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Abstract

The transmission mechanisms of volatility between marketscan be char-
acterized within a new Markov Switching bivariate model where the state of
one variable feeds into the transition probability of the state of the other.
A number of model restrictions and hypotheses can be tested to stress the
role of one market relative to another (spillover, interdependence, comove-
ment, independence, Granger non causality). The model is estimated on the
weekly high–low range of five Asian markets, assuming a central (but not
necessarily dominant) role for Hong Kong. The results show plausible mar-
ket characterizations over the long run with a spillover from Hong Kong to
Korea and Thailand, interdependence with Malaysia and comovement with
Singapore.
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1 Introduction

The diffusion of international investments and capital movements across borders
has marked the evolution of financial markets and has changedthe profile of cor-
relations among assets denominated in different currencies which are exchanged
in geographically separated markets. Volatility in one market reacts to innova-
tions in other markets as a result of financial integration. Moreover, the volatility
patterns show frequently evidence of nonlinearities (see,for example, Frijns and
Schotman, 2006).

In the financial literature, a stream of research has dealt with spillovers of
volatility from one market to another (Lee and Kim, 1993), focussing on shocks
to volatility in a GARCH framework (Engleet al., 1990). In recent times, sev-
eral studies have focused on financial crises (notably, Mexico, Russia, East Asia,
Argentina) with the intention of analyzing the sources of the crisis: a recurring
question is whether the crises originated in one region and spilled over to other re-
gions (spillover effect) or whether they are the result of aninterdependent reaction
to some common shock.

Another financial transmission mechanism frequently considered in literature
and strictly related to the spillover effect is the contagion, which is frequently
detected by changes in correlation coefficients. In discussing the presence and
the extension of contagion effects, several authors have concentrated on different
aspects, and hence different definitions of contagion: the World Bank site on Fi-
nancial Crises provides a broad definition of cross-countrytransmission of shocks
which may take place during both “good” and “bad” times, whereas more restric-
tive definitions are centered around a specific situation of crisis and the consequent
increase in the level of interdependence across countries.

From an empirical point of view, methodologies vary considerably (Pericoli
and Sbracia, 2003): one can recognize models where the period of the crisis is
known and some explanation for its inception is sought. In a Probit/Logit model
the crisis is translated into a binary variable and contagion is tantamount to the
statistical significance of a dummy variable flagging an existing crisis in another
market; in a Leading Indicators model one examines the predictive value of vari-
ables linked to economic fundamentals or to foreign markets; in the line of Forbes
and Rigobon (2002) one would detect a correlation breakdownin correspondence
to the known dates of the crisis.

A different line of research is characterized by volatilityspillovers which char-
acterize the structure of interrelationships across markets: the GARCH models
put forth by Engleet al. (1990) allow to see whether conditional variances are
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affected by additional information in the form of squared innovations occurring in
other markets. This basic idea gets more involved if one considers that volatility
clustering may be characterized by the presence of regimes alternating between
low and high levels of unconditional volatility. In this respect, a further category
of models which has received considerable attention relates to Markov Switching
models (MS), diffused in the applied statistics by Hamilton, 1989, and adapted to
switching volatility by Hamilton and Susmel (1994), introducing the SWARCH
models (another interesting extension deals with stochastic volatility models; see
So et al., 1998, and Carvalho and Lopes, 2007). In the contextof financial crises
the presence of sudden switches ruled by a Markov chain can beaccommodated
for the variance equation, as in Edwards and Susmel (2001) and (2003), who sug-
gest a bivariate version of the SWARCH model for weekly international stock
returns and interest rates, tracking co-dependence in volatility regimes. In these
models, the idea of crisis and contagion translates into a sudden change in the
volatility of stock returns or interest rates measured in a pair of countries and of
their correlation. The MS model provides a framework in which regimes are as-
sociated with the various combinations of low and high volatility in each country.
The interesting feature of their approach is that one country is ex anteconsidered
the originator of the crisis (dominant market) and the correlation coefficient is
made dependent on the state of such originator country. Contagion is had when
the correlation coefficients significantly change value across states. Baele (2005)
studies the effect of globalization on market interdependence, using a MS model
where switching occurs in the spillover parameters. This paper has some analo-
gies to the approach pursued here since it makes use of three different structures
of the transition probability matrices to characterize comovements and indepen-
dence. He defines a test for contagion along the lines of what is suggested by
Bekaertet al. (2005).

In our approach we pursue the idea that transmission mechanisms operate in
the presence of volatility regimes. To this end, we choose tofocus on the con-
ditional expectation of an observable volatility proxy measured on different mar-
kets, namely the weekly range. We adopt a new version of the Markov Switching
model called the Multi Chain MS model (MCMS, Otranto, 2005),where asym-
metries are inserted by making the transition probability of each market dependent
on the state of the other markets.

The definition of spillover we propose may be consistent withsome definition
of contagion (for example, the one of Edwards and Susmel, 2001 and 2003); since
it does not refer directly to changes in correlations, but tomore general changes
in regime, we prefer to use the term spillover to not generateconfusion.
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In this context, we study market characterizations relyingon the following
definitions.Spilloveris seen as a situation in which a switch in regime of a dom-
inating market leads to a change in regime in the dominated market (with a lag).
Interdependenceis seen as a situation in which a switch in regime of one of the
markets leads a change in regime of the other markets. Finally, comovementis
represented by contemporaneous change in regimes. As detailed in what fol-
lows, the various hypotheses corresponding to the different market features can
be tested within the context of MCMS models which belong to the VAR-MS fam-
ily (Krolzig, 1997). Modelling weekly volatilities in different markets as linear
autoregressions is a common practice in the statistical andeconometric literature
(see, for example, Diebold and Yilmaz, 2007).

