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Abstract

The transmission mechanisms of volatility between markaitsbe char-
acterized within a new Markov Switching bivariate model wehthe state of
one variable feeds into the transition probability of thatestof the other.
A number of model restrictions and hypotheses can be teststidss the
role of one market relative to another (spillover, intergggence, comove-
ment, independence, Granger non causality). The modeiinsagsd on the
weekly high—low range of five Asian markets, assuming a eéffiut not
necessarily dominant) role for Hong Kong. The results shiaugble mar-
ket characterizations over the long run with a spillovenfrdlong Kong to
Korea and Thailand, interdependence with Malaysia and gement with
Singapore.
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1 Introduction

The diffusion of international investments and capital eroents across borders
has marked the evolution of financial markets and has chathgegrofile of cor-
relations among assets denominated in different curreanech are exchanged
in geographically separated markets. Volatility in one katureacts to innova-
tions in other markets as a result of financial integratioré&dver, the volatility
patterns show frequently evidence of nonlinearities (fksegxample, Frijns and
Schotman, 2006).

In the financial literature, a stream of research has dedlt spillovers of
volatility from one market to another (Lee and Kim, 1993)uesing on shocks
to volatility in a GARCH framework (Englet al, 1990). In recent times, sev-
eral studies have focused on financial crises (notably, &teRussia, East Asia,
Argentina) with the intention of analyzing the sources & thisis: a recurring
guestion is whether the crises originated in one region pitiéd over to other re-
gions (spillover effect) or whether they are the result cirderdependent reaction
to some common shock.

Another financial transmission mechanism frequently atergid in literature
and strictly related to the spillover effect is the contagiavhich is frequently
detected by changes in correlation coefficients. In disogsthe presence and
the extension of contagion effects, several authors haveerdrated on different
aspects, and hence different definitions of contagion: tbdd\Bank site on Fi-
nancial Crises provides a broad definition of cross-counaysmission of shocks
which may take place during both “good” and “bad” times, vé@er more restric-
tive definitions are centered around a specific situatiomisiscand the consequent
increase in the level of interdependence across countries.

From an empirical point of view, methodologies vary consiidy (Pericoli
and Sbracia, 2003): one can recognize models where thedpefrithe crisis is
known and some explanation for its inception is sought. Imab®Logit model
the crisis is translated into a binary variable and contaggatantamount to the
statistical significance of a dummy variable flagging antexiscrisis in another
market; in a Leading Indicators model one examines the gtiedivalue of vari-
ables linked to economic fundamentals or to foreign marketke line of Forbes
and Rigobon (2002) one would detect a correlation breakdoworrespondence
to the known dates of the crisis.

A different line of research is characterized by volatifpjllovers which char-
acterize the structure of interrelationships across nmarkibhe GARCH models
put forth by Engleet al. (1990) allow to see whether conditional variances are
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affected by additional information in the form of squaredowmations occurring in
other markets. This basic idea gets more involved if oneidens that volatility
clustering may be characterized by the presence of regittersating between
low and high levels of unconditional volatility. In this q@sct, a further category
of models which has received considerable attention ietat®arkov Switching
models (MS), diffused in the applied statistics by Hamijtd®89, and adapted to
switching volatility by Hamilton and Susmel (1994), inttadng the SWARCH
models (another interesting extension deals with stocheslatility models; see
So et al., 1998, and Carvalho and Lopes, 2007). In the contditancial crises
the presence of sudden switches ruled by a Markov chain caicdmemmodated
for the variance equation, as in Edwards and Susmel (20@1(2093), who sug-
gest a bivariate version of the SWARCH model for weekly in&tional stock
returns and interest rates, tracking co-dependence inilitglaegimes. In these
models, the idea of crisis and contagion translates intodaesu change in the
volatility of stock returns or interest rates measured ira@ pf countries and of
their correlation. The MS model provides a framework in whiegimes are as-
sociated with the various combinations of low and high vbigin each country.
The interesting feature of their approach is that one cgusix anteconsidered
the originator of the crisis (dominant market) and the correlation coedfitiis
made dependent on the state of such originator country. a@aont is had when
the correlation coefficients significantly change valumsasrstates. Baele (2005)
studies the effect of globalization on market interdepecdeusing a MS model
where switching occurs in the spillover parameters. Thigepdas some analo-
gies to the approach pursued here since it makes use of tiffiexemt structures
of the transition probability matrices to characterize coements and indepen-
dence. He defines a test for contagion along the lines of vghatiggested by
Bekaertet al. (2005).

