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Abstract

Nonlinear time series models can exhibit components such as long
range trends and seasonalities that may be modeled in a flexible fash-
ion. The resulting unconstrained maximum likelihood estimator can be
too heavily parameterized and suboptimal for forecasting purposes. The
paper proposes the use of a class of shrinkage estimators that includes
the Ridge estimator for forecasting time series, with a special attention
to GARCH and ACD models. The local large sample properties of this
class of shrinkage estimators is investigated. Moreover, we propose sym-
metric and asymmetric focused selection criteria of shrinkage estimators.
The focused information criterion selection strategy consists of picking up
the shrinkage estimator that minimizes the estimated risk (e.g. MSE) of
a given smooth function of the parameters of interest to the forecaster.
The usefulness of such shrinkage techniques is illustrated by means of a
simulation exercise and an intra-daily financial durations forecasting ap-
plication. The empirical application shows that an appropriate shrinkage
forecasting methodology can significantly outperform the unconstrained
ML forecasts of rich flexible specifications.
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1 Introduction

Nonlinear time series models can exhibit components such as long range trends
and seasonalities that may be modeled in a flexible fashion using splines, flexible
functional forms, trigonometric polynomials, and so forth. Leading examples in
the financial econometrics literature include the modelling of long run volatility
trends (c.f. Engle & Rangel (2005)) and the analysis of intra–daily financial
durations periodicity (c.f. Engle & Russell (1998)). The resulting unconstrained
maximum likelihood estimator can sometimes be too expensively parameterised
and suboptimal for forecasting purposes. In such cases it is possible to obtain
some gains in terms of forecasting precision by appropriately restricting the
specification. This is usually achieved by constraining the forecasting model
using some model selection strategy. Shrinkage estimation techniques represent
an alternative or complement to model selection strategies for many of these
forecasting applications. In this work we use the term shrinkage to refer to
penalized maximum likelihood estimation procedures. These methods consist
of shrinking the maximum likelihood estimator in the attempt to obtain a new
estimator with smaller risk (e.g. MSE).

This paper proposes the use of shrinkage estimation techniques for forecast-
ing with flexible time series models in a general maximum likelihood framework.
The class of shrinkage estimators we consider includes the Ridge and General-
ized Ridge estimators (Hoerl & Kennard (1970)) as well as some variants of the
Bridge estimator (Frank & Friedman (1993)) as special cases. Using the local
misspecification framework developed in Hjort & Claeskens (2003), we show
that in large samples shrinkage estimators produce estimators that are biased
but have smaller variance than the maximum likelihood estimator. Shrinkage
techniques can thus lead to a smaller expected loss under quite different loss
functions. Moreover, as in Claeskens & Hjort (2003), the large sample analy-
sis of the estimators’ expected loss suggests a class of focused selection criteria.
The term focused refers to the estimated expected loss of a given function of the
parameter estimates which is of interest in the chosen application context. The
focused information criterion selection strategy consist of choosing the model
that minimizes the estimated risk (e.g. MSE) of a given smooth function of the
parameters of interest to the forecaster. As examples, consider that precision in
the estimation of a (nonlinear) function of the parameters (e.g. the persistence,
the unconditional variance or the half-life of a shock in a GARCH model) may
be more important than that of single parameters.

The discussion is developed with a special attention to the family of Multi-
plicative Error Models (MEM) (Engle (2002), Engle & Gallo (2006)), a model
class that includes the GARCH and ACD families. The usefulness of such
shrinkage techniques is illustrated by means of a simulation exercise and an
intra-daily financial durations forecasting application. The simulation exercise
consists of adopting a MEM where the conditional expectation mimics ultra–
high frequency dynamics with a time-of-day periodic component specified with
trigonometric polynomials. Cross-validation and focused information criteria
with variants from different loss functions form the basis for choosing the amount
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of shrinkage to adopt in the estimation. The resulting performance shows an
improvement from the approach when contrasted against the MLE as a base-
line. The empirical application refers to a MEM applied to financial durations
exhibiting a seasonal pattern due to trading habits. In our prediction exercise,
the model parameters are estimated all at once, rather than extracting the sea-
sonal component first and then estimating the parameters for the dynamics of
the conditional expectation.

The main contribution of the paper lies in suggesting shrinkage estimation
techniques for flexible parametric MEM models and extending the results of
Hjort & Claeskens (2003) to a class of shrinkage estimators that has not been
previously considered. We also analyze the estimators’ risk properties and de-
velop selection criteria using asymmetric loss functions. The results of the intra-
daily financial durations forecasting application show that shrinkage estimation
is a promising method for prediction that performs better than the ML approach
in rich flexible specifications.

There is a number of different contributions in the literature that relate to
this work. Engle & Russell (1998) and Engle & Rangel (2005) contain exam-
ples of MEMs applications that resort to flexible modelling techniques (splines).
Rodŕıguez-Poo, Veredas & Espasa (2007) propose a seminonparametric model
for financial duration data. Fokianos & Tsolaki (2006) proposes Ridge estima-
tors for INAR models. White (2006) reviews approximate nonlinear forecasting
methods. Sen (1979) is an early contribution on the use of local asymptotics
for the analysis of post selection estimators. Kiefer & Skoog (1984) investi-
gate the effects of local misspecification on the maximum likelihood estimator.
Knight & Fu (2000) use local asymptotics for the analysis of the large sample
distribution of shrinkage type estimators to show how Bridge estimators can
provide a risk improvement in the linear regression model framework. Hjort &
Claeskens (2003) present some results regarding James–Stein type estimators.
Hansen (2005) and Claeskens, Croux & Van Kerckhoven (2007) analyze the fo-
cused selection methods proposed in Claeskens & Hjort (2003) in a time series
setting.

The rest of the paper is organized as follows. Section 2 outlines the shrink-
age forecasting methodology within the context of a flexible parametric MEM.
Section 3 presents the theoretical framework and results. Section 4 presents two
forecasting applications on simulated data and intra-daily financial durations.
Concluding remarks follow in Section 5.

2 Methodology

This sections describes a general shrinkage forecasting methodology that can be
applied in many contexts: for the sake of clarity, we will consider a Multiplicative
Error Model as a leading example.

Let {yt} denote a generic MEM process and let Ft−1 be the information set
at time t− 1. The general definition of a MEM process is

yt = µt εt εt|Ft−1 ∼ Gamma(ψ, 1/ψ) (1)
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where, conditionally on Ft−1, µt is the conditionally deterministic component
of the process and εt is an i.i.d. innovation term with unit expectation. Let
{xt} denote a predetermined variable that it is known to improve the forecasts
of {yt} but for which no knowledge of the relationship with {yt} is available. A
flexible specification of the conditional mean µt is given by

µt = ω + αyt−1 + βµt−1 +
k∑

i=1

ηi hi(xt−1), (2)

where hi : R → R represents some appropriate linear basis expansion of xt−1,
for all i. A discussion on conditions which ensure stationarity and nonnegativity
of the MEM process can be found in Engle (2002), Nelson & Cao (1992) and
Doornik & Ooms (2000).

The list of possible choices of the hi(·) basis functions is long: polynomi-
als, trigonometric polynomials, wavelets, ridgelets and so forth. Different basis
functions often have quite different properties which may turn out to be more
or less useful depending on the problem at hand. We do not attempt to provide
a detailed review of the possible choices of the basis functions (for more details
we refer to White (2006)). We would only like to stress that bounded functions
(e.g. trigonometric polynomials) are easier to handle than non bounded func-
tions (e.g. splines), in that the latter can create more numerical difficulties in
the MEM estimation using nonlinear optimization algorithms.

