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Abstract: When the true parameter lies on the boundary of the parameter space the
asymptotic distribution of maximum likelihood estimator is difficult to calculate. In some
relatively simple cases it is a mixture of truncated normal distributions. In this paper we
shall be concerned with the the marginal distributions of the estimator when one or two
components of the true parameter are zero and lie on the boundary of the parameter space.
We found that these distributions are (mixtures of) normal or truncated normal multiplied
by "skew functions” which distort the symmetry of the normality.
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1 Introduction

To obtain asymptotic distribution of maximum likelihood estimator, a standard assump-
tion in the literature is that the true parameter is in the interior of the parameter space. This
assumption is convenient because it allows one to make use of the fact that the first order
conditions hold, at least asymptotically. When the true parameter lies on the boundary of
the parameter space the asymptotic properties of maximum likelihood estimator are no
more valid. In some relatively simple cases the asymptotic distribution is not normal but
mixtures of truncated normal distributions while in the more complicate cases they are
much more difficult to calculate. The problems connected to this type of "non-regularity”
has been considered by several authors, Chernoff (1954), Moran (1971), Chant (1974),
Shapiro (1985), Self and Liang (1987) whose paper reviewed all the earlier contributions
and provided a uniform framework for the large sample distribution of maximum like-
lihood estimator. Recently, Andrews (1999) established the asymptotic distribution of
extremum estimators when the true parameter may be on the boundary providing gen-
eral high level assumptions under which the results hold. In this paper we follow Self
and Liang (1987) and we shall be concerned with the situation when one or two com-
ponents of the true parameter are zero and lie on the boundary of the parameter space.
The asymptotic distribution of maximum likelihood estimator in this two cases is given in
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Moran (1971) and Chant (1974). In this paper we investigate the marginal distribution of
the estimator. We found that these distributions are (mixtures of) normal or truncated nor-
mal multiplied by "skew functions” which distort the symmetry of the normality. Some
of these are "skew-normal” as given by Azzalini and Dalla Valle (1996). We don't in-
vestigate the weights of the mixtures referring for this argument to the book of Sen and
Silvapulle (2005).

2 Preliminaries

Let X, -- X, beiid observations from a population with densityz; 6). Let/,(0) de-
note the log-likelihood witlh € © c R* where© is not necessarily open and the
Fisher information matrix in an observation. The true parantgterll be assumed to be
a boundary point. Self and Liang (1987) assumed the classical&m@onditions on the
family of distributions - distinct values af corresponding to distinct probability distrib-
utions, existence and positive definitenes#Boexistence of the first three derivatives of
1,(0) with respect t@, uniform boundedness of the third-order derivatives of the loglike-
lihood by a function of finite expectation. Moreover they assumed the convexity of the
parameter space in a neighbourhoodpf

Under the above conditions they showed

1. As sample sizes — oo there exists a sequence of poirﬁ:g,e 0, which locally
maximizel,, () and that converges # in probability.

2. n'/2(6, — by) = O,(1).
3. The loglikelihood function,, () can be approximated by

1 (0) = 10 (60) + (1/2)Z, Hy(60) Zn — (1/2)gu(n'/?(8 — 60)) + R, (6)
where
H,(00) == —n"'D%1,(60)  Zn:= H; ' (60)n " Y2Dl,(6,)

(N = (N = Z,)H,(60) (A= Z,) NeRF
R (6) = nOp(1)[10 — 6o|°
D =[0/06;]i =1,..., kis the column vector of a differential operatd¥? = [9?/0 6,0 0,]

hj=1..k is the matrix of second derivatives.
4. n'’%(0,, — 0,) = o0,(1) whered,, = argmin,.g g, (n/2(0 — 6y)).