In Section 2 the multivariate models used and their interpretation are intro-
duced; Section 3 contains a discussion of the choice of the proxy of the volatil-
ity used with some stylized facts about the markets of interest, whereas in sec-
tion 4 the methodology exposed will be applied to analyze thecharacteristics of
the Asian markets in the period 1993-2004, including the East Asian crisis of
1997. Concluding remarks follow.

2 The Multi–Chain Markov Switching Model

The presence of multiple regimes can be acknowledged using apopular multi-
variate model introduced by Hamilton (1990) where parameters are made de-
pendent on a hidden state process ruled by a Markov chain: such a model, the
multivariate Markov Switching Model (MS), considers ann-dimensional vector
yt ≡ (y1t, . . . , ynt)

′, which is assumed to follow a VAR(p) with time-varying pa-
rameters:

yt = µ(st) +

p
∑

i=1

Φi(st)yt−i + ǫt

and (1)

ǫt ∼ N (0,Σ(st)) ,

where the parameters for the conditional expectationµ(st) andΦi(st), i = 1, . . . , p,
as well as the variances and covariances of the error termsǫt in the matrixΣ(st)
all depend upon the state variablest which can assume a numberq of values (cor-
responding to different regimes). The transition probability matrix P contains the
probabilities of being in a generic statej at timet given that the state at timet− 1
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wasi, namely, for a generic element

pij = Pr(st = j|st−1 = i), i, j = 1, . . . , q.

The properties of this model are well known by now and need notbe discussed
here: we refer to Hamilton (1994) for the estimation, filtering and smoothing
procedures for this model. For this model it is crucial to keep in mind that all
variables in the processy depend on the same state variablest, and as such they
are subject to a common switching.

Such a model is of limited use in deciding whether there is spillover or in-
terdependence, in that it can only signal the common switch of all the variables
analyzed from one state to another. In this respect, this model is a good candi-
date to represent common contemporaneous changes across markets, which we
have defined ascomovement. For the same reasons, it is going to be misleading
in cases in which variables are ruled by different states which may be temporally
dependent on one another (mutually or in one direction only)or even independent.

The idea behind a Multi–Chain Markov Switching model (MCMS), as sug-
gested by Otranto (2005), is to consider a multivariate process in which the switch-
ing mechanism across regimes makes the state for one variable be dependent on
the lagged states of all variables. This case could be considered as representative
of the situation ofinterdependence, because the change in the state of each vari-
able can be transmitted to all the others with a certain probability. As a special
case, one can consider a process in which one variable is assumed to be dominant
on the others and the switching dynamics intrinsically asymmetric: a particular
state for one variable alters the probability of other variables to change states, but
not vice versa. This feature is suitable to describe transmission mechanisms oc-
curring in financial crises, but also to any relationship where a leading variable is
present (in Otranto, 2005, new orders are assumed to be leading the turnover at
the aggregate level) thus representing the case ofspillover. Finally, the reciprocal
dependence on the state of the other variables could turn outto be not significant,
representing the case in which markets are ruled byindependentstate variables.

To fix ideas, let us consider a bivariate case with two latent states for each vari-
able: the dynamics of the two variables are thus subject to state dependence. The
transition from one (multi–) state to another is ruled by a Markov chain obtained
by letting the transition probabilities for one variable bea function of the (lagged)
state of both variables.

In formal terms, as before,yt is assumed to follow a VAR(p) process (note
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thatst is now a vector):

yt = µ(st) +

p
∑

i=1

Φi(st)yt−i + ǫt

and (2)

ǫt ∼ N (0,Σ(st)) ,

where the parameters for the conditional expectationµ(st) andΦi(st), i = 1, . . . , p,
as well as the variances and covariances of the error termsǫt in the matrixΣ(st)
all depend upon the state vectorst ≡ (s1t, . . . , snt)

′ with sjt representing the state
associated with variableyjt. Each state can assume a numberq of regimes (in
principle these could be different across states). The difference with respect to
the classical multivariate MS models is thaty1,t andy2,t depend on separate but
potentially related state variables.

To illustrate how the asymmetric behavior of the variables can be embedded in
the model, let us consider the transition probability matrix P with generic element
representing

P = {Pr [st|st−1]} .