Typically, we would like the number of hi(·) terms in Equation (2) to be rea-
sonably large in order to be able to approximate sufficiently well the unknown
link between yt and xt. However, this can lead to rather rich model parameter-
ization that can inflate the estimator variance and turn out to be suboptimal
for prediction. Shrinkage estimation methods allow one to handle this problem.
Consider a partition of the model parameters in two vectors, say θ ∈ Rp con-
taining the parameters not to be shrunk (e.g. the ω, α, β and ψ parameters)
and γ ∈ Rq containing the parameters to be shrunk (e.g. the ηi i = 1, .., k pa-
rameters). Let Ln(θ, γ) denote the log-likelihood function of a sample of size n.
For a given λ ∈ R+ the λ “ridge” shrinkage estimator of (θ′, γ′)′ is the solution
to the penalized likelihood maximization problem:(

θ̂n,λ

γ̂n,λ

)
= arg max

{
Ln(θ, γ)− λ ‖γ‖2

}
. (3)

The properties of the “ridge” shrinkage estimator depend on the regularizing
parameter λ. Large values of λ will push the γ–parameters towards 0, increasing
the bias of the estimator and reducing the variance. On the other hand, small
values of λ will keep the estimator close to the unconstrained MLE, reducing
the bias and increasing the variance. Therefore, there is a bias/variance trade–
off that depends on the choice of the shrinkage parameter λ. By appropriately
choosing the shrinking parameter λ, it is possible to obtain an estimator with
smaller risk (e.g. MSE) than the MLE.

The success in beating the MLE relies in choosing λ appropriately. In
the shrinkage literature the amount of shrinkage is often determined by cross-
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validatory methods. In this work we propose a recently proposed criterion called
the Focused Information Criterion (Claeskens & Hjort (2003)). Let some known
function of the parameters g : Rp+q → R be denoted as the focus parameter. Let
gtrue denote the value of g evaluated at the true parameters and let ĝλ denote
the estimator of gtrue using the λ shrinkage estimator. The focus parameter
used in this paper is the unconditional mean of the process keeping the values
of the predetermined variables fixed at x, that is

g ≡ µ(x) =
ω +

∑k
i=m ηmhi(x)

1− α− β
. (4)

Using the local misspecification framework developed in Hjort & Claeskens
(2003) it is possible to obtain the limiting distribution of ĝλ:

√
n(gtrue − ĝλ) a∼ Λλ ≡ N(bλ, τ2

λ),

where bλ and τ2
λ respectively denote the bias and variance of the focus parameter

shrinkage estimator. For some appropriate loss function L the asymptotic risk
of the gλ estimator is

rL(gtrue, ĝλ) ≡ E(L(Λλ))) .

The loss functions considered in this work are both symmetric (square and
absolute loss) as well as asymmetric (linex and linlin). The FICL(λ) turns out
to be an estimator of such limiting risk

FICL(λ) ≡ r̂L(gtrue, ĝλ),

and the FIC shrinkage selection strategy consists of picking up the λ which
minimizes the estimated risk. The appealing feature of such shrinkage selection
strategy is that the forecaster can decide the most appropriate focus parameter
for the context of his/her application and loss function.

3 Theory

This section provides the base assumptions and results for the derivation of the
asymptotic distribution of the estimators of interest. This is achieved by using
the local misspecification approach developed in Hjort & Claeskens (2003).

3.1 Local Misspecification Framework

Although, under appropriate regularity conditions more generic settings can
be treated as well (nonlinear model using stochastic explanatory variables),
the results of these section are more easily understood withing the original
framework of Hjort & Claeskens (2003) of independent data y1, ..., yn. Their
common density f is assumed to depend on the two previously defined parameter
vectors, θ ∈ Θ ⊆ Rp and γ ∈ Γ ⊆ Rq. The γ–parameter vector contains the
parameters that may be attempted to constrain, while there is no such need for
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the θ–parameter vector. It is assumed that there exist an unknown θ0 ∈ Rp, a
known γ0 ∈ Rq and an unknown δ0 ∈ Rq so that the true density is

ftrue = fn ≡ f(y, θ0, γ0 + δ0/
√
n), (5)

this assumption is called the “local misspecification” assumption in that it states
that the constrained model f(y, θ, γ0) with θ ∈ Θ, also known as the narrow
model, is locally misspecified. A central role in the large sample analysis is
played by the null model, which is the density f in (θ′0, γ

′
0)
′, that is

f0 ≡ f(y, θ0, γ0). (6)

Also, let E(·) and V ar(·) indicate the expected value and variance with re-
spect to the true model of Equation (5), while let E0(·) and V ar0(·) denote the
expected value and variance with respect to the null model of Equation (6).

As is customary, the average log–likelihood function determined by a sample
yn ≡ (y1, y2, ..., yn)′ is denoted by

Ln(yn, θ, γ) ≡ n−1
n∑

i=1

log f(yi, θ, γ),

and the gradient of the log–likelihood function is

∇Ln =
(
∇Ln,1

∇Ln,2

)
≡ n−1

n∑
i=1

(
s1(yi)
s2(yi)

)
,

where s(·) is the score,

s(y) =
(
s1(y)
s2(y)

)
≡
(
∇θ log f(y, θ, γ)
∇γ log f(y, θ, γ)

)
.

The subscripts 1 and 2 denote respectively the derivatives with respect to the
θ and γ parameters.

An important ingredient of this large sample analysis is the variance–covariance
matrix of the null gradient of the log–likelihood function under the null model,
denoted by B0. Let the score at the null point be

s0(y) =
(
s0,1(y)
s0,2(y)

)
≡
(
∇θ log f(y, θ0, γ0)
∇γ log f(y, θ0, γ0)

)
;

then

B0 ≡ Var0

(
n−1/2

n∑
i=1

s0(yi)

)
,

with the following structure

B0 =
(
B0,11 B0,12

B0,21 B0,22

)
,

with blocks corresponding respectively to the θ and γ parameters.
Under appropriate regularity condition reported in the appendix, Hjort &

Claeskens (2003) obtain the following result.
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Lemma 1 (Hjort-Claeskens Lemma) Consider the averages

∇L0,n,1 = n−1
n∑

i=1

s0,i,1(yi) and ∇L0,n,2 = n−1
n∑

i=1

s0,i,2(yi).

Under the local misspecification framework, then(√
n∇L0,n,1√
n∇L0,n,2

)
d→
(
B0,12 δ0
B0,22 δ0

)
+
(
M
N

) (
M
N

)
∼ Np+q(0, B0).

This important lemma provides the large sample description of what happens
to the distribution of the gradient of the log-likelihood function at the null model
(θ0, γ0) under the truth within the local misspecified framework. This result
allows one to derive the distribution of the estimators of interest using standard
arguments.

3.2 Submodel, Shrinkage and Submodel Shrinkage Esti-
mators

The local misspecification assumption implies that there is a known value of the
parameter space γ0 sufficiently close to the true value γ0 + δ0/

√
n in large sam-

ples. It may thus be advantageous to appropriately constrain the γ parameters
of the model in order to construct estimators with better risk properties than
the unconstrained maximum likelihood estimator. The family of constrained
estimators that we consider in this work also comprises submodel as well as
submodel shrinkage estimators.