Therefore, the asymptotic distribution é;t can be derived from that cﬁn. With
respect to this, note that

. 1/2 . .
min q,(n'"“(0 —6y)) = min (1
min g, (n/"(60 — 6)) a4 (T)



where
nt2(© — 6y) == {T € R¥; T = n'2(0 — 6,), for some b € O}

and if the shifted and rescaled parameter spaté(© — ¢,), can be approximated by a
convex conej, it can be shown that

. . -~ d 5
Lo anlT) = mingn(T) +o,(1) and 0!, —0) = T

with 7 such that

q(T) = inf o(T) where ¢(T):= (T~ ZYB(T'~Z) and Z ~ Ni(0.B™)

In sum the asymptotic distribution 6f is given by the distribution of a random vector
T that minimizes a stochastic guadratic function over a convex dowbere the coeffi-
cients of the quadratic function have a multivariate normal distribution.

The vector] is the projection oZ onto the convex con& with respect to the metric
B, and is denoted bii(Z, A); thus

T :=T(Z,A) = arg min(T — Z)'B(T ~ Z)
€

therefore, the above results state thé(?(@n — ) KR II(Z,A) which is a (non linear)
function of a multivariate normal distribution defined an

Often in statistical applications we are interested on the asymptotic distribution of a
subvector ofd that lies in a cone. With regard to this, partitiGn7 and Z as follows,
0= B, T=IT, T)]'andZ = [Z], Z},]' wherea € R?, 3 € R?, p+ ¢ = k and
assume\ is given by a product set, x R? whereA, C RP? is a cone. This assumption
on A requires that the true paramet&yis not on a boundary. Then it has been shown
(Andrews, 1999) that

~ d = -~ d = _ _ ~ ~ T\a
”1/2(0%—040) — T, 77/1/2(511—50) — T = BzzlGﬁ_BmlB?lTa’ = [ T } 1)
B
where
Ga Bi1 Bia o Bl BlQ
(PGX;) — [(%x;) <P§g>] (pZXﬁl) ’ Bl = {(%Xﬁ?) (%ng)] ’
(gx1) (gxp)  (gx@)d | (gx1) (gxp) (gxq)

0(To) = _inf go(T) with qa(T0) = (To = Zo) (B") (T — Za)



and
Zo ~ N,y(0, B'Y) with B'Y = (B — B12Byy Ba1) ™! (2)

From (1) it emerges that the asymptotic distributiorﬁgfdepends on whether is
on a boundary if and only iBy; # 0.

If A, = RP which holds ifag is not on a boundary, themf; ca, ¢.(7.) = 0,

T = Za, T = Zs andT = Z that corresponds to the standard case.

If A, isalinear subspace &, which holds in the case of linear or nonlinear equality
constraints therﬂ = P,Z, whereP, is a B''-orthogonal projector o\, a matrix
that does not depend of. For example, ifA, = {T, € R’; QT, = 0} where( is a
matrix of full row rank less or equal tp, thenP, = Id — B”Q’(QB”Q’)—lQ where
Id is the identity matrix of appropriate order. The dlstrlbutlorﬂgfls given by a linear
transformation of a multivariate normal dlstrlbutldﬁ, ~ N,(0, P,B'). By (1), Tﬁ =
Zs+ HZy with H = —B'(Q (QB" Q)" Q andT; ~ N,(0, B2 + HB'?). Moreover,
Cov (fa,ﬁ;) = B2+ B"H’ andCov (Tﬂ, fa> = B*'+ HB". Thisis the result given
by Aitchison and Silvey (1958).

For other definitions of\,, the solution might be rather arduous. Later on we shall
confine to the (polyhedral) cone given by

= {T, €RP; QT, =0, RT, <0} (3)

with the matrix[@" R']’ of full row rank less or equal tp. This cone holds in many
practical situations.

When the cone is given by (3), the distribution of the projecfigi¥,, A,) could
be investigated by simulating,, and computingfa with a quadratic programming algo-
rithm. This approach can be relatively simple but can not be of great help to know the
analytic distribution off},.

Alternatively we could proceed by describing the cone, to compute the projection of
Z,, onto the appropriate edge and to investigate the distribution of the projection.