If we consider, for simplicity, the casen = q = 2, the state vectorst can assume
four different values{(0, 0), (0, 1), (1, 0), (1, 1)} and the matrixP is a4 × 4 ma-
trix. Let us suppose that, conditional on (s1t−1, s2t−1), the statess1t ands2t are
independent, so that:

Pr [s1t, s2t|s1t−1, s2t−1] = Pr[s1t|s1t−1, s2t−1] Pr[s2t|s1t−1, s2t−1]. (3)

The right hand side of equation (3) can be parameterized withlogistic func-
tions where the functional dependence on past states is madeexplicit as follows:

Pr (s1t = h|s1t−1 = h, s2t−1) =
exp[α1(h, .) + β1(h, 1)s2t−1]

1 + exp[α1(h, .) + β1(h, 1)s2t−1]

and (4)

Pr (s2t = h|s1t−1, s2t−1 = h) =
exp[α2(., h) + β2(1, h)s1t−1]

1 + exp[α2(., h) + β2(1, h)s1t−1]
,

for h = 0, 1. From (4), it is apparent that the state of the variablei at timet − 1
influences the probability of variablej to stay in the same regime, and vice versa.
Obviously,

Pr (sjt = k|sjt−1 = h, sit−1) = 1 − Pr (sjt = h|sjt−1 = h, sit−1)
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for h, k = 0, 1, h 6= k, andi, j = 1, 2, i 6= j. Hypothesis testing can be performed
on the estimated model (2)–(4) in order to assess the relevance of the dependence
structure assumed for the states and whether the presence ofasymmetric effects
in the dynamics of regimes is supported by the data. Statistical significance of all
parameters in (4) will provide evidence in favor of the case of interdependence. If
the coefficientβj(h, k) = 0, the state of the variablei at timet − 1 influences the
probability of variable j to stay in the same regime, but not vice versa, this is evi-
dence in favor of the dominant status of variablei or spillover. This property gives
meaning to our envisaging spillover as a stable asymmetric relationship between
markets and not necessarily related to the effects of singleshocks. Finally, the non
significance of all the coefficientsβj(h, k) andβi(h, k) would show evidence for
independencebetween markets.

In this way, the estimated probabilities in (4) will show theimpact of the
regime of variablei on the transition probabilities for variablej; moreover, we
would expect the signs of coefficientsβ1(0, 1) and β2(1, 0) to be negative and
those of coefficientsβ1(1, 1) andβ2(1, 1) to be positive.

Disposing the estimated transition probabilities (3) in a matrix, with rows rep-
resenting the multiple state at timet − 1 and columns the multiple state at timet,
it is possible to evaluate the most probable scenario (a particular combination of
s1t ands2t) at timet, given a certain state at timet − 1.

The properties of the model from a theoretical point of view coincide with
those of a standard Markov switching model: estimation filtering and smoothing
can be performed according to the procedures described by Hamilton (1990) and
Kim (1994).

3 The Choice of the Volatility Proxy

The Asian markets are a classical example for which there is alarge debate to es-
tablish the nature of the relationship among markets subject to sudden changes in
volatility. For example, Forbes and Rigobon (2002) note that the shock originat-
ing from Hong Kong in October 1997 has not implied a significant increase in the
correlation coefficients of the other main Asian markets: the conclusion reached
is that the series analyzed cannot be considered as subject to a form of spillover
from Hong Kong, but rather the markets considered exhibit interdependence. Let
us now see what our analysis allows us to say, in view of a more articulate defini-
tion of spillover, interdependence, independence and comovements.

We analyze the stock market indices of 5 Asian countries starting from daily
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data spanning a period between November 29, 1993 and April 26, 2004; the in-
dices are the Hang Seng index (Hong Kong-HSI hereafter), theKOSPI index
(South Korea-KS11), the KLSE composite index (Malaysia-KLSE), the Straits
Times index (Singapore-STI), the Thailand SET index (Thailand, SETI). The
proxy of the volatility is computed as the weekly range of thelogarithm of the data
(highest recorded minus lowest recorded value, rescaled bythe factor(1/4ln(2))1/2;
see Parkinson, 1980) and results in 544 observations. The choice of a long sample
period is motivated by the desire to capture interactions over several years charac-
terized by an increasing degree of financial and real integration and where crises
have shaped the interdependence among these markets.

We have tried to construct alternative proxies of the volatility among those
suggested by Parkinson (1980) and Garman and Klass (1980). Most of them show
a similar behavior, which is a logical consequence of their asymptotical equiva-
lence. Moreover, the range of the logarithms seems to evidence a clearer presence
of regimes with respect to a diffuse proxy of the volatility as the log weekly range.
Finally, it seems that there is more information in considering a volatility proxy
which is not derived by weekly returns measured from mid-week closing prices.
The turmoil occurring in the markets is better captured by a range-related vari-
able than it is by squared returns. The latter have been established to be a nois-
ier measure of price variability in the realized volatilityliterature (Andersen and
Bollerslev, 1998, Brunetti et al., 2003, Brunetti and Lildholdt, 2006); moreover,
the MS models seem to not represent adequately the squared returns because they
do not reproduce correctly their autocorrelation function(Bulla and Bulla, 2006).
Therefore our choice seems supported by the data and the related literature.

The choice of the frequency of analysis is always crucial in detecting the direc-
tion of a temporal relationship. The use of weekly data is a natural consequence
of the definition of spillover and comovement we made. We define spillovers as
stable dynamic relationship, that is, say, as the increase in the range on a market
leading systematically to the increase in the range on another market with a time
lag. On the other side, a situation of comovement would ariseif such a lag were
not to be present in the data. Increasing the frequency of observation could cause
more noise in the data and more uncertainty in the length of the lag by which
these spillovers occur. We chose a weekly frequency as a goodcompromise be-
tween seeing everything as interdependent and having a picture clouded by data
which may condition the results in the multivariate contextof interest here (see,
for example, Diebold and Yilmaz, 2007).