We begin by defining the constraints that determine the estimators of inter-
est. Let S be a subset of {1, 2, ..., q} and let v = (v1, ..., vq)′ be a vector in Rq.
Denote by vS the subvector of v of components vj with j ∈ S. Analogously,
denote by vSc the subvector of v of components vj with j ∈ Sc, the complement
of S with respect to {1, 2, ..., q}. Also denote by πS ∈ R|S|×q the projection
matrix mapping v to the subvector vS , i.e. the matrix that πSv = vS . The set
of constraints that determines a submodel estimator is defined as follows.

Definition 1 (Submodel Constraint) For some subset S ⊆ {1, 2, ..., q}, the S
submodel constraint of the model f is defined by the set

ΓS ≡ {γ ∈ Γ : γSc = γ0,Sc}.

The definition of the shrinkage constraint requires some more work. Broadly
speaking, a shrinkage estimator imposes a bound on the deviation of γ from the
null point γ0, measured by some appropriate penalty function. We proceed by
first providing an appropriate definition of penalty function for the scope of the
current analysis.
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Definition 2 (Penalty Function) A function ρ : Rq → R+ is a penalty function
if ρ(·) is continuously differentiable of order 2 on Rq, ρ(0) = 0, ∇ρ(0) = 0,
∇2ρ(x) is positive definite for each x in Rq.

The type of penalties we take into account are smooth penalties like the
Ridge penalty, while we are ruling out penalties that are non differentiable at
the origin such as the LASSO (Tibshirani (1996)). The definition nevertheless
allows considerable flexibility regarding the shape of the penalty, allowing one
for instance to penalize different parameters in different ways.

We define the set of constraints that determine a shrinkage estimator as
follows.

Definition 3 (Shrinkage Constraint) For some penalty function ρ(·) and non-
negative real number c, the (ρ, c) shrinkage constraint of the model f is the set

Γρ,c ≡ {γ ∈ Γ : ρ(γ − γ0) ≤ c}.

The constraints of Definitions 1 and 3 can also be combined to achieve the
constraint defining a submodel shrinkage estimator.

Definition 4 (Submodel Shrinkage Constraint) For some subset S ⊆ {1, ..., q},
penalty function ρ(·) and nonnegative real number c the (S, ρ, c) submodel shrink-
age constraint of the model f is defined by the set

ΓS,ρ,c ≡ ΓS ∩ Γρ,c.

In what follows we will use the symbol m to denote a generic nested model.

Definition 5 (Nested Model) Let S be a subset of {1, ..., q}, ρ(·) a penalty func-
tion and c a nonnegative real number. The nested model m of the model f is
defined as the constrained specification satisfying the Γm constraints, where Γm

is equal to either the ΓS, Γρ,c or ΓS,ρ,c constraints.

We introduce this definition not only for notational convenience but also
because the class of submodel shrinkage constraints that we have defined does
not nest the class of submodel constraints. A more general class of nested models
has to be defined to include all possible cases of interest.

We can now establish a lemma that provides the asymptotic distribution of
the estimators of a nested model m.

Lemma 2 (Asymptotic Normality of the Nested Model Estimator) Let m be a
nested model and let (θ̂′n,m, γ̂

′
n,m)′ be the nested model estimator. Under the

local misspecification framework, then( √
n (θ̂n,m − θ0)√
n πS(γ̂n,m − γ0)

)
d→
(
Cm

Dm

)
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with(
Cm

Dm

)
=
(

B0,11 B0,12π
′
S

πSB0,21 πS(B0,22 + λ∇2ρ(0))π′S

)−1(
B0,12 δ0 +M

πSB0,11 δ0 + πSN

)
where

• if m imposes submodel constraints, S is a subset of {1, ..., q}, otherwise
S = {1, ..., q};

• if m imposes shrinkage constraints, for given c ≥ 0 there corresponds a
0 < λ ≤ +∞, otherwise λ = 0.

Note that as the proof of Lemma 2 points out, in practice the shrinkage
estimators are obtained by maximizing the unconstrained penalized likelihood
for a given value of λ, that is(

θ̂n,m

γ̂n,m

)
= arg max

Θ×ΓS

{Ln,S(θ, γS)− λρS(γS − γ0,S)}

where Ln,S and ρS denote the log–likelihood function and the penalty functions
as functions of the γS parameter only (with γSc constrained to γ0,Sc). In prac-
tice, maximizing the constrained log–likelihood function for a given c is usually
avoided in that constrained maximization is much harder then unconstrained
maximization.

Let us introduce some further notation to provide a more insightful ex-
pression for the asymptotic distribution of a nested model estimator given by
Lemma 2. Let B0,S denote the variance–covariance matrix of the gradient of
the log–likelihood function of the submodel S at the null point,

Var0

( √
n∇L0,n,1√
n∇L0,n,2,S

)
= B0,S =

(
B0,11 B0,12π

′
S

πSB0,21 πSB0,22π
′
S

)
and denote its inverse by

B−1
0,S =

(
B11

0,S B12
0,S

B21
0,S B22

0,S

)
,

which by using the matrix inversion formula for partitioned matrices can be
represented as(

B−1
0,11 +B−1

0,11B0,12π
′
SKSπSB0,12B

−1
0,11 −B−1

0,11B0,12π
′
SKS

−KSπSB0,12B
−1
0,11 KS

)
where KS ≡ (πS(B0,22 −B0,20B

−1
0,11B0,12)π′S)−1.

Let K denote B22
0 and let us introduce W ≡ K(N − B0,21B

−1
0,11M), which

is distributed as Nq(0,K). Finally, let us define D ≡ δ0 +W , which shares the
asymptotic distribution of the γ unrestricted maximum likelihood estimator

√
n(γ̂n − γ0)

d→ D ∼ Nq(δ0,K).

We can now state a corollary of Lemma 1 that delivers a simpler represen-
tation of the asymptotic distribution of the m nested model estimator.
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Corollary 1 (Nested Model Estimator) Let m be a nested model and let (θ̂′n,m, γ̂
′
n,m)′

be the nested model estimator. Under the local misspecification framework, then(
Cm

Dm

)
=
(
B−1

0,11M +B−1
0,11B0,12(δ0 −K1/2(HS −Gm)K−1/2D)

(Iq −Rm)KSπSK
−1D

)
where HS ≡ K−1/2π′SKSπSK

−1/2 (H∅ ≡ 0q×q), Gm ≡ K−1/2π′SRmKSπSK
−1/2

and

• if m imposes submodel constraints, S is a subset of {1, ..., q} otherwise
S = {1, ..., q};

• if m imposes shrinkage constraints, Rm ≡ KS(KS+λ−1(πS∇2ρ(0)π′S)−1)−1,
otherwise Rm ≡ 0q×q.

3.3 Distribution and Risk of the Focus Parameter Esti-
mator

In what follows we assume that a specific known scalar function of the parame-
ters has been singled out, with a relevant interpretation within the application of
interest (e.g. the persistence of shocks in a GARCH model). Such function will
be referred as the focus parameter g ≡ g(θ0, γ0+δ0/

√
n), where g(·) : Rp+q → R.

Following Hjort & Claeskens (2003), using Corollary 1 and the delta method it
is possible to obtain the first order approximation of the asymptotic distribution
of sufficiently smooth functions g(·) of the m nested model estimator. We will
refer to the ĝn,m ≡ g(θ̂n,m, γ̂n,m) as the m nested model estimator of the focus
parameter g.