3 An analytic form of the projection

Let the constraint matri® of the cone (3) be of dimensionx p. LetJ = {1,--- ,m} be
asubsetofl,--- ,r}; Jmaybeempty. Lef = {1,--- ,r}\J. Let R; andR; denote the
matrices with their rows given by the rows Bfindexed by; € J and: € I respectively
and denote with¥); = {T,, e R?; V,T,, =0, R,/T, <0}, V; = [Q R/] aface ofA,.
WhenJ = {0}, F; = A,, whenJ = {1,--- ,r}, Fj is the vertex of the cone. Létbe
the set of all subset$ which gives rise to a facel has at mos®” elements. We assume
that F; has no redundant columns. LetF;) = {7, e R*; V,T, =0, R;/T, <0} be
the relative interior of’;. Then, there exists a collection of faces'of, say{F;, J € J}



such that the collection of their relative interiofs;(F), J € J}, forms a partition of\,,
(see Lemma 3.13.5 of Sen and Silvapulle (2005), p.128). Further,

~ 1 if Z, € £y,
To=> (PiZo)15,(Z0) = Z 15, (Za), 1g,(Za) = { . (4)
Jel Jel 0 if Zo & Ey.
whereE; = {Z, € RP; P;Z, € ri(F;)(Id— P;)Z, € F+NA%}, A? is the polar cone,
Py = Id — B"'V}(V; B V)=V, is the projection matrix onto the linear space spanned
by F';, Id is the identity matrix of appropriate order .
By (1), T = Zs— By, Ba (Ta - Za>. Because By, By = B* (B!, Zy = Y 0y Zalg,

andZg =Y ;. Zplg,, by substitutionfg can be written as

Ty= > (20— B (BY) (2= B20)| 16,(Z0) = Y 2516, (Z0) )
JeJ Jel
Of course (4) and (5) are a pAossibIe representation of the estimator. Andrews (1999)

proposed a similar formula fdf,, defining a different indicator function but we found
some problems with his results in some specific cases.

Joining the above two componerﬂ% andTﬂ, we get

{ } > 2VIg,(Z,) with ZY) =

JeJ

zy)
)
Zﬁ

(6)

As to the probability distributions of the everits < t, T,, < t, andTj < tz we
observe that (Self and Liang, 1987)

T<t=J(zV<tnZ, € Ey) (7)

Jel
To<ta=|J(2Y) <tanZ, € Ey) (8)

Jel
fﬁgtﬂ:U<ZéJ)§t5ﬂZa€Ej> (9)

Jel

therefore,

(f < ) N Pr(2Y) <t/Z, € Ej)wy (10)

Jel
Pr(Tu<ta) =3 Pr(Z) < to/Za € Ey)uy (11)

JeJ
Pr(Ty<ts) =Y Pr (28 <to)Za € By) (12)

JeJ



where
wy = Pr(Z, € E;) = Pr (PJZQ € ri(Fy)(Id — P))Za € FF 1 Ag)

Formulas (4)-(12) allow to investigate (at least in simple case) the probability distributions
and the marginal distributions of the projector when the cone is given by (3).

4 Application I: A = A, x R?with A, = R" x RP~!

4.1 Analytic form of the estimator

Because\, involves only an inequality constraint on the first component of the vector
a, we can assumg, = RT and A = Rt x R¥~! consideringy as a scalapy = 1, and
lumping in with 5 the other components of. Then, the cone id, = {7, € R; -7, <

0} and the polar cone i4° = {y € R;y < 0}. There are two faces indexed by= {0},

Figy = A, andJ = {1} whereFy,; is the vertex. Moreovet;, NAg = {y € R;y = 0}

and Fi;, NAY = {y € Ryy < 0}. The projectors aré’y; = 1 and Py = 0 with

Ewy = {Za: Zo > 0} and By = {Z,; Zo < 0}. Therefore, by (4) we get

To=20W1p, (Za) + Z8W1p,, (Za) (13)

wherez{™ = 7, ~ N (0,b), Z{Wis a degenerate random variable with unit mass
bll B12

B21 BZQ }

The componer{fg. By (5) we have

distribution at zero an® ! := {

~

0
Tﬁ = Zﬁ(-i{ })IE{@}<Za) + Z[(i{l})]Em(Za) (14)

pil
Joining the above two components we get

with 2§ = 75, 2 = (2, - 53 2,).