In our approach we pursue the idea that transmission mexharoperate in
the presence of volatility regimes. To this end, we choos®d¢as on the con-
ditional expectation of an observable volatility proxy reeged on different mar-
kets, namely the weekly range. We adopt a new version of thiaddeSwitching
model called the Multi Chain MS model (MCMS, Otranto, 200Bhere asym-
metries are inserted by making the transition probabiligawh market dependent
on the state of the other markets.

The definition of spillover we propose may be consistent witine definition
of contagion (for example, the one of Edwards and Susmell, 26 2003); since
it does not refer directly to changes in correlations, buhtwre general changes
in regime, we prefer to use the term spillover to not genezatdusion.
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In this context, we study market characterizations relyamgthe following
definitions.Spilloveris seen as a situation in which a switch in regime of a dom-
inating market leads to a change in regime in the dominate#tehéwith a lag).
Interdependences seen as a situation in which a switch in regime of one of the
markets leads a change in regime of the other markets. ¥imalnovemenis
represented by contemporaneous change in regimes. Adedeiraiwhat fol-
lows, the various hypotheses corresponding to the diftarearket features can
be tested within the context of MCMS models which belong ®YAR-MS fam-
ily (Krolzig, 1997). Modelling weekly volatilities in di#frent markets as linear
autoregressions is a common practice in the statisticabandometric literature
(see, for example, Diebold and Yilmaz, 2007).

In Section 2 the multivariate models used and their integpien are intro-
duced; Section 3 contains a discussion of the choice of theypof the volatil-
ity used with some stylized facts about the markets of istenghereas in sec-
tion 4 the methodology exposed will be applied to analyzectieracteristics of
the Asian markets in the period 1993-2004, including thet Basan crisis of
1997. Concluding remarks follow.

2 The Multi-Chain Markov Switching Model

The presence of multiple regimes can be acknowledged uspapalar multi-
variate model introduced by Hamilton (1990) where paramsetee made de-
pendent on a hidden state process ruled by a Markov chairt aumeodel, the
multivariate Markov Switching Model (MS), considers ardimensional vector
Y, = (yu, ..., Ynt), Which is assumed to follow a VAR(p) with time-varying pa-
rameters:

p
Y = p(se) + Z D, (s)yi—i + €

i=1

and (1)
€ ~ N(0,X(sy)),

where the parameters for the conditional expectgtion) and®;(s;),i = 1,...,p,
as well as the variances and covariances of the error terimghe matrix3(s;)
all depend upon the state variablevhich can assume a numhbgof values (cor-
responding to different regimes). The transition probghihatrix P contains the
probabilities of being in a generic statat timet given that the state at tinte- 1
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wasi, hamely, for a generic element

pij = Pr(s; =jlsie1=1), 4,7 =1,...,¢.

The properties of this model are well known by now and needbeatiscussed
here: we refer to Hamilton (1994) for the estimation, filbgriand smoothing
procedures for this model. For this model it is crucial toké® mind that all
variables in the procesg depend on the same state varialleand as such they
are subject to a common switching.

Such a model is of limited use in deciding whether there ias@r or in-
terdependence, in that it can only signal the common switcil ahe variables
analyzed from one state to another. In this respect, thiseinedch good candi-
date to represent common contemporaneous changes acrdstsnevhich we
have defined asomovementFor the same reasons, it is going to be misleading
in cases in which variables are ruled by different stateckwhay be temporally
dependent on one another (mutually or in one direction argven independent.

The idea behind a Multi—-Chain Markov Switching model (MCM&$% sug-
gested by Otranto (2005), is to consider a multivariateggen which the switch-
ing mechanism across regimes makes the state for one \@ahbaldependent on
the lagged states of all variables. This case could be cereddchs representative
of the situation ointerdependencgéecause the change in the state of each vari-
able can be transmitted to all the others with a certain foitiba As a special
case, one can consider a process in which one variable isaddo be dominant
on the others and the switching dynamics intrinsically asyatric: a particular
state for one variable alters the probability of other Valea to change states, but
not vice versa. This feature is suitable to describe trassiom mechanisms oc-
curring in financial crises, but also to any relationship veheleading variable is
present (in Otranto, 2005, new orders are assumed to bentgHuk turnover at
the aggregate level) thus representing the caspitibver. Finally, the reciprocal
dependence on the state of the other variables could turio dnet not significant,
representing the case in which markets are ruleshbgpendenstate variables.