The proxy used delivers the HSI series shown in Figure 1; the East Asian crisis
shows its most evident effect in the third week of October 1997, in which the
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Figure 1: Hang Seng volatility

volatility increased by almost 300 percent. The dramatically high volatility of this
period is a common feature of all the series analyzed (Figure2), with a different
degree of persistence and depth, but a similar general behavior. In particular the
Korean and Thail markets seem to suffer dramatically from the October crisis,
with a surge in volatility which does not get completely reabsorbed in successive
periods. Other series seem to absorb the shock, albeit gradually.

The abrupt changes in volatility could be considered as outliers when com-
pared with the rest of the univariate series; by the same token, bursts of market
activity do occur and it would be undesirable to manipulate relevant information
about sudden changes in volatility, especially when we wantto relate these to
similar episodes in other markets in a Markov Switching context. As noted by
Bollerslev et al. (2007), consider that jumps in the index can be recorded only
when all stocks in the index have a jump so that the problem of sparse cases of
true outliers (say, high recorded index values due to isolated mispricing) would
not really be likely in this context.

The existence of several regimes is clear observing these graphs, as is the
presence of some sort of common feature, with possible lags.In general, in a MS
framework, it is numerically cumbersome to work with more than four regimes.
For this reason we will estimate MMS and MCMS models with4 × 4 transition
probability matrices.
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Figure 2: Volatility of Asian markets

10



4 The Empirical Results

The first step of our approach is to estimate a MCMS model without constraints
on the parameters in the transition probability specifications (4) and then to test
some restrictions. We shall consider bivariate models keeping HSI as the second
variable in all models and letting the data suggest which type of relationship it
holds with other markets, given the great influence exerted by Hong Kong on the
other Asian economies, a role that it has retained even afterthe reunification with
mainland China. Ideally, one should consider a full model with all markets at
once (and not only the ones we have chosen), but the numericaldifficulties in-
volved are prohibitive (see, for example, Edwards and Susmel, 2001 and 2003).
The assumption that markets should be measured in their relationships to Hong
Kong is a reasonable one, we believe: this does not entail that Hong Kong be the
originator of the crises nor a dominant market. In making thetransition probabili-
ties be dependent on the state of another market we achieve the goal of being able
to detect whether such a link exists or not, or whether other characterizations are
likely (interdependence, independence, comovement).

Following this hypothesis, we estimate 4 separate MCMS models with 2 × 2
states; the value 0 represents the ordinary regime, the value 1 occurs in the tur-
bulent regime. We let the intercept of model (2) to vary with both the regimes
of the two markets; in other terms, we will have four possibleintercepts for each
variable. In addition, we consider the autoregressive parameters in (2) not to be
state–dependent and the orderp equal to 2; for these coefficients the usual station-
arity constraints hold. Finally, we suppose a structure of the covariance matrix
as:

Σ(s1,t, s2,t) =

[

σ2
1(s1t, .) ρ(s1t, s2t)σ1(s1t, .)σ2(., s2t)

ρ(s1t, s2t)σ1(s1t, .)σ2(., s2t) σ2
2(., s2t)

]

In other terms, the variances of each variable (related to fourth moments of returns,
which we assume exist) depend only on the variable’s own state, whereas the
effect of the multi–state affects the correlation coefficient, that varies in [-1,1].
The previous specification implies that the volatility is transmitted from a market
to another, causing also some change in the covariance structure, whereas the
volatility of volatility depends just on the own state.

After estimating the models, we test some propositions to evaluate the nature
of the dependence on the state of the other variable:

State Dependence in the Volatility
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1. No dependence of the intercept ofy1 on the state ofy2:

H0: µ1(0, 0)=µ1(0, 1) andµ1(1, 0)=µ1(1, 1);

2. No dependence of the intercept ofy2 on the state ofy1:

H0:µ2(0, 0)=µ2(1, 0) andµ2(0, 1)=µ2(1, 1)

Dynamic Dependence in the Volatility

3. y2 does notlinearly Granger causey1:

H0:φ1
12=φ2

12=0

4. y1 does notlinearly Granger causey2:

H0:φ1
21=φ2

21=0

State Dependence in the Correlations

5. No dependence of the correlation on the state ofy2:

H0:ρ(0, 0)=ρ(0, 1) andρ(1, 0)=ρ(1, 1)

6. No dependence of the correlation on the state ofy1:

H0:ρ(0, 0)=ρ(1, 0) andρ(0, 1)=ρ(1, 1)

Characterization of Market Dependence

7. No spillover effect fromy2 to y1:

H0:β1(0, 1)=β1(1, 1)=0

8. No spillover effect fromy1 to y2: H0:β2(1, 0)=β2(1, 1)=0

9. No interdependence (no reciprocal spillover):

H0:β1(0, 1)=β1(1, 1)=β2(1, 0)=β2(1, 1)=0

10. Comovement betweeny1 andy2

H0 :

α1 (0, .) = α2 (., 0) ,
α1 (0, .) + β1 (0, 1) + α2 (., 1) = 0,
α1 (., 1) + α2 (., 0) + β2 (1, 0) = 0,
and
α1 (1, .) + β1 (1, 1) = α2 (., 1) + β2 (1, 1)

12



Global Causality

11. y2 does not causey1:

Hypothesis 3 and Hypothesis 7

12. y1 does not causey2:

Hypothesis 4 and Hypothesis 8

The hypothesis 10 is not intuitive because the MMS model, where s1t = s2t

for eacht, is not nested into the MCMS model. Thus, the rows and the columns of
the transition probability matrix of the independent MCMS model wheres1t 6= s2t

cannot be constrained so as to obtain the smaller size transition probability matrix
of the MMS model. However, one can impose that the profile of the estimated state
variable for market 1 be the same as the corresponding state variable for market
2. The analytical derivation of these constraints is developed in the appendix
at the end of the paper. The hypotheses 3. and 4. are relative to the classical
definition of Granger causality in a linear model. To consider both the linear and
nonlinear possible dependencies we test also the hypotheses 11. and 12., which
we call global causality; it is analogous to the definition ofcausality in MS models
proposed by Anas et al. (2006). All these hypotheses can be tested by means of
classical Wald statistics.

