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Abstract

We analyze several measures of volatility (realized variance, bipower
variation and squared daily returns) as estimators of integrated vari-
ance of a continuous time stochastic process for an asset price. We use
a Multiplicative Error Model to describe the evolution of each measure
as the product of its conditional expectation and a positive valued iid
innovation. By inserting past values of each measure and asymmetric
effects based on the sign of the return in the specification of the con-
ditional expectation, one can investigate the information content of
each indicator relative to the others. The results show that there is a
directed dynamic relationship among measures, with squared returns
and bipower variance interdependent with one another, and affecting
realized variance without any feed–back from the latter.

Keywords: Volatility, Multiplicative Error Models, Realized Variance,
Bi-power Variance, Squared Returns, Jumps.
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59, 50134 Firenze – Italy. gallog@ds.unifi.it, velucchi@ds.unifi.it. Thanks are due
to Christian T. Brownlees for the massive effort he profused in programming an amazingly
efficient utility for extracting data from TAQ databases and to Marco J. Lombardi for
useful discussions on realized volatility. Comments by participants in the 2005 S.Co.
Conference in Bressanone, especially the discussant Cosimo Vitale, and by Loriano Mancini
helped improve the motivation of the paper. The lectures by Nour Meddahi at the 2006
CIDE Summer School of Econometrics provided a clear assessment of the existing literature
on realized volatility. All remaining errors are ours.

1



1 Introduction

In the past few years, the availability of financial data at a very high frequency
has allowed innovative measuring and modeling of many market phenomena,
among which volatility is one of the most investigated. “In financial eco-
nomics, volatility is often defined as the (instantaneous) standard deviation
(or ”sigma”) of the random Wiener-driven component in a continuous-time
diffusion model” (Andersen et al., 2005): many authors have addressed the
issue of consistently estimating a discrete time transformation of this (un-
observable) continuous–time object. The most notable set of contributions
is a series of papers by Anderson, Bollerslev, Diebold and coauthors (e.g.
Anderson et al., 2003) who exploit tick–by–tick (irregularly spaced) data to
reconstruct intra-daily series of transaction prices at regular intervals and
then derive a realized variance series as an estimator of integrated variance.
Five minutes seems to be the frequency of choice, as a rule of thumb trade–off
between getting close to continuous time and incurring in so-called market
microstructure problems (liquidity, bid–ask bounce, etc.) which would dis-
tort the overall picture (cf. Hansen and Lunde, 2006, for a discussion of the
treatment of microstructure noise in this context).

More recent research (Barndorff–Nielsen and Shephard, 2002, 2004, 2006)
pointed out that in the presence of jumps the realized variance is affected
by a non–vanishing bias. Squared returns have been long recognized to be
a noisy measure of integrated variance, although they seem to possess some
specific information (possibly connected with overnight behavior) which is
not contained in intra-daily data derived measures (Gallo, 2001).

In this paper, we adopt a Multiplicative Error Model as employed by
Engle and Gallo (2006) in order to analyze the interaction between three
different indicators, namely squared returns, realized variance and bi-power
variance. The goal is to detect which significant lagged relationships there
exists, if any, in the specification for the conditional expectation of each
indicator. The results show that the lagged squared returns enter significantly
and with approximately the same coefficient size each specification when
they are associated with the sign of past returns. Bi-power variance is also
significant everywhere but in a way that is not differentiated according to
whether past returns are positive or negative. The role of jumps is present
only in the model for realized variance and in a separate form from bi–power
variance.

The paper is organized as follows: section 2 summarizes the main results
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of the theoretical debate on high-frequency measures of volatility, establishing
some notation as well. Section 3 is devoted to the specification of the Mul-
tiplicative Error Model when the conditional expectation term is augmented
with predetermined variables. Section 4 contains the main estimation re-
sults and a comparison exercise based on Mincer–Zarnowitz regressions of
the indicators on the forecasts produced by the MEMs. Concluding remarks
follow.