Lemma 3 (Distribution and Moments of the m Nested Model Estimator of g)
Let m be a nested model and let (θ̂′n,m, γ̂

′
n,m)′ be the nested model estimator.

Let the function g : Θ × Γ → R be continuously differentiable of order 2 on
Θ× Γ and let ĝn,m ≡ g(θ̂n,m, γ̂n,m) and g ≡ g(θ0, γ0 + δ0/

√
n). Under the local

misspecification framework then
√
n(ĝn,m − g) d→ Λm = ∂g

∂θ

′
B−1

0,11M + ω′(δ0 −K1/2(HS −Gm)K−1/2D)

where ω ≡ B0,21B
−1
0,11

∂g
∂θ −

∂g
∂γ and ∂g

∂θ , ∂g
∂γ are the partial derivatives of g(·) with

respect to θ and γ in (θ′0, γ
′
0)
′. The limiting distribution is a normal random

variable with mean bm and variance τ2
m equal to

bm = ω′(Iq −K1/2
n (HS −Gm)K−1/2)δ0

τ2
m = τ2

0 + ω′K1/2(HS −Gm)(HS −Gm)K1/2ω

where τ2
0 ≡ ∂g

∂θ

′
B−1

0,11
∂g
∂θ . Furthermore, let m′ and m′′ be two nested models,

then, the covariance τn,m′,m′′ between ĝn,m′ and ĝn,m′′ is

τm′,m′′ = τ2
0 + ω′K1/2(HS′ −Gm′)(HS′′ −Gm′′)K1/2ω.
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Once the asymptotic distribution a focus parameter estimator is obtained,
it is straightforward to compute the corresponding expected loss for may loss
functions. In the following proposition we provide the closed form expression of
a number of expected losses of the ĝn,m estimator using

• square loss: Ls(x) = x2;

• absolute loss: La(x) = |x|;

• linex loss (Zellner (1986)): Lle(x) = a1(exp(a2x)− a2x− 1) for a1 ∈ R+,
a2 ∈ R− {0} and

• linlin loss (Granger (1969)): Lll(x) = a11{x<0}x− a21{x>0}x, for a1, a2 ∈
R+.

Corollary 2 (Risk of the m Nested Model Estimator of g) Let m be a nested
model and let (θ̂′n,m, γ̂

′
n,m)′ be the nested model estimator. Let the function

g : Θ × Γ → R be continuously differentiable of order 2 on Θ × Γ and let
ĝn,m ≡ g(θ̂n,m, γ̂n,m) and g ≡ g(θ0, γ0+γ0/

√
n). Under the local misspecification

framework then

i. the asymptotic square risk of ĝn,m is

rsq(ĝn,m, g) = b2n,m + τ2
n,m;

ii. the asymptotic absolute risk of ĝn,m is

ra(ĝn,m, g) = 2τmφ(bm/τm) + 2bm[Φ(bm/τm)− 1/2].

iii. the asymptotic linex risk of ĝn,m is

rle(ĝn,m, g) = a1

(
exp

{
a2bn,m +

a2
2τ

2
n,m

2

}
− a2bn,m − 1

)
;

iv. the asymptotic linlin risk of ĝn,m is

rll(ĝn,m, g) = a1bm + (a1 + a2)[τmφ(−bm/τm)− bmΦ(−bm/τm)]

Shrinkage, submodel and submodel shrinkage estimation may thus lead to a
risk improvement in the estimation of the focus parameter over the unrestricted
maximum likelihood estimator by appropriately selecting the specification re-
strictions.
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3.4 The Focused Information Criterion

A focused selection criterion stemming from the local misspecification frame-
work is the Focused Information Criterion (FIC) proposed by Claeskens & Hjort
(2003). The FIC is an estimate of the focus parameter estimator risk. The fol-
lowing definition presents a generalization of the original FIC which takes into
account shrinkage estimation techniques and asymmetric loss functions.

Definition 6 (Focused Information Criterion)

i. Extending Claeskens & Hjort (2003), the square FIC of the m nested model
estimator is defined as

FICs(m) = (b̂m)2 + 2ω′K1/2(HS −Gm)(HS −Gm)K1/2ω,

ii. Extending Claeskens, Croux & Van Kerckhoven (2006), the absolute FIC
of the m nested model estimator is defined as

FICa(m) = 2τ̂mφ(b̂m/τ̂m) + 2b̂m[Φ(b̂m/τ̂m)− 1/2],

iii. The linex FIC of the m nested model estimator is defined as

FICle(m) = exp
{
a1b̂m +

a2
1

2

(
τ̂2
m −Var

(
b̂m

))}
− a1b̂m,

iv. The linlin FIC of the m nested model estimator is defined as

FICll(m) = a1b̂m + (a1 + a2)[τ̂mφ(−b̂m/τ̂m)− bmΦ(−b̂m/τ̂m)],

where

b̂m = ω′(I −K1/2(HS −Gm)K−1/2)D.

The FIC selection strategy consists in picking up the model with lowest
estimated risk for the focus parameter of interest. Details on the estimation
of the FIC can be found in Hjort & Claeskens (2003) and Claeskens & Hjort
(2003).

4 Applications

In this section we present two applications of the shrinkage–focused forecasting
methodology on both simulated and real data, withe the goal to illustrate its
usefulness in specific reference to 1-step ahead forecasting.
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t− v − h t + v + h

Validation Sample

Training Sample

Figure 1: hv–block Cross Validation.

Figure 2: Loss functions graphs.
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4.1 Forecasting with a Flexible MEM

The flexible MEM specification for {yt} adopted in the forecasting exercises is

yt = µt εt, εt ∼ Gamma(φ, 1/φ),

with

µt = ω + αyt−1 + βµt−1 +
6∑

i=1

[η2i−1 sin(i xt−1) + η2i cos(i xt−1)]. (7)

In order to apply the local misspecification framework results, it is further as-
sumed that the θ–parameter vector of the model is (ω, α, β, η1, η2, φ)′, the γ–
parameter vector is (η3, η4, ..., η11, η12)′ and γ0 is 0. This implies that the first
sine and cosine terms in Equation (7) are assumed to be relevant in explaining
the relationship between yt and xt while, on the other hand, the relevance of
the remaining terms is assumed to be marginal. The choice of a trigonometric
function is by no means restrictive but is supported by three types of consider-
ations: the possibility of decomposing the periodicity into components related
to the frequencies present in the data, the need to adopt bounded functions
for nonlinear approximations, and the translation of a limited range for such
functions into a lighter burden on the optimization task.

For each period in the prediction sample the forecasting procedure consists of
estimating a set of model estimators and then selecting one of them to produce
the 1–step ahead forecast for the current period. The parameter estimates and
selection criteria are computed each time using a rolling window scheme.

The set of model estimators considered comprises shrinkage estimators as
well as the unrestricted maximum likelihood estimator. The penalty function
of the shrinkage estimators is the square Euclidean norm of the γ–parameters,
i.e. ρ(γ − γ0) =‖γ‖2.

FIC and Cross Validatory (CV) methods are employed for the selection of
the shrinkage parameter λ.

