph, broken lines represent at each step the 5% 
and 95% quantiles of the empirical RSm 

2  distribution, obtained from a Montecarlo 

simulation of 10000 samples free of contamination. Increasing m, RSm 
2  decreases 

to zero showing group means equality. Only in the last few steps, the value of the 
statistic  strongly  increases  in  accordance  with  the  change  in  the  parameter 
estimates. Again, this shows that the last observations must be outliers.

Figure 8 shows how the F statistic moves during the forward search. The grey 
lines represents the 95% and 99% quantiles of the Fisher F distribution with 2 and 
m−3  degrees of freedom at each step, while the black one refers to the values of 
F

Sm  obtained during the procedure.  Initially, these values are very large, all in 
the rejection region and often off the scale of the plot. After a while, the statistic 
decreases and, for 112≤ m ≤ 142 , falls in the acceptance region.

14

Figure 6. Forward plots of the estimated coefficients with their significance band.
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Figure 7: Forward plot of the R2 . Dotted lines are the 5% and 95% 
quantile of the  R2  empirical distribution obtained from a  
simulation study without contamination.



As the  forward  search  proceeds,  the  F  value  suddenly increases  above  the 
critical value and keeps increasing till the end of the search. At the last step, the 
value of the F is 12.001, as already showed in paragraph 3.

Proportional Forward Search 
With the proportional forward approach, observations join the subset  S m   in a 
proportional way: forward plot of group dimensions are approximately  straight 
lines. 

Figure 9a describes the estimated coefficients at each step of the search; in this 
case the graph is very similar to the graph shown in Figure  4: the estimates are 
different during the first part of the search, then they tend to zero becoming quite 
close to each other; in the last few steps, only the estimate of 2  increases widely 
giving an indication of the presence of outliers in the second group.

16

Figure 8. Forward plot of the test F. Broken grey lines identify the  
acceptance region at 5% and 1% levels of significance.



Figure 9. Forward plots of the estimated coefficients and of the test F.

Obviously,  with  the  proportional  approach,  2  starts  to  increase  before 
m=140 ; this is due to the fact that the proportional forward algorithm enters li  
units for group i at each step (a part from the difference due to the rounding to the 
closest  integer),  and  the  outliers  join  the  subset  before  the  non  proportional 
approach.

Figure  9b shows how  the  F statistic  moves during the proportional forward 
search.  Obviously,  the  only  difference  with  respect  to  the  graph  of  Figure  8 
(referring to the non proportional search) is that the F statistic enters and exits the 
acceptance region bands (grey line) at the step m = 103 and m = 130 while the non 
proportional approach gave m = 112 and m = 142.

5.  Forward F test and its evaluation.
The  previous  paragraph  makes  clear  the  utility  of  the  forward  search  in  the 
ANOVA  in  detecting  the  possible  presence  of  outliers  and  their  effect  on 
parameter estimates and on aspects of inference about models. As showed, the 
search is completely based on graphical analysis and is strictly connected with the 
contest of the observed phenomenon.
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The forward test  F can be defined as a collection  F FS={F k ,... ,F n }  of the 
classical F test in each step of the search (see Figure 8 and 9); to obtain a robust 
forward F test it is possible to individuate a cut-off point of the progress procedure 
dividing the group of observations that differ to the bulk of the data from the 
others.  Naturally,  the  search  of  the  cut-off  point  can  not  be  “automatic”  but 
depends  on  the  complete  analysis  and  knowledge of  the  phenomenon.  In this 
context,  the  robustness  of  the  method  does  not  derive  from  the  choice  of  a 
particular  estimator  with  a  high  breakdown  point  but  from  the  progressive 
inclusion of units into a subset which in the first steps is outlier free.