2 Some Theoretical Background

Various arguments can justify the interest in the high–frequency based mea-
sures of volatility1. Andersen and Bollerslev (1998) pointed out that squared
daily returns is a noisy measure of variation: with simulation arguments they
show that Mincer–Zarnowitz type regressions of squared returns on any con-
ditional variance forecast would produce a very low R2. Given that volatility
or variance of returns is not observed, it has to be substituted with a proxy
whose measurement error should vanish under certain conditions. One solu-
tion suggested is to refer to the availability of ultra–high frequency data on
returns and to compute a variable called realized variance, constructed as

rvt(τ) =
1/τ∑
i=1

r2
t−1+iτ (1)

where the generic term rt−1+iτ is the return measured intra–daily as the price
variation of an asset over a (very small) period τ , that is,

rt−1+iτ = log(Pt−1+iτ )− log(Pt−1+(i−1)τ ) ≡ pt−1+iτ − pt−1+(i−1)τ .

The interval τ can be chosen as to have its reciprocal be an integer value,
representing the number of intradaily time intervals considered during the
day. When τ = 1 we get squared returns back (but we will need to discuss
the role of overnight returns); common choices are fractions of the trading day
corresponding to five minutes or thirty minutes intervals. Using this variable
as the left-hand side variable to evaluate forecasts, Andersen and Bollerslev
showed that the R2 of the Mincer–Zarnowitz regression would increase as τ
decreases.

1This section is based on various survey papers by Andersen, Bollerslev and Diebold
included in the references.
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The theoretical support for such a result stems from the following con-
siderations. Assuming that the (log of) asset prices evolve according to a
stochastic differential equation (cf. Andersen, Bollerslev and Diebold, 2005)

dp(t) = µ(t)dt+ σ(t)dW (t) (2)

where µ(t) denotes the drift term, σ(t) is the instantaneous (or spot) volatil-
ity, dW (t) is a standard Brownian motion.2

Over an infinitesimal discrete time interval τ , returns can be written as

r(t, τ) ≡ p(t)− p(t− τ) ≈ µ(t− τ)τ + σ(t− τ)∆W (t)

where ∆W (t) = W (t)−W (t−τ) ∼ N(0, τ). Over a day, we would then have

r(t) = p(t)− p(t− 1) =
∫ t

t−1
µ(s)ds+

∫ t

t−1
σ(s)dW (s);

if the volatility process σ(t) is independent of the Wiener process, W (t), then
the distribution of the returns at time t, conditional on the path of the drift
process µ(s) and the volatility process σ(s) between t − 1 and t, is actually
Gaussian with variance ∫ t

t−1
σ2(s)ds ≡ ivt (3)

which is called the integrated variance. It has an interest in itself since it is at
the basis of the most important derivative pricing formulas with stochastic
variance. The link with existing discrete time counterparts is straightforward:
the variance of the returns rt+1 measured in discrete time conditional on the
information set at time t, It is actually

V ar(rt+1|It) = E
[∫ t

t−1
σ2(s)ds |It

]
= E [ivt+1|It] .

This justifies using the integrated variance on the left–hand side of a Mincer–
Zarnowitz regression where the regressor is the estimated conditional variance
from some model. By the same token, since ivt+1 is a latent variable, an
observable counterpart is needed. The theory states that, in the absence of
jumps, the realized variance rvt+1(τ) converges uniformly to the integrated
variance as τ tends to zero.

2Some continuity conditions are required on µ(t) and σ(t) in order to exploit the mar-
tingale properties of the resulting process, but they are well documented elsewhere –
Andersen, Bollerslev and Diebold (2007) and will not be recalled here.
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Empirical illustration of some of the data features can be provided in ref-
erence to a highly capitalized stock, General Electric (GE), whose transaction
data have been extracted from the NYSE TAQ database between January 4,
1995 and December 29, 2000, following a procedure described in Brownlees
and Gallo (2005). The tick–by–tick (irregularly spaced) transaction price
data for a randomly chosen day in the sample of GE data are depicted in
the top–left panel of Figure 1: note the highly irregular profile with frequent
spikes in the data. The other panels show (left to right; top to bottom) prices
sampled at regular intervals τ every 1 minute, every 5 minutes and every 10
minutes; the corresponding returns are reported in Figure 2.