The hypotheses labeled 7. to 10. are the ones which characterize the relation-
ships between markets. The various situations can be summarized as follows:

• Spillover: it occurs when hypothesis 7. cannot be rejected and hypothesis
8. is rejected or the other way around.

• Interdependenceor reciprocal spillover: hypotheses 7., 8., and 9. are re-
jected.

• Independence: it occurs when hypothesis 9. cannot be rejected and hy-
pothesis 10. is rejected.

• Comovementor common state variable: it occurs when 10. cannot be
rejected, as discussed above.

13



Table 1: Market Characterization Based on MCMS Models. The ‘*’ and ‘**’ symbols
representrejection of the hypothesis at 5%, respectively, 1% significance level, on the
basis of a corresponding Wald-type tests on estimated MCMS models.

Market 1
Hypotheses KS11 STI KLSE SETI

State Dependence in the Volatility
1. No dependence of the intercept of Market
1 on the state of HSI

** ** ** **

2. No dependence of the intercept of HSI on
the state of Market 1

** ** **

Dynamic Dependence in the Volatility
3. HSI does not linearly Granger cause Mar-
ket 1

** **

4. Market 1 does not linearly Granger cause
HSI

** ** * **

State Dependence in the Correlations
5. No dependence of the correlation on the
state of HSI

** *

6. No dependence of the correlation on the
state of Market 1

* *

Characterization of Market Dependence
7. No spillover from HSI to Market 1 ** ** **
8. No spillover from Market 1 to HSI **
9. No interdependence * ** **
10. Comovement between Market 1 and HSI ** ** **

Global Causality
11. HSI does not cause Market 1 ** ** **
12. Market 1 does not cause HSI ** ** ** **

Plausible Market Characterization
Spillover from Hong Kong × ×
Interdependence ×
Comovement ×
Independence

14



In Table 1 we summarize the hypothesis testing results of theWald test statis-
tics for the twelve hypotheses above; the estimated models (2)–(4) show some
form of dependence between the couples of series according to the various cat-
egories detailed above. In particular, the hypotheses thatthe intercepts of one
market do not depend on the state of the other market, and the linear Granger non
causality hypotheses are often rejected (we cannot reject the hypothesis of no de-
pendence of the intercept of Hong Kong on the state of Korea and the hypothesis
of linear Granger causality from Hong Kong to Singapore and Malaysia). The
correlations seem to be dependent on both the states only in the case of STI/HSI
markets, whereas in general there is not evidence of state dependence. Except
for STI/HSI, all the bivariate models show a form of reciprocal causality (linear
and/or nonlinear) between Hong Kong and the other markets.

As per market dependence as described above, we can say that the Hong Kong
market has a spillover effect on both the Korean and Thai markets (hypothesis 7.
rejected and hypothesis 8. not rejected). For the Malaysia/Hong Kong markets
the evidence favors interdependence (rejection of both hypotheses 7. and 8.). The
Singapore case is the only one which shows evidence of comovement with Hong
Kong (hypotheses 7, 8, 9, 10 not rejectable).

We show the estimation of the selected models for each pair ofmarkets in
Tables 2 to 5. The standard errors are calculated considering the sandwich covari-
ance matrix of the estimators (Bollerslev and Woolridge, 1992). In the last rows
we report the p-values relative to the Jarque-Bera test (JB), the Ljung-Box test
(LB(4)) and the Ljung-Box test on squared residuals (LBS(4)), both calculated
with 4 lags.
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Table 2: Estimated parameters of the MCMS Model for Korea/Hong Kong (robust
standard errors in parentheses)

Switching coefficients - Constant Term
Korea Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
0.429 0.785 2.070 4.938 1.057 1.403 3.159 3.665

(0.061) (0.121) (0.160) (0.314) (0.128) (0.292) (0.473) (0.512)
Autoregressive Terms

Korea Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.284 -0.020 0.197 -0.000 0.028 0.158 -0.000 0.178
(0.029) (0.021) (0.027) (0.000) (0.051) (0.045) (0.001) (0.031)
Switching coefficients - Standard deviations Switching coefficients

Korea Equation Hong Kong Equation Correlation Terms
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ(0, 0) ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.247 0.949 0.406 1.469 0.000 0.000 0.037 0.039

(0.024) (0.066) (0.035) (0.237) (0.097) (0.082) (0.209) (0.098)
Probability parameters

Korea Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) α2(., 1)
1.614 -1.203 1.053 0.000 1.199 0.012

(0.268) (0.377) (0.240) (0.137) (0.213) (0.112)
p-values of test statistics

Korea Hong Kong
JB LB(4) LBS(4) JB LB(4) LBS(4)

0.241 0.394 0.009 0.000 0.139 0.230
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Table 3: Estimated parameters of the MS–4 states Model for Singapore/Hong
Kong (robust standard errors in parentheses).