To fix ideas, let us consider a bivariate case with two latexies for each vari-
able: the dynamics of the two variables are thus subjectte siependence. The
transition from one (multi-) state to another is ruled by al& chain obtained
by letting the transition probabilities for one variabledfinction of the (lagged)
state of both variables.

In formal terms, as beforgy; is assumed to follow a VARY process (note



thats; is now a vector):

P
Yy = p(s)+ Z Qi(s)ye—i + &
i=1

and (2)
& ~ N(0,X(s)),

where the parameters for the conditional expectation) and®,(s;), i =1,...,p,
as well as the variances and covariances of the error teringhe matrix3(s;)

all depend upon the state vectr= (sy, ..., s,,;) With s, representing the state
associated with variablg;,. Each state can assume a numgeaf regimes (in
principle these could be different across states). Themiffce with respect to
the classical multivariate MS models is that; andy,; depend on separate but
potentially related state variables.

To illustrate how the asymmetric behavior of the variabkssloe embedded in
the model, let us consider the transition probability mxaRiwith generic element
representing

P = {Pr[s;|s;1]} .

If we consider, for simplicity, the case = ¢ = 2, the state vectog, can assume
four different valueq (0, 0), (0,1), (1,0), (1,1)} and the matrixP is a4 x 4 ma-
trix. Let us suppose that, conditional on,( 1, s2;_1), the states;; ands,, are
independent, so that:

Pr [31t> 521&‘3116—17 Szt—l] = PT[SM‘SU—M Szt—l] Pr[32t|51t—17 32t—1]- (3)

The right hand side of equation (3) can be parameterized haffistic func-
tions where the functional dependence on past states is exadleit as follows:

explag (b, .) + B1(h, 1)s9—1]

14+ eXp[Oél(h, ) + /61(]1, 1)82t_1]

and 4)
explas(., h) + B2(1, h)s1_1]

1+ explas(., h) + B2(1, h)s1-1]’

for h = 0,1. From (4), it is apparent that the state of the varialdétimet — 1

influences the probability of variableto stay in the same regime, and vice versa.
Obviously,

Pr (Slt = h‘81t—1 = h, 32t—1)

Pr (szt = h|31t—1> Sot—1 = h) =

Pr (Sjt = k‘sjt—l = h, Sit—l) = 1—Pr (Sjt = h|8jt_1 = h, Sit—l)
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forh,k =0,1,h # k,andi,j = 1, 2,7 # j. Hypothesis testing can be performed
on the estimated model (2)—(4) in order to assess the raleva@frthe dependence
structure assumed for the states and whether the preseasgrametric effects
in the dynamics of regimes is supported by the data. Stalstignificance of all
parameters in (4) will provide evidence in favor of the casmterdependencédf
the coefficients; (h, k) = 0, the state of the variableat timet — 1 influences the
probability of variable j to stay in the same regime, but noewersa, this is evi-
dence in favor of the dominant status of variabde spillover. This property gives
meaning to our envisaging spillover as a stable asymmediationship between
markets and not necessarily related to the effects of sgigleks. Finally, the non
significance of all the coefficients;(h, k) andg;(h, k) would show evidence for
independencbetween markets.

In this way, the estimated probabilities in (4) will show timepact of the
regime of variable on the transition probabilities for variable moreover, we
would expect the signs of coefficients(0,1) and 5»(1,0) to be negative and
those of coefficients; (1, 1) andf,(1, 1) to be positive.

Disposing the estimated transition probabilities (3) inatn, with rows rep-
resenting the multiple state at time- 1 and columns the multiple state at tirhe
it is possible to evaluate the most probable scenario (acp&t combination of
s1; andso,) at timet, given a certain state at tinte- 1.

The properties of the model from a theoretical point of viesincide with
those of a standard Markov switching model: estimationrfilgeand smoothing
can be performed according to the procedures described inyltda (1990) and
Kim (1994).