Figure 1: Time series profile of transaction prices during one randomly chosen
day for GE – different sampling frequency. Tick–by–tick (top left); 1 minute
(top right); 5 minutes (bottom left); 10 minutes (bottom right).

The presence of jumps in the process dp(t) somewhat modifies the picture.
Equation 2 is extended to include tractable jumps, namely,

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t) (4)
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Figure 2: Time series profile of returns during one randomly chosen day for
GE - different sampling frequency. Tick–by–tick (top left); 1 minute (top
right); 5 minutes (bottom left); 10 minutes (bottom right).

where q(t) is a process keeping track of how many jumps have occurred at
time t, and κ(t) indicates the size of the jump at time t when one occurs.
Correspondingly, over a day, we would then have

r(t) = p(t)− p(t− 1) =
∫ t

t−1
µ(s)ds+

∫ t

t−1
σ(s)dW (s) +

∑
t−1≤s≤t

κ(s),

and the quantity that the realized variance rvt converges to is not the inte-
grated variance but

qvt ≡
∫ t

t−1
σ2(s)ds+

∑
t−1≤s≤t

κ2(s).

In a series of papers, Barndorff-Nielsen and Shephard (e.g. 2006), suggest a
different measure of volatility which is robust under the presence of jumps.
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The Bi-power realized variance is defined as

bvt(τ) =
π

2

1/τ∑
i=1

|rt−1+iτ ||rt−1+(i−1)τ | (5)

which is also function of the intradaily time interval τ . As τ converges to
zero, bvt(τ) converges uniformly to the integrated variance ivt.

For illustrative purposes, it is instructive to look at the elements that are
used to compute the two measures. In Figure 3 we report the pattern of
squared returns and of cross absolute returns for a frequency of five and ten
minutes.

Figure 3: Time series profile of squared returns (top) and cross absolute
returns (bottom) during one randomly chosen day for GE. Different sampling
frequency: 5 minutes (left) and 10 minutes (right)

The time series of the resulting daily measures are depicted in Figure 4
for the days in Sep. 1999; the bivariate scatterplots (reported in Figure 5)
show that the two ultra–high frequency measures of variability are strongly
correlated with one another, but much less so with the squared returns.
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Figure 4: Time series profile of Realized Variance, Bi–power Variation and
Squared Returns. Sep. 1999.

What we are interested in is the fact that an estimate of the jumps at time
t (Barndorff–Nielsen and Shephard, 2004) can be taken to be the difference
between the two measures when it is positive, namely

jt(τ) ≡ max(0, rvt(τ)− bvt(τ)). (6)

An example of the time profile of jumps is given for the GE stock in Fig-
ure 6 (left panel). The series exhibits significant autocorrelation (first–order
coefficient around 0.10, Ljung–Box Q(12) test statistic equal to 201.11) and
a zeromodal, highly skewed distribution (right panel).

A further dimension of interest is the sampling frequency, as too high
of a frequency will produce some biases which are connected with market
microstructure (cf. the recent paper by Hansen and Lunde, 2006, with the
discussion by several scholars). We will not pursue the issue of optimal
sampling here, nor will we reproduce our results for different time intervals.
In what follows, we will adopt a five-minute interval as it seems to be a good
compromise between the need to have enough sample points within a day
and the danger of inserting further biases in the analysis.
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Figure 5: Realized Variance, Bi–power Variation and Squared Returns: Un-
conditional Distributions and Cross-plots. Jan. 4, 1995 – Dec. 31, 2000.