The focus parameter of the FIC methods is the mean of the process condi-
tional on the values of explanatory variable fixed at xn, the last observation in
the estimation sample, that is

g = µ(xn) =
α0 +

∑6
i=1[η2i−1 sin(i xn) + η2i cos(i xn)]

1− α1 − β1
. (8)

The CV scheme employed for this simulation is hv–block CV, a cross val-
idatory method for dependent data proposed in Racine (2000). As this CV
method is computationally expensive, we resort to a cheaper multifold vari-
ant of the original proposal (e.g. Zhang (1993)). Figure 1 provides a graphical
sketch of the way this cross–validatory scheme is implemented. For a given time
period t, the validation sample is constructed using the v observations preceding
and following t (2v + 1 data points) while the training sample is constructed
using the observations from the beginning of the sample to the (t − h − v)–th
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observation and from the (t + h + v)–th observation to the end of the sample
(n− 2v − 2h− 1 data points). The shrinkage estimate is then computed in the
training sample and used to forecast in the validation sample. In the estimation
step the model is estimated imputing the 2v + 2h + 1 removed observations
with their expected value. In the validation step the predictions are made using
static forecasts. The forecast evaluation is then computed by averaging the pre-
diction losses using the loss function L : R2 → R+ of interest. The procedure
is performed r = n/(2v + 2h + 1) times so that the validation samples are not
overlapping. hv–block CV is then defined as the average of the prediction losses.
More compactly for a given loss function L, CVL is defined as

CVL =
1

r(2v + 1)

∑
t∈T

v+1∑
i=−v

L(yt+i, ŷt+i /(t−v−h:t+h+v+1)),

where T = {v+h+ j(2v+2h+1), j = 0, ..., r−1} and ŷt+i /(t−v−h:t+h+v+1) de-
notes the forecast of observation yt+i produced using the parameter estimates
obtained from the training sample. This CV measure is computationally de-
manding even with the multifold variant. For n = 500, h = 10 and v = 39,
the model is estimated r = 5 times for each shrinkage level λ of the shrinkage
estimator.

Both the FIC and CV are computed for the square, absolute, linex (with
a1 = 10, a2 = −0.5) and linlin (with a1 = 0.75, a2 = 1.25) loss functions. Figure
2 displays the graphs of the loss functions. The parameters of the asymmetric
loss functions are chosen in a way as to have the linex loss penalize positive
errors more than the square loss and the linlin loss penalize positive errors more
than the absolute loss (and viceversa).

The evaluation of the forecasting procedures is carried out by computing the
same four loss functions on 1–step ahead forecasts.

4.2 Simulated Forecasting Exercise

The aim of the simulation exercise is to investigate the improvement of the
shrinkage estimator forecasts over the MLE forecasts when the DGP deviates
from the null model under two different parameter scenarios. In the first param-
eter setting (Design 1) the deviation of the DGP from the null model is mild,
while it is more pronounced in the other case (Design 2). The explanatory
variable xt is assumed to be i.i.d as a U(0, 2π). Table 1 reports the parameter
values used under each design. Figure 3 displays the mean of yt conditional
on the values of explanatory variable fixed at x for each settings. The set of
shrinkage λ values used in this application is {0.2 k : k = 1, ..., 10}, with an
upper limit of 2, since the corresponding estimated parameter values are virtu-
ally equal to 0. This simulation exercise consists of 100 simulated paths of 550
observations each, where the series {yt} has to be predicted from observations
501 to 550. The Monte Carlo experiment leads to a total of 5000 1–step ahead
forecasts under each design.
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Design 1
ω α β η1 η2
0.5 0.2 0.4 0.0 0.3
η3 η5 η7 η9 η11

-0.08089 -0.00891 0.03232 0.01234 -0.00691
η4 η6 η9 η10 η12

0.01873 -0.03023 -0.00887 0.01349 0.00481

Design 2
ω α β η1 η2
0.5 0.2 0.4 0.0 0.3
η3 η5 η7 η9 η11

0.01213 0.01213 0.01339 0.01989 0.00128
η4 η6 η9 η10 η12

0.19948 0.01083 -0.01320 0.01077 0.00233

Table 1: Parameter settings of the simulation exercise.

Figure 3: Mean of yt under Design 1 (dashed line) and Design 2 (dotted line)
and under the null model (continuous line).
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Design 1
Strategy Square Absolute Linex Linlin Norm Red. Pers.

MLE 1.5657 0.8555 1.5055 0.8642 0.60
Percentage Gains

CVs 1.80*** 0.72** 2.37*** 0.66*** 84.9 0.61
CVa 1.83*** 0.79*** 2.49*** 0.79*** 83.9 0.61
CVle 1.54*** 0.71** 2.43*** 0.70*** 84.1 0.62
CVll 1.50*** 0.77*** 2.46*** 0.76*** 82.5 0.62
FICs 1.88*** 0.81*** 2.12*** 0.79*** 89.5 0.61
FICa 1.41*** 0.60*** 1.29*** 0.62*** 77.3 0.61
FICle 2.04*** 1.59*** 3.82*** 2.16*** 88.9 0.60
FICll 1.32*** 1.24*** 2.50*** 1.75*** 73.5 0.61

Design 2
Strategy Square Absolute Linex Linlin Norm Red. Pers.

MLE 1.6580 0.8824 1.5680 0.8855 0.60
Percentage Gains

CVs 0.74 0.29 1.40 0.37 81.1% 0.62
CVa 0.66 0.34 1.61 0.43 80.8% 0.62
CVle 0.69 0.25 1.33 0.30 82.0% 0.62
CVll 0.57 0.32 1.57 0.42 79.9% 0.62
FICs 0.52 0.07 0.45 0.02 82.2% 0.62
FICa 0.18 0.07 0.08 0.06 65.8% 0.61
FICle 0.76 0.70 2.33 1.06 84.1% 0.61
FICll 0.25 0.66** 1.17** 1.24** 62.4% 0.61

Table 2: Simulation results of each shrinkage selection strategy under different
losses. Diebold Mariano Equal Predictive Ability test statistic is computed un-
der the null hypothesis that the shrinkage forecasts have the same performance
than the MLE forecasts. “Norm Red.” refers to the average percentage norm
reduction of the shrunk γ–parameters from the MLE. “Pers.” refers to average
estimated persistence (α+ β).
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Design 1

Design 2

Figure 4: Empirical distribution of the optimal shrinkage parameter λ according
to various selection strategies. Simulation Designs 1 and 2.