3 The Choice of the Volatility Proxy

The Asian markets are a classical example for which therdaigya debate to es-
tablish the nature of the relationship among markets sttpesudden changes in
volatility. For example, Forbes and Rigobon (2002) note tha shock originat-
ing from Hong Kong in October 1997 has not implied a signifidaarease in the
correlation coefficients of the other main Asian market& ¢bnclusion reached
is that the series analyzed cannot be considered as subjadbtm of spillover
from Hong Kong, but rather the markets considered exhibérdependence. Let
us now see what our analysis allows us to say, in view of a muicubate defini-
tion of spillover, interdependence, independence and gements.
We analyze the stock market indices of 5 Asian countriesisgafrom daily



data spanning a period between November 29, 1993 and Aprd@®4; the in-
dices are the Hang Seng index (Hong Kong-HSI hereafter) KIB8PI index
(South Korea-KS11), the KLSE composite index (MalaysiaSg), the Straits
Times index (Singapore-STI), the Thailand SET index (Tdrad, SETI). The
proxy of the volatility is computed as the weekly range oflthgarithm of the data
(highest recorded minus lowest recorded value, rescaléubfacton(1/41n(2))'/?;
see Parkinson, 1980) and results in 544 observations. Tdieecbf a long sample
period is motivated by the desire to capture interactiores several years charac-
terized by an increasing degree of financial and real integrand where crises
have shaped the interdependence among these markets.

We have tried to construct alternative proxies of the viitgtamong those
suggested by Parkinson (1980) and Garman and Klass (19&@).dfithem show
a similar behavior, which is a logical consequence of thgymnaptotical equiva-
lence. Moreover, the range of the logarithms seems to evedarclearer presence
of regimes with respect to a diffuse proxy of the volatilig/the log weekly range.
Finally, it seems that there is more information in consiagr volatility proxy
which is not derived by weekly returns measured from mid#neesing prices.
The turmoil occurring in the markets is better captured bgarage-related vari-
able than it is by squared returns. The latter have beenlsstat) to be a nois-
ier measure of price variability in the realized volatilliterature (Andersen and
Bollerslev, 1998, Brunetti et al., 2003, Brunetti and Litdidit, 2006); moreover,
the MS models seem to not represent adequately the squémetksrbecause they
do not reproduce correctly their autocorrelation functiBalla and Bulla, 2006).
Therefore our choice seems supported by the data and thedétarature.

The choice of the frequency of analysis is always cruciabtedting the direc-
tion of a temporal relationship. The use of weekly data istana&consequence
of the definition of spillover and comovement we made. We @edipillovers as
stable dynamic relationship, that is, say, as the increasigei range on a market
leading systematically to the increase in the range on anatlarket with a time
lag. On the other side, a situation of comovement would afrisech a lag were
not to be present in the data. Increasing the frequency @&reason could cause
more noise in the data and more uncertainty in the length efda by which
these spillovers occur. We chose a weekly frequency as a gmogromise be-
tween seeing everything as interdependent and having ar@ictouded by data
which may condition the results in the multivariate contekinterest here (see,
for example, Diebold and Yilmaz, 2007).

The proxy used delivers the HSI series shown in Figure 1; st Asian crisis
shows its most evident effect in the third week of October7198 which the
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Figure 1: Hang Seng volatility

volatility increased by almost 300 percent. The dramdiidagh volatility of this
period is a common feature of all the series analyzed (Figurevith a different
degree of persistence and depth, but a similar general lmeh&v particular the
Korean and Thail markets seem to suffer dramatically froex@ctober crisis,
with a surge in volatility which does not get completely reaitbed in successive
periods. Other series seem to absorb the shock, albeitaghadu

The abrupt changes in volatility could be considered aseyativhen com-
pared with the rest of the univariate series; by the samentdiersts of market
activity do occur and it would be undesirable to manipulatevant information
about sudden changes in volatility, especially when we warelate these to
similar episodes in other markets in a Markov Switching eaht As noted by
Bollerslev et al. (2007), consider that jumps in the inder ba recorded only
when all stocks in the index have a jump so that the problenpafse cases of
true outliers (say, high recorded index values due to isdlatispricing) would
not really be likely in this context.