In concluding this discussion of the theoretical results we have all the
ingredients to proceed in our analysis, except for a further look at the daily
squared returns. So far, we have assumed that the ultra–high frequency
measures of volatility relate to a fine division of the day into intervals of the
same size. However, stock markets are closed for a long period during which
no (significant) trading occurs. In practice, therefore, researchers prefer to
compute both rvt(τ) and bvt(τ) on the basis of the prices recorded during
market activity time. Recorded daily prices, on the contrary, are measured
from closing time to closing time, so that, if we define the (log) closing price
at time t as ct, and the (log) opening price3 at time t as ot, we have

rt = ct − ct−1 = (ct − ot) + (ot − ct−1)

that is, the sum of intradaily return and overnight return. Squared daily

3In the calculation of rvt(τ) and bvt(τ) the first few observations of the trading activity
of the day may even be excluded. The argument does not change if one moves the first
return considered a few minutes into the trading day.
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Figure 6: Estimated Jumps. Jan. 4, 1995 – Dec. 31, 2000: Time series and
distribution.

returns, therefore, are certainly a noisy measure of integrated variance, as
seen above, but they contain some extra information that is not considered
in the ultra–high frequency measures of volatility. In fact,

r2
t = (ct − ot)

2 + (ot − ct−1)
2 + 2(ct − ot)(ot − ct−1)

= rvt(1) + (ot − ct−1)
2 + 2(ct − ot)(ot − ct−1) (7)

Gallo (2002) shows that in modeling intradaily variance with a GARCH
model there may be a significant contribution from overnight innovations
which are available in the information set at the beginning of the day. We
will return on this aspect in the discussion of the empirical results: for the
time being, let us examine the correlations for the GE stock, reported in
Table 1. Intradaily returns are clearly more correlated with ultra–high fre-
quency realized measures, especially jumps.

3 The Multiplicative Error Model

We address the issue of analyzing the two ultra–high frequency based mea-
sures of volatility in the framework of the Multiplicative Error Model used
by Engle and Gallo (2006). Such a model extends the GARCH approach to
studying positive valued phenomena (exchanged volumes, durations between
trades, daily ranges, etc.): the measures described above fall in this category.

Let us consider a generic indicator as a random variable with positive
support σ2

i,t. The MEM logic is that this variable is the result of the product
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Table 1: Correlations between the Variance Indicators: GE. Jan. 4, 1995 –
Dec. 31, 2000.

Indicator rvt bvt r2
t (ct − ot)

2 (ot − ct−1)
2

Bi–power 0.977
Sq. Returns 0.348 0.336
Sq. Intraday 0.466 0.418 0.576
Sq. Overnight 0.142 0.134 0.615 0.086
Jumps 0.132 −0.073 0.061 0.231 0.040

between a scale factor evolving in a conditionally autoregressive fashion (the
expected value) and a innovation term with positive support and unit expec-
tation. In detail, σ2

i,t = µi,t εi,t, where εt ∼ D(1, ϕ), i.e. has unit mean and
variance ϕ. As a consequence, the conditional expected value of σ2

i,t, µi,t, is
specified as

µi,t = ωi +
p∑

j=1

αiσ2
i,t−j +

q∑
k=1

βiµi,t−k + c′ zt−1.

What is of interest in general, and for the case at hand in particular, is the
presence in the model of a vector of weakly exogenous variables zt−1 in the
information set at time t− 1 (stationarity conditions are discussed by Engle,
2002).

Since the process σ2
i,t represents the behavior of a specific variance indi-

cator at time t it is interesting to see what explanation is added by inserting
the values of functions of past indicators among the predetermined variables.
By simplifying notation to the case of just one lag on the right–hand side,
and splitting lagged observed values into two components corresponding to
whether lagged returns were positive or negative, we obtain

µi,t = ωi + βi
1µi,t−1 + δi,i

1 σ
2
i,t−1d

+
t−1 + ψi,i

1 σ
2
i,t−1d

−
t−1 +

+
∑
s 6=i

(δi,s
1 σ

2
s,t−1d

+
t−1 + ψi,s

1 σ
2
s,t−1d

−
t−1).