Switching coefficients - Constant Term
Singapore Equation Hong Kong Equation

µ1(1) µ1(2) µ1(3) µ1(4) µ2(1) µ2(2) µ2(3) µ2(4)
0.770 0.770 1.528 3.394 0.257 1.019 2.072 3.267

(0.112) (0.115) (0.197) (0.352) (0.134) (0.215) (0.170) (0.417)
Autoregressive Terms

Singapore Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.235 -0.007 0.159 0.012 0.171 0.179 0.035 0.139
(0.033) (0.042) (0.057) (0.039) (0.032) (0.042) (0.079) (0.046)

Switching coefficients - Standard deviations
Singapore Equation Hong Kong Equation

σ1(1) σ1(2) σ1(3) σ1(4) σ2(1) σ2(2) σ2(3) σ2(4)
0.457 0.298 0.500 1.744 0.143 0.223 0.503 2.019

(0.072) (0.031) (0.051) (0.277) (0.052) (0.060) (0.061) (0.316)
Switching coefficients - Correlations
ρ(1) ρ(2) ρ(3) ρ(4)
0.330 0.0989 -0.424 0.536

(0.283) (0.201) (0.202) (0.086)
Transition Probabilities

p11 p12 p13 p21 p22 p23

0.124 0.420 0.357 0.234 0.364 0.324
(0.077) (0.167) (0.167) (0.090) (0.113) (0.052)

p31 p32 p33 p41 p42 p43

0.216 0.320 0.338 0.211 0.122 0.182
(0.105) (0.108) (0.083) (0.082) (0.077) (0.045)

p-values of test statistics
Singapore Hong Kong

JB LB(4) LBS(4) JB LB(4) LBS(4)
0.180 0.001 0.101 0.000 0.942 0.649
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Table 4: Estimated parameters of the MCMS Model for Malaysia/Hong Kong
(robust standard errors in parentheses)

Switching coefficients - Constant Term
Malaysia Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
0.757 2.116 4.855 4.855 1.264 1.327 2.059 5.215

(0.083) (0.125) (0.594) (0.550) (0.114) (0.275) (0.218) (0.663)
Autoregressive Terms

Malaysia Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.183 0.025 0.126 0.000 0.066 0.195 0.009 0.135
(0.024) (0.049) (0.024) (0.003) (0.036) (0.046) (0.054) (0.043)
Switching coefficients - Standard deviations Switching coefficients
Malaysia Equation Hong Kong Equation Correlation Terms
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ(0, 0) ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.314 2.373 0.528 1.207 0.139 0.000 0.581 0.085

(0.022) (0.354) (0.037) (0.199) (0.086) (0.184) (0.163) (0.141)
Probability parameters

Malaysia Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) β2(1, 0) α2(., 1) β2(1, 1)

2.507 -1.149 -1.077 0.950 0.963 -1.219 -0.238 0.801
(0.294) (0.376) (0.532) (0.659) (0.191) (0.405) (0.274) (0.578)

p-values of test statistics
Malaysia Hong Kong

JB LB(4) LBS(4) JB LB(4) LBS(4)
0.004 0.936 0.326 0.000 0.568 0.303

The residuals (calculated as a weighted sum of the residualsin the four states,
with weights given by the filtered probabilities) exhibit non normality in all cases
(except Singapore), but this is not surprising given that weare modelling the con-
ditional expectation of a positive valued process and the distribution of residuals
is often asymmetric and affected by exceptionally high values (cf. also Figures 1
and 2); furthermore this kind of models implies densities which are mixtures of
Normal distributions.

We can note that the signs of the parameters of the logistic functions are con-
sistent with our expectations. In the KS11/HSI case the state of HSI has an impact
just on the probabilities in state 0. For the STI/HSI case, the volatility increases
from state 1 to state 4 and the intercept of STI is the same in state 1 and 2. All
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Table 5: Estimated parameters of the MCMS Model for Thailand/Hong Kong
(robust standard errors in parentheses)

Switching coefficients - Constant Term
Thailand Equation Hong Kong Equation

µ1(0, 0) µ1(0, 1) µ1(1, 0) µ1(1, 1) µ2(0, 0) µ2(1, 0) µ2(0, 1) µ2(1, 1)
0.294 1.018 2.162 3.550 1.238 1.238 1.893 4.324

(0.045) (0.066) (0.191) (0.764) (0.109) (0.126) (0.211) (0.692)
Autoregressive Terms

Thailand Equation Hong Kong Equation
φ1

11 φ1
12 φ2

11 φ2
12 φ1

21 φ1
22 φ2

21 φ2
22

0.357 -0.010 0.148 -0.000 0.038 0.230 -0.000 0.146
(0.020) (0.023) (0.010) (0.000) (0.039) (0.049) (0.001) (0.049)
Switching coefficients - Standard deviations Switching coefficients - Correlation Terms
Thailand Equation Hong Kong Equation
σ1(0, .) σ1(1, .) σ2(., 0) σ2(., 1) ρ(0, 0) ρ(0, 1) ρ(1, 0) ρ(1, 1)
0.157 1.740 0.560 1.294 0.000 0.000 0.546 0.044