T =7 Ipy (Za) + 20V Ip,, (Za) (15)
which is the result of Andrews (1999), Self and Liang (1987).

4.2 Distributions
4.2.1 The distribution of T
By (10)

Pr (f < t> = Pr(Z <t/Z, > 0) Pr(Z, > 0) + Pr (21 < t/2, < 0) Pr(Z, < 0)
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with Pr(Z, > 0) = Pr(Z, <0) =1/2.

The eventZ < t/Z, > 0 has ak-variate truncated normal probability density func-
tion, TN, (0, B™', z, > 0) with the denominatoP = [" [ -+ [, exp (—}2'Bz)dz
wherel, = {z5;—00 < z5[i] < +o0;i = 1,---,k — 1}. In the mathematical ap-
pendix we show thaD = (1/2) (2r)*/?|B|~/2. Therefore, TN, (0, B!, z, > 0) =
2 Ny, (0, B™") Iy, (Za) which is the result of Moran (1971).

Consider the everit (1Y) < ¢/Z, < 0. Because of the normality of the vectdrand
the fact thatCov [(Zﬁ — %Za> ,Za] = 0 the variableszg{l}) andZ, are independent.
Then, Pr (ZzWW) < t/Z, <0) = Pr (ZW) <t). After simple algebra we can show
that the variance-covariance matrix of the random veZtor %Za is equal toB,," and

(25— 57 2.) ~ Ni-1 (0, Bag'). Thereforez(() ~ N, (0, B*) with B* = [8 30_11
22
(see Chant (1974), Moran (1971)).

4.2.2 The distribution of fa

The distribution off}, has a continuous part and a discrete part which arises #heno.
From (13) or by applying directly (11) we have

Pr (fa < ta) = Pr(Zy < to/Za > 0) Pr(Za > 0) + ®(0)Pr (Z, < 0)

where the event/, < t,/Z, > 0 has an half-normal probability density function,
TN (0,6, 2, > 0) and®(0) is a degenerate distribution @{Gourieroux and Monfort,
1989). For notational convenience we defi§i€), 0) the normal density with mean and
variance equal to zero to be the density that takes the value zero with probability one.

4.2.3 The distribution of T

We have,
Pr @3 < tﬁ) = Pr(Zs < tg/Zs > 0) Pr(Z, > 0)

B21
+ Pr |:(Zg — WZQ) < tﬂ/Za < 0:| PT(Za < O)

The variableZ; < tg/Z, > 0 has a(k — 1)-dimensional skew-normal density
function as given by Azzalini (1985), with location parameter zero, scale mafix
and shape parametér= (B>?)~' B2'/,/(b"" — B'2(B**)"' B*). Following Azzalini
(1985) we denote this density &5/7,, > 0 ~ SN;_1(0, B*,6). The marginal densities
of Z3/Z, > 0 are skew-normal as well because of proposifiaf Azzalini and Capitanio
(1999).



As to the second component &fr (fﬁ < tﬁ>, in section 4.2.1 we showed that
(Zﬁ - fg’%za> ~ Ni_1 (0, B).
Summarizing the results of this section we can say that the probability distributions of

the projectorf and of its componen@a andfﬂ, are mixtures of two distributions with
weights1/2 and densities given in the following table.

Pr(Zy>0)=1/2 | Pr(Z,<0)=1/2

Conditioning Variable| Conditioning Variable

Projectors Zy >0 Zo <0
T, TN (0,0, z, > 0) N (0,0)
Ty SNy,_1(0, B2, §) Ny—1 (0, B3!)
T TN, (0, B!, 24 > 0) Ny (0, B*)

Table 1: Table of probability densities

5 Application Il: A=A, x R?with A, = ([Rg+)2 « RP—2

5.1 Analytic form of the estimator

Acting as in the previous case, we et = (R*)2 with p = 2 lumping in with 3 the
other components af. Then,A, = {T,, € R* —T,, < 0} and the polar cone is given
by A2 = {y € R? By < 0}. There are four faceg] = {{0}, {1}, {2}, {1,2}}. We
introduce the notatiol?,, | | to indicate theth element of the vector,, and we consider
the matrixB~! partitioned as follows,