In the expression, d+
t−1 is a dummy variable which assumes value 1 when the

stock return at time t−1 is positive and d−t−1 = 1−d+
t−1. Such a specification

lends itself to estimation and inference using test statistics built with the
Bollerslev and Wooldridge (1992) robust coefficient covariance matrices.
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Using the short–hand notation (σ2
i,t)

+ = σ2
i,td

+
t , and, analogously, (σ2

i,t)
− =

σ2
i,td

−
t , a possible specification is

Model 1 - Squared returns r2
t = µr

t ε
r
t

µr
t = ωr + βr

1µ
r
t−1 + δr,r

1 (r2
t−1)

+ + ψr,r
1 (r2

t−1)
− +

+δr,v
1 rv+

t−1 + ψr,v
1 rv−t−1 + δr,b

1 bv+
t−1 + ψr,b

1 bv−t−1

Model 2 - Realized variance rvt = µv
t ε

v
t

µv
t = ωv + βv

1µ
v
t−1 + δv,v

1 rv+
t−1 + ψv,v

1 rv−t−1 +

+δv,r
1 (r2

t−1)
+ + ψv,r

1 (r2
t−1)

− + δv,b
1 bv+

t−1 + ψv,b
1 bv−t−1

Model 3 - Bi–power variance bvt = µb
tε

b
t

µb
t = ωb + βb

1µ
b
t−1 + δb,b

1 bv+
t−1 + ψb,b

1 bv−t−1 +

+δb,r
1 (r2

t−1)
+ + ψb,r

1 (r2
t−1)

− + δb,v
1 rv+

t−1 + ψb,v
1 rv−t−1

In view of the fact that rvt ≈ bvt + jt alternative models to be estimated can
be seen as reparameterization of the previous ones, highlighting the separate
role of jumps:

Model 1 - Squared returns r2
t = µr

t ε
r
t (8)

µr
t = ωr + βr

1µ
r
t−1 + αr

1(r
2
t−1)

+ + γr
1(r

2
t−1)

− +

+(δr,v
1 + δr,b

1 )bv+
t−1 + (ψr,v

1 + ψr,b
1 )bv−t−1 + δr,v

1 j+
t−1 + ψr,v

1 j−t−1

Model 2 - Realized variance rvt = µv
t ε

v
t (9)

µv
t = ωv + βv

1µ
v
t−1 + δv,r

1 (r2
t−1)

+ + ψv,r
1 (r2

t−1)
− +

+(δv,v
1 + δv,b

1 )bv+
t−1 + (ψv,v

1 + ψv,b
1 )bv−t−1 + δv,v

1 j+
t−1 + ψv,v

1 j−t−1 +

Model 3 - Bi–power variance bvt = µb
tε

b
t (10)

µb
t = ωb + βb

1µ
b
t−1 + (δb,b

1 + δb,v
1 )bv+

t−1 + (ψb,b
1 + ψb,v

1 )bv−t−1 +

+δb,r
1 (r2

t−1)
+ + ψb,r

1 (r2
t−1)

− + δb,v
1 j+

t−1 + ψb,v
1 j−t−1

In each of the three expressions (9), (10), and (11) we can analyze the in-
dividual significance of the estimated coefficients, but also the following re-
strictions (for each indicator i = r, v, b):

1. if both δi,v and δi,b are equal to zero, there is no lagged influence from
either bi–power variation, jumps or realized variance.
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2. If (δi,v
1 + δi,b

1 ) = 0 but δi,v 6= 0, lagged bvt−1 does not affect µi
t but the

lagged jump jt−1 does.

3. If δi,v = 0 but δi,b 6= 0, only lagged bvt−1 affects µi
t but lagged jump

jt−1 does not.

4. If δi,v 6= 0 but δi,b = 0 then the autonomous effect of bi–power variation
is not present, since the coefficient on this variable is the same as the one
associated with jumps. In other words, this is the case when realized
variance enters as a significant variable in lieu of bi–power variation.