18



Design 1

Design 2

Figure 5: Maximum likelihood and shrinkage estimators of the mean of yt. The
lines below (above) the mean (solid) represent the 5% (95%) quantile of the
MLE (dashed) and shrinkage (dotted) estimators.
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Table 2 reports the Monte Carlo average prediction losses obtained with the
unrestricted MLE as well as the percentage gains associated with each shrink-
age selection strategy. Next to each value, we report one, two or three “*”’s
according to the significance of a corresponding (10% 5% or 1% respectively)
Equal Predictive Ability test statistic (Diebold & Mariano (1995), sign–test).
For each shrinkage selection scheme, Table 2 also reports the average norm re-
duction of the γ–parameter and the average persistence (measured as the sum
of the estimated α and β coefficients). Under Design 1, both Cross Validatory
and FIC methods produce predictions which significantly outperform the MLE
predictions. These averages are computed using the sequence of estimates which
are selected at each step by the various shrinkage selection schemes. Further-
more, FIC methods achieve a better average performance than Cross Validatory
methods, and the FIC based on a linex loss beats all other selection strategies.
Under Design 2, Cross Validatory and FIC methods still produce forecasts with
smaller average losses in comparison to the MLE predictions, but the evidence
of a significant improvement is less strong, FICll being an exception. Again,
FIC methods achieve a better overall performance and asymmetric FIC losses
seem to achieve the best results. For the cross validation methods, the choice of
the loss function in the selection step seems to play a little role. On the other
hand, for FIC methods the choice of the loss function does seem to have an
impact on the forecasting performance. The criteria based on a linear loss tend
to shrink the estimates more than others. Moreover, the asymmetric penalties
tend to perform better than their symmetric analogs. A few words about the
spike which appears in correspondence with the highest value in the grid of
values of λ. It should be interpreted as evidence of the narrow model being
chosen in such cases. This is not surprising under Design 1 since it corresponds
to a choice of the parameter values very close to the null model. Under Design
2 the choice of a narrow model seems to more frequent with FIC than with
CV. The gains from extending the λ grid to values greater than 2 seem to be
outnumbered by the computational burden. Furthermore, values of λ deliver
parameter estimates very close to zero and further refinements do not appear
to be useful.

Figure 4 displays the empirical distribution of the optimal shrinkage param-
eter λ in according to various selection strategies. On average, the amount of
shrinkage selected by the selection criteria is greater under Design 1 (closer to
the narrow model) than 2. In both settings FIC methods seem to shrink much
more than the cross validatory methods, the latter indicating a preference for a
moderate amount of shrinkage (λ = 0.2. As far as cross validation is concerned,
the use of different loss functions does not seem to dramatically change the
behavior of the chosen shrinkage levels. On the other hand, the FIC methods
seem to select very different shrinkage levels depending on the loss function:
more specifically the absolute and linlin losses shrink less than the square and
linex losses.

Figure 5 provides graphical evidence of the differences between shrinkage
and maximum likelihood estimation. For both designs, the figure displays the
plots of the mean of yt conditional on the value of explanatory variable fixed at
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Strategy Square Absolute Linex Linlin Norm Red. Pers.
MLE 1.1185 0.7389 1.1698 0.7546 0.65

Percentage Gains
CVs 2.72 0.26 3.79 0.24** 82.4% 0.79
CVa 2.76 0.08 3.80 -0.05 86.1% 0.78
CVle 3.22 0.39 4.15 0.27** 82.9% 0.79
CVll 2.85 0.24 3.86 0.13** 84.5% 0.80
FICs 3.45* 0.42** 4.06 0.34*** 84.2% 0.80
FICa 3.07 0.39 2.33 0.32** 68.7% 0.77
FICle 5.07* 1.46 6.28* 1.93** 85.6% 0.80
FICll 2.65 1.07* 3.69** 1.55*** 67.4% 0.77

2SMLE 2.76 -0.55 0.05 -0.48

Table 3: Average prediction losses of the 1-step ahead forecasts with the CPA
test significance (*: 10%; **: 5%; ***: 1% ). “Norm Red.” refers to the average
percentage norm reduction of the shrunk γ–parameters from the MLE. “Pers.”
refers to average estimated persistence (α+ β).

x together with the 5% and 95% quantiles of the MLE and shrinkage estimator
(computed for λ = 1) of the true mean of yt. Visual inspection of the graphs
clearly shows how shrinkage is generally associated with much more precise
estimates.

4.3 Empirical Forecasting Exercise

The empirical application consists of a forecasting exercise of financial dura-
tions (e.g. Engle & Russell (1998)) using the General Electric (GE) stock data
from the New York Stock Exchange in April 2005. The dataset consists of 766
intra-daily durations between transaction price changes above the threshold of
USD 0.05. The procedures used to clean the data and construct the series are
described in Brownlees & Gallo (2006).

Figure 6 displays the plot of the price durations. The series exhibits clus-
tering and is affected by intra-daily periodicity, i.e. very short durations at the
opening and closing of the trading day and longer durations around the middle
of the trading day, with a maximum around lunch time. These stylized facts
suggest that the flexible MEM of Equation (7) using the time of day as the
predetermined variable xt should be able to capture the dynamics adequately.

The 1–step ahead recursive prediction exercise starts from April 21, 2005
until the end of the month and using approximately the most recent 3 weeks
of data (500 observations) to construct predictions. The set of values of the
shrinkage parameter λ that characterizes the shrinkage estimators is {0.4 k :
k = 1, ..., 10}. The limit of the λ parameter is set to 4 in that for this level of
shrinkage estimates are virtually equal to 0.

Table 3 reports the average prediction losses of the MLE as well as the gains
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Figure 6: Price durations. GE Durations in the month of April, 2005 using a
tick scale (top) GE Durations on the April 15, 2005 using a time scale (bottom).
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Strategy Opening Mid Closing Strategy Opening Mid Closing
CVs 1.27 1.16 1.69 FICs 1.55 2.04 2.64
CVa 1.58 1.53 1.47 FICa 0.97 1.47 2.12
CVle 1.02 1.07 1.28 FICle 2.05 1.96 3.25
CVll 1.41 1.37 1.34 FICll 1.24 1.37 2.00

Table 4: Average shrinkage level λ per time of day

obtainable with each shrinkage selection strategy. The “*”’s reported next to
each value refer to the significance level (10%, 5% and 1% respectively) of the
Conditional Predictive Ability test statistic (Giacomini & White (2006)) under
the null of equal conditional predictive ability, which is more appropriate than
DM in a conditional context. Table 3 also reports the average prediction gains
of the 2 stage procedure estimator a là Engle and Russell (Engle & Russell
(1998)) called 2SMLE. This estimation procedure consists of removing the mul-
tiplicative periodic component from the durations using cubic splines and then
fitting a MEM(1,1) to the periodically adjusted durations. Predictions are then
constructed by multiplicating the MEM forecast by the fitted periodic compo-
nent. The various shrinkage selection strategies are able to improve upon the
performance of the MLE predictions in all cases, and almost all strategies beat
the 2 stage estimation procedure. Furthermore, all the FIC methods perform
better than the cross validatory methods using the same loss in all cases but
one.

The results show an interesting pattern that is worth pointing out. For al-
most all the cases and for both the FIC and cross validatory methods, using
a loss function that penalizes proportionally bigger losses (square, linex) pro-
duces better forecasts than those (absolute, linlin) that do not. Furthermore,
asymmetric loss functions perform better than their symmetric analog (linex
and square, linlin and absolute). The best forecasting strategy appears to be
the FIC based on linex loss. Such a method not only beats all other strate-
gies and reference benchmarks, but judging from the CPA test it also produces
significantly better forecasts than the MLE benchmark.

It is also interesting to provide some more details on the difference between
the shrinkage and MLE estimates and predictions. Figure 7 displays the price
durations against the time of day together with the 5% and 95% quantiles of
the estimated mean of the process at each time of day using the set of rolling
estimates obtained by the ML and Shrinkage estimator with λ = 3. The char-
acterization of the intra-daily periodic patterns provided by the ML estimator
appears to be quite rough while on the other hand the Shrinkage estimator for
λ = 3 gives a much smoother representation. Figure 8 plots the forecasts of the
MLE together with the forecasts of the shrinkage estimator for λ = 3. Again,
MLE predictions appear to be rougher compared to the shrinkage forecasts.