The existence of several regimes is clear observing themghgr as is the
presence of some sort of common feature, with possible laggeneral, in a MS
framework, it is numerically cumbersome to work with morarntour regimes.
For this reason we will estimate MMS and MCMS models with 4 transition
probability matrices.
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4 The Empirical Results

The first step of our approach is to estimate a MCMS model witlconstraints
on the parameters in the transition probability specificeti(4) and then to test
some restrictions. We shall consider bivariate models ikgeidS| as the second
variable in all models and letting the data suggest whicle typrelationship it
holds with other markets, given the great influence exenfegdding Kong on the
other Asian economies, a role that it has retained eventagereunification with
mainland China. Ideally, one should consider a full modehveill markets at
once (and not only the ones we have chosen), but the numeiftiaulties in-
volved are prohibitive (see, for example, Edwards and Sysa081 and 2003).
The assumption that markets should be measured in thefroredhips to Hong
Kong is a reasonable one, we believe: this does not entaiHbiag Kong be the
originator of the crises nor a dominant market. In makingthesition probabili-
ties be dependent on the state of another market we achiege#h of being able
to detect whether such a link exists or not, or whether otharacterizations are
likely (interdependence, independence, comovement).

Following this hypothesis, we estimate 4 separate MCMS nsoslgh 2 x 2
states; the value O represents the ordinary regime, the vabccurs in the tur-
bulent regime. We let the intercept of model (2) to vary withttbthe regimes
of the two markets; in other terms, we will have four possihtercepts for each
variable. In addition, we consider the autoregressivematars in (2) not to be
state—dependent and the ordaqual to 2; for these coefficients the usual station-
arity constraints hold. Finally, we suppose a structurehefdovariance matrix
as:

U%(Sm ) p<51t7 52t)01(51t7 -)02(-, 32t)
E(Sl,ta Sz,t) = 9
p(Sm 52t)01(31t7 -)02(-7 Szt) Ug(-, 32t)

In other terms, the variances of each variable (related.dtionoments of returns,
which we assume exist) depend only on the variable’s owre stahereas the
effect of the multi—state affects the correlation coeffitjghat varies in [-1,1].
The previous specification implies that the volatility iaismitted from a market
to another, causing also some change in the covariancdawstguevhereas the
volatility of volatility depends just on the own state.

After estimating the models, we test some propositions &uate the nature
of the dependence on the state of the other variable:

State Dependence in the Volatility
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1. No dependence of the intercepti@fon the state of:
Ho: 11(0,0)=p1(0, 1) @ndyuy (1, 0)=p1 (1, 1);

2. No dependence of the interceptyefon the state of;:
Ho:2(0,0)=ps(1,0) anduz (0, 1)=ps(1, 1)

Dynamic Dependence in the Volatility

3. y» does notinearly Granger causg;:
Ho:¢1,=¢7,=0
4. y; does notinearly Granger causg:
Ho:¢5,=¢3,=0
State Dependence in the Correlations

5. No dependence of the correlation on the statg of
Ho:p(0,0)=p(0, 1) andp(1,0)=p(1, 1)

6. No dependence of the correlation on the statg of
Ho:p(0,0)=p(1,0) andp(0, 1)=p(1, 1)

Characterization of Market Dependence

7. No spillover effect fromy, to y;:
Ho:ﬁl(o, 1)261(1, ].):O
8. No spillover effect fromy; to yo: Ho:52(1,0)=0F(1,1)=0

9. No interdependence (no reciprocal spillover):
Hy:31(0,1)=61(1,1)=5(1,0)=02(1,1)=0
10. Comovement between andy,
(05} (0, ) = (g (., 0) 5
(03] (0, ) + 61 (O, 1) + Qi (., 1)
H() e} (., 1) + Qo (., 0) + ﬁg (1, 0)

and
a (L) + /(L) =as (., 1)+ G2 (1,1)

Y

0
0,
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Global Causality

11. y, does not causg,:
Hypothesis 3 and Hypothesis 7

12. y; does not causg;:
Hypothesis 4 and Hypothesis 8

The hypothesis 10 is not intuitive because the MMS modelrevhg = so;
for eacht, is not nested into the MCMS model. Thus, the rows and thenzofuof
the transition probability matrix of the independent MCM8adel wheres;; # sy,
cannot be constrained so as to obtain the smaller sizetiangrobability matrix
of the MMS model. However, one can impose that the profile@&dtimated state
variable for market 1 be the same as the corresponding statibie for market
2. The analytical derivation of these constraints is dgvetbin the appendix
at the end of the paper. The hypotheses 3. and 4. are relative tclassical
definition of Granger causality in a linear model. To consioeth the linear and
nonlinear possible dependencies we test also the hypestiidseand 12., which
we call global causality; it is analogous to the definitiorafisality in MS models
proposed by Anas et al. (2006). All these hypotheses cansbedtby means of
classical Wald statistics.