4 The Estimation Results

The three models were estimated and the coefficients are reported in Tables 2
to 4. In each table there are three columns: for comparison purposes, the
first reports the results for the so–called base specification where only the own
terms as in µi,t = ωi + δi,i

1 (σ2
i,t−1)

+ + ψi,i
1 (σ2

i,t−1)
− + βi

1µi,t−1 are estimated.
The second one is the full specification where all variables are included, and
the third reports the results of a model selected according to a General–to–
Specific (G–to–S) criterion.

A few comments are in order: there is a striking regularity of the signif-
icance of the lagged squared returns when returns are negative (coefficient
values are around 0.10); the counterpart for positive returns is consistently
dropped from all specification as insignificant. This is consistent with the
findings by Forsberg and Ghysels (2007) who find that lagged absolute re-
turns have explanatory power for realized volatility and expands those find-
ings to bi–power variance. The coefficients on lagged µ are all high and
statistically different from zero (more so for the squared returns, around
0.75, than for the other indicators, around 0.6). Lagged bi–power variance
is present in all retained specifications with coefficients which are around
0.27 in most specifications (a little lower in the squared returns specification
– around 0.16). The significant presence of jumps is detected only in the
model for realized variance. The asymmetric effects for these two variables
are not present, in that tests for pairwise coefficient equality fail to reject the
null hypothesis.

There is no evidence about realized variance influencing itself with a lag on
the basis of the tests described before: coefficient restrictions on the G–to–S
specification show that the equality of the coefficients on bi–power variation
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and jumps is always rejected (only marginally so in the case of negative
effects). There is a stronger evidence favoring absence of asymmetric effects
(the test statistic for the equality of coefficients on bi–power and jumps has
a p-value of 0.254), and when coefficient equality across asymmetric effects is
imposed, the two coefficients on bi-power and jumps are significantly different
from one another.

All evidence, therefore, points to the important role played, even dynami-
cally, by the jumps component of the realized variance which have significant
influence on future realized variance separately from the bi-power variation.

The results on the bi–power variance parallel, in a way, the ones on
squared returns, with the same significant variables being retained and values
of the coefficients which are pairwise very similar to one another.

The usefulness of the model with predetermined indicators in the speci-
fication lies in the evaluation of the informational content of the estimated
expected value according to various models. The forecasts produced by the
models are generally highly correlated with one another, as shown in Table 5:
the only exception is the column related to the base version of expected
squared returns. The additional information included in the lagged values of
the indicators seems to make a difference in the values of the forecasts.

Although limited to in–sample at this stage, the comparison across mod-
els that one can make can be performed via two sets of Mincer–Zarnowitz
regressions for each indicator in which the left hand–side is the indicator of
interest and on the right–hand side an estimated µt. The first set of forecasts
uses the estimated µt according to the base specification, the second one the
G-to-S specification detailed in the tables above.

Table 6 reports in the first row the p-values of a Wald test statistics
for unbiased forecasts of the form σ2

i,t = a + bµ̂j,t + ut where the σ2
i,t is the

indicator reported in the column of the table and µ̂j,t is the fitted value of the
model estimated in Tables 2, 3 and 4 above, and in the second row the R2 of
the corresponding regression. In a lot of cases the test statistics falls in the
rejection region signifying biasedness of the corresponding forecast. When we
fail to reject, the corresponding p-value is highlighted in italics and among
those results we report in boldface the highest R2. It is striking to see that
the best results (unbiasedness cum highest R2) are obtained for the G–to–S
specification of the model for its own indicator, a sign that the persistence

4Separately, the test statistics for the bi-power coefficients has a p-value of 0.10 and
the one for jumps has a p-value of 0.59.
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measured by the own lagged µ term and by the extra information available
at t− 1 has valuable content.