(0.013) (0.239) (0.074) (0.229) (0.058) (0.088) (0.239) (0.084)
Probability parameters

Thailand Equation Hong Kong Equation
α1(0, .) β1(0, 1) α1(1, .) β1(1, 1) α2(., 0) α2(., 1)
1.544 -1.261 0.199 0.468 0.889 -0.166

(0.217) (0.306) (0.238) (0.489) (0.179) (0.349)
p-values of test statistics

Thailand Hong Kong
JB LB(4) LBS(4) JB LB(4) LBS(4)

0.000 0.087 0.082 0.000 0.536 0.552

the intercepts of the MCMS models exhibit a gradual change from the (0,0) to the
(1,1) state (note that in the Malaysia case – Table 4 – the intercept does not change
between (1,0) and (1,1); in the Hong Kong the same happens between state (0,0)
and (1,0), when the other market is Thailand – Table 5).

Finally, we compare the ability of each selected model to describe the volatil-
ity behavior with respect to an alternative model, which is the MMS–4 states
model for KS11/HSI, KLSE/HSI, SET/HSI, and the MCMS model for STI/HSI.
We will follow Hamilton and Susmel (1994) in carrying out a comparison based
on in-sample goodness of fit performance using the Mean Square Error (MSE)
and Mean Absolute Error (MAE) or their equivalents for the variables expressed
in logs ([LE]2 and|LE| respectively, following Hamilton and Susmel’s notation).
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Table 6: 1-step ahead forecasting performance of MMS and MCMS models in
terms of loss functions.

KS11/HSI STI/HSI
MMS(4) MCMS MMS(4) MCMS

MSE 5.371 5.330 4.529 4.664
MAE 2.342 2.292 1.981 2.045
[LE]2 0.554 0.503 0.438 0.465
|LE| 0.839 0.803 0.742 0.771

KLSE/HSI SETI/HSI
MMS(4) MCMS MMS(4) MCMS

MSE 6.549 6.205 6.000 5.960
MAE 2.423 2.226 2.314 2.214
[LE]2 0.582 0.498 0.612 0.568
|LE| 0.867 0.795 0.877 0.833

The results are shown in Table 6 and evidence as the selected models have a better
performance with respect to the alternatives.

We note that many correlation coefficients between estimated innovations are
equal to zero: this suggests that the consideration of the regimes captures the
main features of the strong relationship seemingly exhibited by the variables. To
reinforce our confidence in the modelling strategy adopted here, a bivariate VAR
model on the four pairs of variables was estimated as well (noswitching whatso-
ever): the residuals in each case are strongly correlated.

Table 7: Means and standard deviation of correlation parameters in VAR(2) mod-
els estimated on 500 series generated by models described intables 2-5, with
correlation parameters fixed equal to zero.

DGP mean st. dev.
KS11/HSI 0.229 0.033
STI/HSI 0.607 0.047

KLSE/HSI 0.460 0.047
SETI/HSI 0.444 0.037

To support our claim that undetected regimes induce spurious correlations in
the residuals, we ran a few Monte Carlo experiments. More in detail, we have
generated 500 series of length 544 from each data generatingprocesses with pa-
rameters obtained by the four estimated models illustratedin tables 2 to 5, but
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fixing the correlation coefficients equal to zero; successively we have estimated
a linear VAR(2) model. The outcome is that when MS and MCMS models with
uncorrelated disturbances are simulated and then estimated by a VAR the residu-
als are cross-correlated. The means and standard deviations of the 500 correlation
coefficients are shown in Table 7; the presence of spurious correlation is evident,
especially when the data are generated by the MMS model relative to STI/HSI.

5 Concluding Remarks

In this paper we propose a new model, based on correlated Markov chains, to
represent the case of interdependence among financial markets, with the case of
spillover and independent markets as particular cases. Thefact that the two last
cases are nested in the more general model provides the possibility to test statis-
tically the various scenarios. The case of comovement amongvariables, though,
which is characterized by a classical Markov Switching model is not nested in the
MCMS model: we resorted to a separate test for common dynamics of the two
state variables.

The applications show the relevant role of Hong Kong as a dominant mar-
ket over the period considered: it turns out that a plausiblemarket characteri-
zation from the estimated models and the hypothesis testingperformed is that
Hong Kong has a leading role relative to Korea and to Thailand. Malaysia shows
some form of interdependence while for the case of Singaporethe estimated model
points rather to a situation of comovement between the two markets.

The estimation of a bivariate model is forced by the difficulty of increasing
the number of variables in the model without stumbling into the usual numeri-
cal problems encountered in Markov Switching models with higher number of
regimes. An-variate model withk states per variable would have a transition
matrix of orderkn, which is rapidly intractable (flat likelihood function) for even
moderate numbers ofn or k above 2. There is therefore a trade-off between the
depth of the economic interpretation which one would have available if more than
two markets were to be compared and the numerical difficulties which accompany
such an effort.

The definitions of spillover, interdependence, comovementand independence
are consistent with large part of the literature, but we should stress that their prac-
tical characterization is different in terms of the statistical instruments utilized.
For example, Forbes and Rigobon (2002) base their analysis only on the behav-
ior of the correlation coefficients, and on a significant increase changing from a
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state of low to another of high volatility (with the periods of low and high volatil-
ity established a priori). In our approach, the analysis is not limited to specific
episodes of crisis, the periods of high and low volatility are selected by the model
itself. An important result is that the presence of correlation between the residuals
disappears if one takes into proper consideration the existence of regimes and the
peculiar structure of the dynamics behind them.