11 ‘ B12 bll b12 BlS
B—l _ 2B>§% 2><ékég_2) :| _ p21 p22 | B23
(k—2)x2 ‘ (k—2)x(k—2) B3 RB32 ‘ B33



We have the following regions (Moran, 1971)

By ={Z, e R* Z,[1] >0, Z,[2] > 0}
21

b
By = {Za cR* Z,[1]1<0, Z,[2] —an[l] >0}

12

By = {Za ER?; Z,[1] — =74[2] >0, Z,[2] < o}

2

b2
Epgy ={Z. €R* CZ, <0} with C= [ _})_ = 1
b

The projectors are

0 0 1 -
Poy=1d, Py=| _» ||, P;y=|, § | Poz=0
pll

Then, by (4)fa may be written as
To = Zalpy (Zo) + Z8W g, (Za) + 28V 1s, (Z2) + 280 I, L, (Zs)  (16)

whereZ{"* is a degenerate random vector at zero,

0 Z, 1] — b Z,[2]
{1 — {2} — a vz Lo
7 {%[2]—%2@[1]} and  Z§ { |

By (5),
-~ 1 2 1,2
Ty = Zs Iny, (Za) + Zg{ })IE{l}(Za) 1 Zg{ })JE{Q}(ZQ) 1 Zg{ ) Ip, ., (Z.) (A7)

where

20— (7, B ), 20— (2,- B 4
B I} bll « ) 6 B b22 o 5

-1
Zé{L?}) _ [Z/g — B (BM) Za}
Then, joining the above two components we ﬁq:;iven by (6).

5.2 Distributions
5.2.1 The distribution of 7'

The probability distribution of the evefft < tis given by (10) withw,; = Pr (Z, € E;).
As already said we’ll not investigate this weights referring for this argument to the book
of Sen and Silvapulle (2005).



WhenJ = {(} the event to be analyzed < t/Z; > 0N Z, > 0. It has ak-variate
truncated normal probability density functidgi)N;, (0, B!, z, > 0) with the denomina-
tor D = ffozf“'flq exp (— 22'Bz) dz whereO; = {z,;0 < z,[i] < 4o0;i = 1,2},
I, ={z3;,—00 < 2g[i] < 4o00;i=1,---,q}, ¢ + 2 = k. In the mathematical appendix
we show thatD = (2r)®/2|B|~1/2 1 (1 — 2wz ) wherery, is the correlation between
Z,[1} andZ,[2]. Therefore, the density of <t/Z, >0NZy, > 0is

2N}, (0, B_l)
= T e 1P (Za)

™

TN, (0, B, 24 > 0)

The density ofz(")/Z,[1] < 01 z{"[2] > 0. We first observe that

Za[1] 1 007 [ Za1] Za[l]
Z&VR) | = | =t 10 || Zal2] | with | Za2] | == Z~Ne(0, BTY)
Z[g{l}) _B31/b11 0 1 Zg Zg

(18)
Then, by a theorem on linear transformations of multivariate normal distributions, we
have

Zo[1] o0 0
Z8pl [ ~N [0, | 0 o2 (19)
Z{ 0 ~ O

whereo? = b2 — b2 (1)~ 1p12 v = B32 — B3L(p11)~1p12 and() = B33 — B3 (p11)~1 BI3,
Given above results, it is immediate to observe that

Pr(zW <t/ Z,1] <0 n Z{W2]>0)=Pr (20 <t ) Z{D 2] > 0)

therefore, the density gt} / Zz{{"V[2] > 0is ak — 1 truncated normal density,
1 /
TN (0,%, 2{V[2] > 0) = ¢ exp <—§ Pt 2—1z<{1})> AP

with

_ o’ o -1 _ 1 (k—1)/2 1/2
E_{’y Q] and & —5(27r) (det X2)

Putting the results together, the densityf'}) / Zz{!"W[2] > 0is2N,_; (0,%); Z8M[2] > o.