As mentioned before, the cut-off point is chosen by a thorough examination of 
the graphs presented in the previous section and on other ad-hoc considerations. It 
is clearly impossible to carry out a simulation to evaluate the goodness of the test 
without  an “automatic”  cut-off  point.  To give an idea on how the robust  test 
behaves we refer to the simulated example illustrated in the paragraph 3. Datasets 
are  composed  by  three  balanced  groups  composed  by 
n i n=20, 40, ... , 200 ; i=1, 2, 3  observations coming from a Standard Normal 
distribution. Only the distribution of the second group is 1−N 0,1N 2,1
where =0.05, ... , 0.10 . We decided to stop the search procedure (cut-off point) 
at ⋅ni  steps before the end of the forward search and to use the non proportional 
approach because it guarantees that the outliers enter the subset at the end of the 
search. We then compared the results with the ones obtained with the classical 
approach.

Table 2 shows frequencies over 10000 simulations in which robust forward F 
test falls in the rejection area at the nominal significance level of  =0.05 . For 
example,  for  the  pair  ni= 100, = 0.08  our  forward  F  test produces  an 
evidence  versus  the  alternative  hypothesis  in  1160  samples  while  the  for  the 
classical test the frequency is of 1629 over 10000 replicates. With the proposed 
method, the probability of accept H1 when H0 is true is always lower than the same 
probability showed in Table  1. However, the frequencies relating to the higher 
values of   are quite high because of the automatic procedure used to set the cut-
off point; in particular, we did not analyse every sample with a graphical approach 
as the forward search suggest.
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6.  An evaluation of the Italian University reform
As  an  application  of  the  proposed  approach  to  real  data,  we  use  a  set  of 
information referring to the performance of the Italian University System. The 
data  come  from  annual  surveys  conducted  by  the  Italian  National  University 
Evaluation Committee (NUEC) during the past five years (2001 – 2005) and refer 
to the activities of all the public universities during the academic years 1999/00 - 
2003/04. The collected information are used to compute a set of 29 indicators 
grouped in 4 classes (Outcome, Resources, Process and Contextual indicators).

For our purposes, we decided to use the first year retention rate indicator RT, (a 
Process indicator defined as: RT = 1−WR  where WR is the withdrawal rate) to 
evaluate  the  impact  on  the  Italian  university  system of  the  reform on  degree 
programs, that was enacted in the academic year 2001/02 (Bini et al., 2003) . Our 
procedure is applied to a model in which RT is the dependent variable and, as an 
example, we limited our analysis to the Italian degree programs in Mathematical 
Science. With the ANOVA model we want to find out the effect of the reform on 
the retention rate over different years. Since in our data we found many anomalous 
observations, our procedure is indicated for the estimation of the model. 
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= 5% 6% 7% 8% 9% 10%

ni= 20 0.0453 0.0453 0.0453 0.0491 0.0491 0.0491

40 0.0434 0.0434 0.0591 0.0591 0.0629 0.0629

60 0.0573 0.0532 0.0532 0.0827 0.0827 0.0818

80 0.0478 0.0741 0.067 0.067 0.1089 0.0955

100 0.0686 0.0598 0.0972 0.0823 0.1354 0.1175

120 0.0519 0.0875 0.0708 0.0976 0.1598 0.1341

140 0.0828 0.0669 0.0864 0.146 0.1876 0.1442

160 0.058 0.0729 0.1277 0.1646 0.124 0.1569

180 0.0935 0.1158 0.1522 0.1119 0.1405 0.1703

200 0.0669 0.0828 0.1003 0.1273 0.1512 0.1850

Table 2. Approximation of the true type I error probability of the Forward 
robust F test (non proportional approach).



The data of the year 2003 (the academic year in which the reform took place) 
are not used in our analysis since they are affected by too many collection errors. 
Hence our dataset is composed of four groups identified by the years in which the 
NUEC surveys were conducted (the two academic years before and after 2003), 
composed respectively of 276, 283, 342, 351 observations.  On this  dataset  we 
conducted a classical ANOVA test whose results are shown in Table  3. The  F 
value falls in the accepting region; from this analysis we could then say that the 
reform had no effect on the first year retention rate. 

An analysis  of  the  boxplot  for  the  four  groups  (see  Figure  10)  shows the 
presence of observations that seem to differ from the bulk of the data in each 
group and that could be considered outliers.

It was decided then to carry out our robust procedure. As is clearly shown in 
Figure  11b, these observations enter the model at  the end of the search. Since 
outliers are especially numerous in the groups 2004 and 2005, the slopes referring 
to these years are steeper than the others.