Figure 9 displays the empirical distributions of the selected values of the
shrinkage parameter λ in the forecasting exercise using the various strategies.

23



Figure 7: Price durations against time of day, 5% and 95% quantiles of the
estimated unconditional mean of the process for each time of day using the set
of rolling estimates obtained by the ML and shrinkage estimator with λ = 3

Figure 8: Price durations, MLE duration forecasts and Shrinkage duration fore-
casts (λ = 3) in the prediction sample.
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Figure 9: Empirical distribution of the optimal shrinkage parameter λ according
to various selection strategies. GE data.

FIC methods have the tendency to penalize parameters more than cross val-
idatory methods. The choice of the loss function seems to change the shape
of the empirical distributions for the FIC cases and not so much for the cross
validatory methods. We also compute the average level of the shrinkage pa-
rameter λ̂ within (broad) time of day intervals. Table 4 reports such average
levels classified by opening (9:30 to 10:45), mid–day (10:46 to 14:15) and closing
(14:16 to closing). The amount of shrinkage appears to change according to the
time of the day, as a consequence of the fact that the FIC selection strategy
selects the most precise model depending on the time of day. On the other hand,
the amount of shrinkage chosen by cross-validatory methods does not appear
to change as much. Symmetric penalties tend to penalize progressively more
across the day. Asymmetric penalties seem to penalize quite similarly at the
opening and during the day and tend to penalize more severely at the closing.

5 Conclusions

The paper derives the local large sample distribution of a wide smooth class of
shrinkage type estimators that contains Ridge–type estimators as a special case.
Moreover, we extend the Focused Information Criterion family of model selec-
tion methods using asymmetric loss functions and this class of shrinkage estima-
tors. The simulation exercise suggests that shrinkage estimation bonded with an
appropriate selection strategy are able to improve upon MLE forecasts. In case
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the deviation from the null model is not too severe, such forecasts outperform
the maximum likelihood predictions. We favor FIC based selection strategies
in view of their good performance and cheaper computational cost when com-
pared with cross validatory schemes in this dependent and nonlinear framework.
Such methods proved to be useful in improving the prediction performance in a
real time forecasting exercise of financial durations where shrinkage techniques
appear to perform better than the MLE. In expensively parameterised models
MLE forecasts can be improved upon by using appropriate shrinkage estimation
methodologies.
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A Proofs

As shown by Hjort & Claeskens (2003), the local misspecification assumption
allows to derive an alternative representation of the density function of the
correct model as a function of the density at the null model

ftrue(y) = f0(y)(1 + s2(y)′δ/
√
n+R2(y, δ/

√
n)) (9)

where R2(y, t) is a remainder term. Such representation arises starting from
a Taylor expansion of the log–likelihood ratio log (f(y, θ0, γ0 + t)/f(y, θ0, γ0))
with respect to t. A set of regularity conditions is imposed on Equation (9) to
get the results of interest.

(C1) The two integrals
∫
f0(y)s(y)s1(y)R2(y, t)dy and

∫
f0(y)s(y)s2(y)R2(y, t)dy

are both o(‖t‖).

(C2) The variance |s21,is2,j | and |s22,is2,j | have finite mean under f0 for each
i, j.

(C3) The two integrals
∫
f0(y) ‖ s1(y) ‖2 R2(y, t)dy and

∫
f0(y) ‖ s2(y) ‖2

R2(y, t)dy are both o(1)

(C4) The log–density has three continuous derivatives with respect to all the p+
q parameters in a neighbourhood around (θ′0, γ

′
0)
′ and there are dominated

by function with finite means under f0.

Proof of Lemma 1.
See Hjort & Claeskens (2003).

�

Proof of Lemma 2.

The proof is essentially the same as the proof of Lemma 3.2 of Hjort &
Claeskens (2003) with a minor modification due to the presence of a shrinkage
factor on the γ–parameters. As customary, the constrained maximization prob-
lem is reformulated as an unconstrained minimization problem. The solution
of

arg max
Θ×Γm

Ln(θ, γ),

corresponds to
arg min

Θ×ΓS

Qn(θ, γS),

with
Qn(θ, γS) = −Ln,S(θ, γS) + λρS(γS − γ0,S),

where for given 0 ≤ λ ≤ +∞ there corresponds a c ≥ 0. Note that

∇0Qn = −
(
∇0Ln,1

πS∇0Ln,2

)
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and that

∇2
0Qn =

(
−∇2

0Ln,11 −∇2
0Ln,12π

′
S

−πS∇2
0Ln,21 −πS∇2

0Ln,22π
′
S + λπS∇2ρ(0)π′S

)
.

The conclusion of Lemma 1 ensures that(√
n∇Q0,n,1√
n∇Q0,n,2

)
d→
(

B0,12 δ0
πSB0,22 δ0

)
+
(
M
NS

) (
M
NS

)
∼ Np+|S|(0, B0,S),

and the local misspecification assumption together with the regularity conditions
ensure that

∇2
0Qn −

(
B0,11 πSB0,12

B0,21π
′
S πSB0,22π

′
S + λπS∇2ρ(0)π′S

)
p→ 0.

Therefore, the claim of the lemma follows using standard mean value theorem
type of expansions for the proof of the asymptotic normality of the maximum
likelihood estimator.

�

Proof of Corollary 1.

The conclusion of Lemma 2 is(
Cm

Dm

)
=
(

B0,11 B0,12π
′
S

πSB0,21 πS(B0,22 + λ∇2ρ(0))π′S

)−1(
B0,12δ0 +M

πSB0,22δ0 + πSN

)
, (10)

where (M ′, N ′)′ ∼ Np+q(0, B0). The first task is to find a simpler expression
for the inverse matrix of Equation (10). Applying the matrix inversion formula
for partitioned matrices, we get(

B−1
0,11 +B−1

0,11B0,12π
′
ST

−1
S πSB0,21B

−1
0,11 −B−1

0,11B0,12π
′
ST

−1
S

−T−1
S πSB0,21B

−1
0,11 T−1

S

)
(11)

where
TS ≡ ( πS(B0,22 + λ∇2ρ(0)−B0,21B

−1
0,11B0,12)π′S );

which can also be rearranged as

TS = (πS(B0,22 −B0,21B
−1
0,11B0,12)π′S + λπS∇2ρ(0)π′S).

The Sherman-Morrison-Woodbury formula allows one to express T−1
S as

T−1
S = KS −KS(KS + λ−1(πS∇2ρ(0)π′S)−1)−1KS

= KS −RmKS (12)

whereKS = (πS(B0,22−B0,21B
−1
0,11B0,12)π′S)−1 andRm = KS(KS+λ−1(πS∇2ρ(0)π′S)−1)−1.
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Combining together the results of Equations (11) and (12) we decompose
Equation (10) as (

Cm

Dm

)
=
(
C ′

m

D′
m

)
−
(
C ′′

m

D′′
m

)
where(
C ′

m

D′
m

)
=
(
B−1

0,11 +B−1
0,11B0,12π

′
SKSπSB0,21B

−1
0,11 −B−1

0,11B0,12π
′
SKS

−KSπSB0,21B
−1
0,11 KS

)(
B0,12δ0 +M

πSB0,22δ0 + πSN

)
,

and(
C ′′

m

D′′
m

)
=
(
B−1

0,11B0,12π
′
SRSKSπSB0,21B

−1
0,11 −B−1

0,11B0,12π
′
SRSKS

−RSKSπSB0,21B
−1
0,11 RmKS

)(
B0,12δ0 +M

πSB0,22δ0 + πSN

)
.