The density of the ever# ) < ¢/7,[2] < 0N z{*P[1] > 0. As in the previous
case we first observe that

Z{ ] 1 =202 07 [ ZJ]1]
Zo[2] =10 1 0 Z412]
Zé{2}) 0 _B32/b22 1 Zﬁ

10



therefore

Z&m})[l] ] Yin 0 i
Z412] ~Neg| O, 0 b2 0 and (20)
ng | Y31 0 g3
z:y | T
~ N1 0, V:= 21
Z/é{Q}) . ( 7 [ VY31 33 ]) (21)

with 1, = bt — 12 (b22)71 21, 4py3 = B3 — B23 (b22)*1 b12, 45, = B3 — B32 (bzz)*l p21
andiys; = B3 — B32 (b22)~" B2, Above result implies that

Pr(ZW©) <t/Z,[2] <0nZ{EP[1] > 0) = Pr (20 <t/ Z{EV[1] > 0)

therefore, the density o2V / Z{{*)[1] > 0is ak — 1 truncated normal density with
variance-covariance matrix equal®o As in the previous case, the denominator is equal
to 1 (27)* 2 (det w)"/* and

TNt (0,9, 2{V[1] > 0) = 2N, (0, V) ; Z{*V[1] > 0

Finally, we analyze the density of the evefit2) < ¢/CZ, < 0 which occurs when
the regionE; is indexed byJ = {1,2}. Denote withZ©® the vector with components

Zz{ 1] and Z{M[2). Simple algebra allows one to show that

z© [ CBYC" 0
ERICIGA)
whereBy,' = B2-B* (B")™" B, Then,Pr (2112 < t/CZ, < 0) = Pr (202D <)

andZ{42) ~ N, (0, B*) with B* = 0 0_1 :
0 B

5.2.2 The distribution of fa

From (11) we have

Pr(To < ta) =Pr (Za < ta/Za € By) Pr (Za € Eggy) +

Pr (28 <t,/Z, € Byy) Pr(Zs € Egy) +

(
(

Pr(Z{® <t,/Z, € Ey) Pr(Z, € Eggy) +
(

«

Pr(Z{"®) <t,/Z, € Ep19y) Pr (Za € Epuy)

11



Then, the bivariate density &, < t./Z, € Egy is TN, (0, B', z, > 0).
Let (BY) ™ := A= | ™ “2 1 The marginal densities of the truncated normal,

a21  A22
Z., are not truncated normal. In fact, in the mathematical appendix we show that

_2N(0.u) (1= Fla))

JZa1) | _ arccosrip = N(0,u™") g1 (2a1]); 2a[1] >0
and N b o)
2N (0,0~ %) (1 — -
J2a0 = = N (0,07) g2 (za[2]): 2af2] >0
whereu = a;; — CL12(&22)_16L21, U = Q22 — @21(6511)_1@12’ a = (6622)_1/2a212a[1],

b = (a11)""?a1324[2], 712 is the correlation betweef, [1] andZ,[2] and F(.) is the dis-
tribution function of av (0, 1). The functionsy; (z,[1]) andg, (z,[2]) can be thought of
as "skew functions”. They serve to distort the symmetry of the truncated normal density
functions.

The eventZ\""") < t,/Z. € Eg;. We first observe that

| ]2 (% )

b21

whereby, = b2 — (b*1)? /b and 25V [2) = Z,[2] — 1 Z,[1]. Therefore,

Pr (o < Z{Wp <t )
Pr ( {1} )

Z,[1]is TN (0 by, 28V [9) > o).
We can apply the same line of reasoning to the evaHt) < ta/Za € Eyg finding
b12

that Z,[2] and Z{*V[1] = Zo| 1] — = Z4[ 2] are independent and the densityf*[1]
is TN (0 b, 2P0 > 0).