The R2 for the expected squared returns are (unsurprisingly) the lowest in
the lot: in a way the findings by Andersen and Bollerslev about this indicator
being a noisy measure of volatility get confirmed even in this context where
all forecasts deliver a low R2 even when the bi-power variation enters the
G–to–S specification. Interestingly, the R2 are fairly similar to one another
across forecasts but the bi–power specifications do not pass the unbiasedness
test.

The forecasts for the realized variance have a strong improvement (as
measured by the R2) when past bi-power and jumps are considered. The
role of asymmetric squared returns is also to be pointed out since the R2 of
the G–to–S squared returns forecasts is also fairly high.

Finally, bi–power variance is often a biased forecast of other indicators and
is also biasedly predicted by other specifications. The highest fit is obtained
by its own specification when lagged squared returns are (asymmetrically)
considered.

5 Conclusions

In this paper, we presented some evidence about the dynamic interrelation-
ships among different measures of integrated variance, as estimated within
a Multiplicative Error Model framework. The behavior of several variance
measures is modeled as the product of a scale factor and a unit mean innova-
tion allowing for the former to have all lagged indicators on the right–hand
side. We focus especially on the decomposition of realized variance into a
jump component and a bi–power variation component, and on the role of
lagged squared returns as an explanatory variable. The results show that
lagged jumps are not relevant for either squared returns or bi–power vari-
ance (as expected), that lagged squared returns are relevant when they are
associated with asymmetric effects (lagged negative returns), and that bi–
power variations are entering significantly in all specifications (although not
differentiated by the sign of returns). Realized variance gets separate impacts
by lagged jumps and bi–power variations.

Mincer–Zarnowitz regressions show that the augmented MEM specifica-
tions (selected by a general–to-specific strategy) provide estimates which are
unbiased in–sample predictions of the corresponding indicator.
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It goes beyond the scope of this paper to investigate the possible reasons
of why a noisy measure of variance such as squared returns still provides valu-
able information to predict high–frequency based measures of volatility. The
conjecture is that a decomposition of returns into overnight and intradaily
returns (measured on the basis of opening and closing prices) may reveal the
impact of market information accumulation during closing times on the size
of volatility the following day.
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Table 2: MEM Models: Estimation Results
Squared Returns

Variables Base Complete G-to-S
Constant 0.068 0.199 0.123

(0.022) (0.092) (0.062)
µr

t−1 0.940 0.784 0.759
(0.014) (0.052) (0.053)

(r2
t−1)

+ -0.013 -0.012
(0.008) (0.036)

(r2
t−1)

− 0.108 0.085 0.091
(0.023) (0.011) (0.036)

bv+
t−1 0.161 0.166

(0.072) (0.083)
bv−t−1 0.167 0.203

(0.069) (0.069)
J+

t−1 -0.746
(0.617)

J−t−1 -0.519
(0.981)

rv+
t−1

rv−t−1

AIC 3.883 3.871 3.874
ARCH(4) 2.745 2.357 2.376

(0.601) (0.670) (0.667)
Q-stat(12) 12.074 11.830 11.398

(0.440) (0.459) (0.495)
LogL -2865.212 -2855.756 -2857.956

Note: Robust standard errors in parentheses below the coefficients. ARCH(4)
is the LM test for ARCH with 4 lags (p-value in parenthesis); Q-stat(12) is
the Ljung Box statistic for residual autocorrelation up to lag 12 (p-value in
parenthesis).
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Table 3: MEM Models: Estimation Results
Realized Variance

Base Complete G-to-S
Constant 0.238 0.198 0.199

(0.036) (0.038) (0.039)
µv

t−1 0.561 0.600 0.596
(0.032) (0.030) (0.029)

(r2
t−1)

+ -0.003
(0.005)

(r2
t−1)

− 0.107 0.108
(0.020) (0.020)

bv+
t−1 0.263 0.263

(0.033) (0.033)
bv−t−1 0.313 0.315

(0.034) (0.034)
J+

t−1 1.020 1.022
(0.285) (0.286)