We have decomposed Cm and Dm into the sum of two random quantities such
that the first component only depends on the submodel constraint, while the
second component depends on both the submodel and the shrinkage constraint.

We now go through a bit of algebra to obtain some nicer expressions for
C ′

m, D′
m, C ′′

m and D′′
m. We begin by providing the simplified expression for C ′

m

following the steps outlined in Hjort & Claeskens (2003). Recall that HS =
K−1/2π′SKSπSK

−1/2 .

C ′
m = B11

0,S(B0,12δ0 +M) +B12
0,S(πSB0,22δ0 + πSN)

= B−1
0,11M +B−1

0,11B0,12δ0

+B−1
0,11B0,12π

′
SKSπSB0,21B

−1
11 (B0,12δ0 +M)

−B−1
0,11B0,12π

′
SKSπS(B0,22δ0 +N)

= B−1
0,11M −B−1

0,11B0,12π
′
SKSπS(N −B0,21B

−1
0,11M)

+B−1
0,11B0,12(I + π′SKSπSB0,21B

−1
0,11B0,21 − π′SKSπSB0,22)δ0

= B−1
0,11M −B−1

0,11B0,12π
′
SKSπSK

−1W

+B−1
0,11B0,12(I − π′SKSπSK

−1)δ0

= B−1
0,11M −B−1

0,11B0,12K
1/2
S HSK

−1/2W

+B−1
0,11B0,12(I −K

1/2
S HSK

−1/2)δ0

C ′
m = B−1

0,11M +B−1
0,11B0,12(δ0 −K

1/2
S HSK

−1/2D)
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Using similar steps we also obtain a nicer expression for C ′′
m. Recall that Gm =

K−1/2π′SRmKSπSK
−1/2.

C ′′
m = B−1

0,11B0,12π
′
SRmKSπSB0,21B

−1
0,11(B0,21δ0 +M)

−B−1
0,11B0,12π

′
SRmKSπS(B0,22δ0 +N)

= −B−1
0,11B0,12π

′
SRmKSπS(N −B0,21B

1
0,11M)

−B−1
0,11B0,12π

′
SRmKSπS(B0,22 −B21B

−1
0,11B0,12)δ0

= −B−1
0,11B0,12π

′
SRmKSπSK

−1W

−B−1
0,11B0,12π

′
SRmKSπSK

−1δ0

= −B−1
0,11B0,12π

′
SRmKSπSK

−1D

C ′′
m = −B−1

0,11B0,12K
1/2GmK

−1/2D

We now work on the expression for D′
m.

D′
m = B21

0,S(B0,21δ0 +M) +B22
0,S(πSB0,22δ0 + πSN)

= (B21
0,SB0,21 +B22

0,SπSB0,22)δ0 +B21
0,SM +B22

0,SπSN

= KSπS(B0,22 −B0,21B
−1
0,11B0,21)δ0 +KSπS(N −B0,21B

−1
0,11M)

= KSπSK
−1δ0 +KSπSK

−1W

D′
m = KSπSK

−1D

Lastly, we find the simplified expression for D′′
m.

D′′
m = RmKSπS(B0,22 −B0,21B

−1
0,11B0,21)δ0 +RmKSπS(N −B0,21B

−1
0,11M)

= RmKSπSK
−1D

By subtracting the two final expressions for C ′
m and C ′′

m we get our first
claim

Cm = B−1
0,11M +B−1

0,11B0,12(δ0 −K1/2(HS −Gm)K−1/2D),

and similarly by subtracting the final expressions for D′
m and D′′

m we obtain our
second claim

Dm = (I −Rm)KSπSK
−1D.

�

Proof of Lemma 3.
The proof is almost identical to Lemma 3.3 of Hjort & Claeskens (2003) with the
only difference that bias and variance of the limiting approximation of

√
n(ĝm−

gn) depends on some extra quantities that are related to the shrinkage estimation
procedure. Using a delta method type of argument and the results of Lemma 2

√
n(ĝm − gn)) d→ Λm = ∂g

∂θ

′
Cm + ∂g

∂γS

′
Dm − ∂g

∂γ

′
δ0.
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Using the results of Corollary 1 we can find a nicer expression for Λm. In fact,
noting that

∂g
∂γS

′
Dm − ∂g

∂γ

′
δ0 = − ∂g

∂γ

′
(δ0 −K1/2(HS −Gm)K−1/2D),

by setting
ω = B0,21B

−1
0,11

∂g
∂θ −

∂g
∂γ ,

we get
Λm = ∂g

∂θ

′
B−1

0,11M + ω′(δ0 −K1/2(HS −Gm)K−1/2D).

It is now easy to derive the expressions for the mean and variance of the m
estimator as well as the correlation between two generic nested models estimator
m′ and m′′. The mean of the estimator m is

bm = E(Λm) = ω′(Ip+q −K1/2(HS −Gm)K−1/2)δ0,

and its variance is

τ2
m = Var(Λm)

= ∂g
∂θ

′
B−1

0,11Var(M)B−1
0,11

∂g
∂θ

′

+ω′K1/2(HS −Gm)K−1/2Var(D)K−1/2(HS −Gm)K1/2ω

= τ2
0 + ω′K1/2(HS +GmGm − 2Gm)K1/2ω

where τ2
0 = ∂g

∂θ

′
B−1

0,11
∂g
∂θ . Let m′ and m′′ be two nested models; then the covari-

ance between the m′ and m′′ estimators is

τm′,m′′ = Cov(Λm′ ,Λm′′)

= ∂g
∂θ

′
B−1

0,11Var(M)B−1
0,11

∂g
∂θ

′

+ω′K1/2(HS′ −Gm′)K−1/2Var(D)K−1/2(HS′′ −Gm′′)K1/2ω

= τ2
0 + ω′K1/2(HS′ −Gm′)(HS′′ −Gm′′)K1/2ω.

�

Proof of Corollary 2.
The asymptotic scaled square risk is

rsq(ĝn,m, g) = E
(
Λ2

m

)
= b2m + τ2

m.

The asymptotic scaled linex risk is

rle(ĝn,m, g) = E(a1 (exp(a2Λm)− a2Λm − 1))

= a1

(
exp

{
a2bm +

a2
2τ

2
m

2

}
− a2bm − 1

)
.

31



The asymptotic scaled linlin risk is

rll(ĝm, gn) = E
(
a1Λm1{Λm>0} − a2Λm1{Λm<0}

)
=

1√
2π

[
a1

∫ +∞

−bm/τm

(τmz + bm)e−z2/2dz − a2

∫ −bm/τm

−∞
(τmz + bm)e−z2/2dz

]
= a1τmφ(−bm/τm) + a1bm[1− Φ(−bm/τm)] + a2τmφ(−bm/τm)− a2bmΦ(−bm/τm)
= a1bm − bmΦ(−bm/τm)(a1 + a2) + τmφ(−bm/τm)(a1 + a2)
= a1bm + (a1 + a2)[τmφ(−bm/τm)− bmΦ(−bm/τm)].

The asymptotic scaled absolute risk is

ra(ĝm, gn) = bm − 2bmΦ(−bm/τm) + 2τmφ(−bm/τm)
= 2τmφ(bm/τm) + 2bm[Φ(bm/τm)− 1/2].

�
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