Pr(ZMW2] <t /| Z,[1] <0 N Z{W[2] > 0) =

b21

and the density oZ,[2] — 77

12



5.2.3 The distribution of Zfﬂ
By (12) the probability of the everffﬁ < tsis given by,
Pr(Ty < t3) =Pr (Zs < t3/Za € Eq) Pr (Zo € Eg) +
Pr (2 < 15/2q € Eyy) Pr(Za € Bry) +
Pr (2™ < ts/70 € By) Pr(Za € Eyy) +

Pr (2" < 15/20 € B ay) Pr(Za € Eqz)
Then, the density of3 < t3/Z, € E{y is given by

_ ff02 exp (—%Z’Bz) dzq

Iz i) ;

25 € R (22)

in the mathematical appendix we show that it can be written as

_2N0. W) Fy(e)

fZ,B - 1 — arccos ria
T

= N, (0, W) ho(25); 25 € RY (23)

wherec = _Bll Bngﬁ, W = Boy — BQIBH Bis andF2 ff—l—ooNQ (y, 0, Bll ) dy
Again, hy(z3) can be thought of as a "skew function” that serves to distort the symmetry
of the normal density.

The marginal density of a component of the vedigr< t5/Z, € Ep,. Without loss
of generality let us derive the marginal density of the last compone#t ofienoted?;,
subject to the conditio,, € E{y;. Assume the following partitions of andB.

Z

Z a Al
7 = = Z5 | = {(k_l)“}
[ Zs ] Zi 2

lumping in with Z; any component different fror#,,, and

h1)atho1)  (kt3x1 St 2x(h3)
B:{(_)bx(_)(_)x} with 3112{20212 &Y }

21 b22
1x(k—1) 1x1 (k—3)x2  (k—3)x(k—3)

To derive the marginal density of;, fz,, we must integrate out the remaining variables
of the numerator ofzﬁ, that is

Jo o2 J22 exp (=3 #'B2) da

D ;

ka - z €R (24)

13



In mathematical appendix we show thfgt is the same as (23) with= 1. That s,

2N, Fy(o)

ka 1 __ arccos ri2
K

= N(O, W_l) hQ(Zk); z € R (25)

wherec = —Bﬁlblzzk, W = by — bleﬂlblz and F; (c) = fftjoN2 (y,0, V_l)dy’
V = Chy — C1aCo' Coy.

The marginal density of théth component ot/ < ¢3/Z, € Eyp is still given by
(25) once the matri3 has been modified changing tfte row with thekth row and the
ith column with thetth column.

The density of the everﬂ’é{l}) < t3/Z, € Egy. By (18) and (19) it is immediate to
observe that

Pr (zgm <t/ ZJ1] <0 N Z{D[2 > o) — Pr (zgm <ty ) Z{D[] > o)
therefore, the density (ﬁ’é{l}) is skew-normal (Azzalini and Dalla Valle, 1996),
Z{W ) Z8W[2] > 0 ~ SN2 (0,0, )

with a = Q7 1y (6% — 7’9_17)71/2.
The marginal densities cﬁi’g{l}) < tg/Zo € Eg, are "skew-normal” too, as per
Propositior2 of Azzalini and Capitanio (1999).

The density of the everﬂé{m <tg/Z. € E{s. Asin the previous case, by (20) we
observe that

Pr (Z}P” <ts /) Za2] <0 N ZED[] > 0) — Pr (Z}P}) <ty ) 2] > 0)
and the density ofé{z}) is Skew-Normal (Azzalini and Dalla Valle, 1996),
Z{ ) 28] > 0 ~ SNy (0,433, )

with o = ¢33 tis (Y11 — ¢13¢3_31¢31)_1/2-
As in the previous case, the marginal densitiesZé{F}) are "skew-normal” as per
Propositior2 of Azzalini and Capitanio (1999).

Finally we investigate the density of the evefif "*) < ¢5/Z, € E( ;. By the

results of section 5.2.1 it is immediate to observe tﬁ/gt}z}) ~ Ni_5 (0, By;") with
marginal normal densities.
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Mathematical Appendix

To compute the marginal densities we use repeatedly the Sheppard’s result
1
p(X1>o7X2>o):§(1_W)
™

wherer, is the correlation betweeli; and X5, and the solution of the multiple integral
// exp [— ('Bx + 2'b+ by)|dwy -+ - dxy,
Iy
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whereB is a positive definite matrix, annz1 vector of constanty, a scalar constant and
I, = {z;—00 < z; < +00;i = 1,--- , k}. The solution of the above mutiple integral is
given by (Grayhbill (1983), Theorem 10.5.1, p. 342)