A Comovement in the MCMS Model

In this Appendix we demonstrate that testing the null of comovement against the
hypothesis of MCMS model is equivalent to verifying a set of linear restrictions
on the MCMS model.

The case of comovement corresponds to the case in which the state ofy1t and
y2t is the same for eacht; this situation can justify the adoption of a classical MS
model. The MS model is not nested into the MCMS model given thedifferent
number of states: hence the classical tests based on the likelihood function cannot
be applied.

In view of Hamilton (1994), a Markov chain can be representedas an AR(1)
process:

ξt+1 = P ′ξt + vt+1,

whereξt is a vector containing 1 in correspondence of the state at time t, P is the
transition probability matrix andvt is a vector innovation with zero mean. In our
case, the multiple states are (0,0), (0,1), (1,0), (1,1); correspondingly, for example,
ξt = [0, 0, 0, 1]′ points to a value of the multiple state at timet as(1, 1).

The conditional expectation ofξt+1 is:

E(ξt+1|ξt) = P ′ξt.

If we are interested in the behavior of the single regimess1t ands2t, let us note
that they can be represented as the vectorsξ∗

t , respectively,ξ∗∗
t . Correspondingly,

their expected values are given by the2 × 1 vectors:

E(ξ∗
t+1|ξt) =

[

1 1 0 0
0 0 1 1

]

P ′ξt

and

E(ξ∗∗
t+1|ξt) =

[

1 0 1 0
0 1 0 1

]

P ′ξt.
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To investigate the presence of comovement, as defined in the main body of the
paper, let us test the equality of the two previous vectors, that is,

[

1 1 0 0
0 0 1 1

]

P ′
=

[

1 0 1 0
0 1 0 1

]

P ′. (5)

It is easy to verify that the two rows provide equal constraints: once it is verified
that the first element ofξ∗

t is equal to the first element ofξ∗∗
t for eacht, automati-

cally the second elements of the two vectors will be equal, aseach of them are the
complements to 1 of the previous corresponding elements. Let us denote the prob-
ability Pr[s1t = i, s2t = j|s1t−1 = w, s2t−1 = z] by p(ij|wz); as a consequence,
theP matrix is:









p(00|00) p(01|00) p(10|00) p(11|00)
p(00|01) p(01|01) p(10|01) p(11|01)
p(00|10) p(01|10) p(10|10) p(11|10)
p(00|11) p(01|11) p(10|11) p(11|11)









Developing the first (or the second) equation of (5), the fourconstraints to be
verified are:

Pr [s1t = 0, s2t = 1|s1t−1 = 0, s2t−1 = 0] = Pr [s1t = 1, s2t = 0|s1t−1 = 0, s2t−1 = 0] ,

Pr [s1t = 0, s2t = 1|s1t−1 = 0, s2t−1 = 1] = Pr [s1t = 1, s2t = 0|s1t−1 = 0, s2t−1 = 1] ,

Pr [s1t = 0, s2t = 1|s1t−1 = 1, s2t−1 = 0] = Pr [s1t = 1, s2t = 0|s1t−1 = 1, s2t−1 = 0]

and (6)

Pr [s1t = 0, s2t = 1|s1t−1 = 1, s2t−1 = 1] = Pr [s1t = 1, s2t = 0|s1t−1 = 1, s2t−1 = 1]

Recalling the hypothesis of conditional independence (3) and the parameteri-
zation (4), we obtain that (6) corresponds to the four nonlinear constraints:

exp[α1(0,.)]
1+exp[α1(0,.)]

1
1+exp[α2(.,0)]

= 1
1+exp[α1(0,.)]

exp[α2(.,0)]
1+exp[α2(.,0)]

,

exp[α1(0,.)+β1(0,1)]
1+exp[α1(0,.)+β1(0,1)]

exp[α2(.,1)]
1+exp[α2(.,1)]

= 1
1+exp[α1(0,.)+β1(0,1)]

1
1+exp[α2(.,0)]

,

1
1+exp[α1(.,1)]

1
1+exp[α2(.,0)+β2(1,0)]

= exp[α1(1,.)]
1+exp[α1(1,.)]

exp[α2(.,0)+β2(1,0)]
1+exp[α2(.,0)+β2(1,0)]

,

and
1

1+exp[α1(1,.)+β1(1,1)]
exp[α2(.,1)+β2(1,1)]

1+exp[α2(.,1)+β2(1,1)]
= exp[α1(1,.)+β1(1,1)]

1+exp[α1(1,.)+β1(1,1)]
1

1+exp[α2(.,1)+β2(1,1)]
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After simple algebraic manipulations, the previous nonlinear relationships among
the probabilities parameters are equivalent to the following linear restrictions:

α1 (0, .) = α2 (., 0) ,

α1 (0, .) + β1 (0, 1) + α2 (., 1) = 0,

α1 (., 1) + α2 (., 0) + β2 (1, 0) = 0

and

α1 (1, .) + β1 (1, 1) = α2 (., 1) + β2 (1, 1)

In the simultaneous presence of these four constraints, we can think of common
dynamics for the state variables and therefore of comovement.
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