The estimates  of the coefficients  at  each step are  shown in Figure  12.  The 
values referring to 2004 and 2005 are always higher than the others, showing a 
clear evidence of a positive effect of the reform on the first year retention rate RT. 
The outliers effect is evident since the estimates of these years converge to the 
others only in the last steps of the search.

The presence  outliers  is  very clear  if  we  analyse the  plots  of  the  absolute 
residuals and of the residual standard error that increases in an exponential way 
during the last steps of the search (Figure 13a and 13b).
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Analysis of Variance Table
Response: Y
            Df   Sum Sq  Mean Sq F value   Pr(>F)  
f            3  0.18034  0.06011 2.50055 0.058018
Residuals 1248 30.00779  0.02404 

Table 3. Analysis of Variance Table on the RT index of the Italian  
degree programs in Mathematical Science over the NUEC 
surveys years 2001, 2002, 2004 e 2005.



Figure 11. Plots of the groups dimensions: during the search (a) and zoom of the  
last 50 steps (b).
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Figure 10. Boxplot of the first year RT index computed for all  
the Italians Mathematical Science degree programs.



Figure 13. NUEC data: forward plots of the absolute residuals and of the residual  
standard error.
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Figure 12. Forward plots of the estimated coefficients for the first year retention  
rate of the Italian degree programs in Mathematical Science.



Figure 14. NUEC data: forward plots of the R2  and of the F statistics. In the last steps  
the R2  tends toward zero and the F enters in the acceptance region.

Finally,  let  us  analyse  the  graphs  in  Figure  14a  and  14b  that  describe  the 
behaviour of the  R2  and of the  F statistics.  Again, the presence of outliers is 
evident by the steeper decrease of the two statistics during the last steps of the 
search. In the last two steps the F value fall in the acceptance region of  H 0 , in 
accordance to the result of Table 3. 

As mentioned in the previous paragraphs, our procedure is based on a graphical 
approach. Controlling the outliers effect bring us to conclude for a positive effect 
of the reform, contrary to the classical approach result. 

Concluding remarks
One of the most important topic in statistical inference is the presence of outliers 
in the data. Our work concerns the effect of outliers in the ANalysis Of VAriance: 
this methodology is very powerful under classical assumptions, but it is strongly 
affected by the presence of outliers. We implemented the Forward Search method 
in the ANOVA framework,  in order to individuate the observations that differ 
from  the  bulk  of  the  data  and  to  analyse  their  effect  on  the  estimation  of 
parameters and on inferences on the model. 
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The methodology proposed takes into consideration the presence of groups in 
the data structure of the model. At every step of the forward search we compute 
parameters  estimates,  residuals,  classical  F values  and  other  considerable 
statistics. We implemented two approaches to carry on the analysis: proportional 
and non proportional; the difference is in the number of units that join the model 
during the search and points out some characteristics of the data structure. Finally, 
we proposed a procedure to obtain a robust forward  F test individuating, with a 
graphical approach, a cut-off point of the classical F test values in each step of the 
search that divides the group of outliers from the other observations. We derived 
from a Montecarlo simulation study that with the proposed method the probability 
of the the type I error is lower than with the classical ANOVA.

In order to illustrate the application and the advantages of the forward search 
approach  we  used  some  artificial  examples.  Furthermore,  we  showed  an 
application  of  the  proposed  approach  to  real  data,  using  a  set  of  information 
referring to the performance of the Italian university system. The data come from 
annual  surveys  conducted  by  the  Italian  National  University  Evaluation 
Committee. We used the first year retention rate indicator to evaluate the impact 
on the Italian university system of the reform on degree programs, enacted in the 
academic year 2001/02. Our procedure is applied to a model in which RT is the 
dependent variable; with the ANalysis Of VAriance we want to find out the effect 
of the reform on the retention rate over different years. Since in our data we found 
many anomalous observations, our procedure is indicated for the estimation of the 
model. Despite to the presence of a big number of outliers in the last two years of 
the  NUEC  survey,  the  application  shows  the  positive  effect  of  the  Italian 
University reform in reducing the withdrawal rate. 
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