1 1
exp (é_L VB~ 'b — bo) / e / exp {—é(x —¢)R(x — c)} dxy---dxy
Iy,

whereR = 2B, ¢ = —(1/2)B~'b.
e Consider the denominator of the truncated normal distributibncan be written

as,
/322 /
L Lol (s s000)] )
02 Iq 2

whereb = Byiza, by = 320B11%a, 02 = {24;0 < 2,[i] < +o0;i = 1,2} and

I, ={z3;,—00 < 23[i] < +o0;i=1,--- ,q}.

We first apply Graybill's theorem to the integral in round parentheses. We have the
following result,

1
(2) =272 | Byo| 12 exp (—gz&U za) d 24

with U = By; — Bia (BQQ)*1 By1. Then, we apply Sheppard’s result getting the
following expression for the denominator,

1
R e

If the double integral frond to +oc were a simple integral thelt = 1 (27)*/2 | B| 1/,
e The marginal density_ 5. Because the density &f, < t,/Z, € E{y is truncated
normal, the marginal of, [2] is given by,
Jo7 exp (=3 2L Aza) dzo[1] .
[)o, exp (—3 20 Aza) dzg

fz.20 = 2a[2] > 0

where(B1)™' .= A = [ Z“ 212 } By Sheppard’s result we get the denomina-
21 22

L 1
// exp (=5 2 Aza) dzo = 2m [A[7V2 S (1- 22

(0D ™

tor,

The numerator is an application of Graybill’'s theorem,

/Oooexp (—% 2 Azg) dza[1] = /Oooexp {— <%2a11 + za[la1224[2] + %2@22)1 dza[1]
= o' (2m)? [ = F(b)] exp (—% 22[2] v)
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wherev = agy—ag (a11) ta12, b = (a11)2a1924[2], r12 is the correlation between
Z,[1} andZ,[2] and F(.) is the distribution function of & (0, 1).

The denominator is a simple application of Sheppard’s result.

The ratio between the numerator and the denominator produce the marginal density.
The same approach is used to obtain the marginal defisity.

The densityf,. Consider, first, the numerator of (22). By Graybill's theorem we

have,
B
// exp [— (z(’liza + 20 b+ bo)] dz,
02 2
1, (Bu\"" 1
= exp (Z v <%) b— b0> // exp [—§(za —¢)'Bi1(zq — €)| dz,
02

with b = Bys23, by = %z’ﬁBmzﬁ, c= —BﬁlBlzzﬁ. Then, the numerator is given by
1
N = exp (—5223 WZﬁ) D, (BilBlgzg)

With W = Byy — Boy By Bip and®, (By' Biazs) = [T exp (=3 Buy) dy.
The densityfz,. The main burden is to compute the numerator of (24). We have

1
// // exp (——z’Bz)dzl
02 Iy 2
_ / Bll / 2
= . exp | — | z21—21 + 21b122k + b2z | | d2y
02 Ig1 2
1 ° 1
= €eXp [_5 (522 - 52131_11512) Zﬁ} // / eXp (—5 y’Bny) dy
—Ca Iq—1

with ¢ = — B 'biozp = {EQ‘} andy = 2, —c = Bﬁ“} according to the partition of
B B
7. Moreover,

% 1
// // exp (——y’Bny) dy
—Ca Ig—1 2
oo *,C */ C *
_ // // exp {_ (yﬁ%yﬁwﬁcmywty;%ya)]dyg dya
—Ca Iy

Graybill's theorem applied to the integral with respecgtgroduces the following
result

1, k=3 _1 -1
exp _§yaVya (2m) 2 [Ca| 725 V= Cn — C12Cy3 O
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that must be integrated fromc, to +oc. Therefore, the numerator ¢f, is given
by

1 K3 1 o 1
exp —5 (b22 — bngilblg) Z]%:| (27T> 2 ‘022‘ 2 // exp (_5 Z//aVya> dya

Some algebra applied to the ratio between this result Angives the marginal
densityfz, .
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