J−t−1 0.796 0.814
(0.264) (0.266)

rv+
t−1 0.297

(0.033)
rv−t−1 0.425

(0.039)
Tests
a: δv,v 6= 0, δv,b = 0 0.008
b: ψv,v 6= 0, ψv,b = 0 0.068
c: a. and b. 0.003
AIC 3.871 3.872 3.870
ARCH(4) 2.636 3.320 3.250

(0.620) (0.506) (0.517)
Q-stat(12) 30.633 28.423 28.242

(0.002) (0.005) (0.005)
LogL -2856.836 -2853.276 -2853.288

Note: Robust standard errors in parentheses. The tests section reports the p-
values of the test statistics used to ascertain whether lagged realized variance
rvt−1 in this model should replace the two variables bvt−1 and jt−1 considered
separately, first by the sign of the returns (a., positive, and b., negative) and
then jointly.
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Table 4: MEM Models for GE: Estimation Results
Bi–power Variance

Variables Base Complete G-to-S
Constant 0.186 0.153 0.191

(0.030) (0.034) (0.027)
µb

t−1 0.607 0.628 0.630
(0.029) (0.028) (0.027)

(r2
t−1)

+ -0.001
(0.017)

(r2
t−1)

− 0.096 0.094
(0.004) (0.017)

bv+
t−1 0.264 0.236 0.236

(0.028) (0.029) (0.027)
bv−t−1 0.385 0.283 0.277

(0.034) (0.031) (0.029)
J+

t−1 0.407
(0.230)

J−t−1 0.211
(0.246)

rv+
t−1

rv−t−1

AIC 3.754 3.755 3.752
ARCH(4) 6.861 6.191 6.257

(0.143) (0.185) (0.181)
Q-stat(12) 38.356 35.696 35.808

(0.000) (0.000) (0.000)
LogL -2770.521 -2767.132 -2767.373

Note: Robust standard errors in parentheses below the coefficients. ARCH(4)
is the LM test for ARCH with 4 lags (p-value in parenthesis); Q-stat(12) is
the Ljung Box statistic for residual autocorrelation up to lag 12 (p-value in
parenthesis).
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Table 5: Correlations between the Variance Forecasts: GE. Jan. 4, 1995–Dec.
31, 2000

Indicator r̂2
t Base r̂2

t G–to–S r̂vt Base r̂vt G–to–S b̂vt Base

r̂2
t G–to–S 0.873
r̂vt Base 0.724 0.941
r̂vt G–to–S 0.783 0.969 0.975

b̂vt Base 0.767 0.966 0.986 0.977

b̂vt G–to–S 0.812 0.983 0.968 0.995 0.983
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Table 6: MEM Models: Biasedness Wald Test and R2 for Mincer–Zarnowitz
Regressions. In–sample GE: Jan. 4, 1995–Dec. 31, 2000

Regression: σ2
i,t = a+ bµ̂j,t + ut

Indicator σ2
i,t

Forecasts µ̂j,t Sq. Returns Realized Bi–power
Sq. Returns (base) 0.548 0.338 0.000

0.086 0.251 0.290
Sq. Returns (G-to-S) 0.719 0.555 0.000

0.100 0.322 0.360
Realized (base) 0.536 0.808 0.227

0.100 0.306 0.340
Realized (G-to-S) 0.594 0.719 0.000

0.100 0.342 0.375
Bi–power (base) 0.015 0.000 0.861

0.101 0.304 0.339
Bi–power (G-to-S) 0.011 0.000 0.812

0.100 0.348 0.384

For each estimated model as labeled, the table reports in the first row the p-
value of the Wald test statistic for a null joint hypothesis H0 : a = 0, b = 1 in
a Mincer–Zarnowitz regression with Newey–West robust variance covariance
matrix (italics, shows failure to reject). The second row reports the R2

associated with the same M-Z regression. Conditional on the p-value being
greater than any customary significance level, the highest R2 by indicator
(column) is in boldface font.
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