The hypotheses labeled 7. to 10. are the ones which charactiee relation-
ships between markets. The various situations can be suradars follows:

e Spillover: it occurs when hypothesis 7. cannot be rejected and hygisthe
8. is rejected or the other way around.

¢ Interdependenceor reciprocal spillover: hypotheses 7., 8., and 9. are re-
jected.

¢ Independence it occurs when hypothesis 9. cannot be rejected and hy-
pothesis 10. is rejected.

e Comovementor common state variable: it occurs when 10. cannot be
rejected, as discussed above.
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Table 1: Market Characterization Based on MCMS Models. The *" antl 8ymbols
representejection of the hypothesis at 5%, respectively, 1% significance |emelthe
basis of a corresponding Wald-type tests on estimated MCld&eia.

Market

1

Hypotheses KS11 STI KLSE SETI

State Dependence in the Volatility
1. No dependence of the intercept of Market ** *x *x
1 on the state of HSI

2. No dependence of the intercept of HSI on *x *x

the state of Market 1

*%*

**

Dynamic Dependence in the Volatility
3. HSI does not linearly Granger cause Mar- **
ket 1

**

**

4. Market 1 does not linearly Granger cause ** *x *
HSI
State Dependence in the Correlations
5. No dependence of the correlation on the *x
state of HSI
6. No dependence of the correlation on the * *

state of Market 1

Characterization of Market Dependence

7. No spillover from HSI to Market 1 *x *x *k

8. No spillover from Market 1 to HSI *x

9. No interdependence * *x *x

10. Comovement between Market 1 and HSI *x *x *x

Global Causality

11. HSI does not cause Market 1 *x *x *x

12. Market 1 does not cause HSI *x *x *k *x
Plausible Market Characterization

Spillover from Hong Kong X X

Interdependence X

Comovement X

Independence
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In Table 1 we summarize the hypothesis testing results oi\thle test statis-
tics for the twelve hypotheses above; the estimated mo@gi¢4) show some
form of dependence between the couples of series accordlitigetvarious cat-
egories detailed above. In particular, the hypothesesthigaintercepts of one
market do not depend on the state of the other market, anthtree IGranger non
causality hypotheses are often rejected (we cannot réjedtytpothesis of no de-
pendence of the intercept of Hong Kong on the state of Kordalamhypothesis
of linear Granger causality from Hong Kong to Singapore aralayisia). The
correlations seem to be dependent on both the states orilg icasse of STI/HSI
markets, whereas in general there is not evidence of staendence. Except
for STI/HSI, all the bivariate models show a form of recipgbcausality (linear
and/or nonlinear) between Hong Kong and the other markets.

As per market dependence as described above, we can sayethdrig Kong
market has a spillover effect on both the Korean and Thai etarthypothesis 7.
rejected and hypothesis 8. not rejected). For the Maldysiag Kong markets
the evidence favors interdependence (rejection of botlotingses 7. and 8.). The
Singapore case is the only one which shows evidence of camaviewith Hong
Kong (hypotheses 7, 8, 9, 10 not rejectable).

We show the estimation of the selected models for each pamaskets in
Tables 2 to 5. The standard errors are calculated consgigmensandwich covari-
ance matrix of the estimators (Bollerslev and Woolridge92)9 In the last rows
we report the p-values relative to the Jarque-Bera test (BB)Ljung-Box test

(LB(4)) and the Ljung-Box test on squared residuals (LBF(Bdth calculated
with 4 lags.
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Table 2: Estimated parameters of the MCMS Model for Koreatiidong (robust
standard errors in parentheses)
Switching coefficients - Constant Term

Korea Equation Hong Kong Equation
£1(0,0)  p1(0,1)  pa(1,0)  pa(1,1)  p2(0,0)  p2(1,0)  p2(0,1)  pa(1,1)
0.429 0.785 2.070 4.938 1.057 1.403 3.159 3.665

(0.061) (0.121) (0.160) (0.314) (0.128) (0.292) (0.473) .512@)
Autoregressive Terms

Korea Equation Hong Kong Equation
! Pl ot 1 31 22 1 )

0.284 -0.020 0.197 -0.000 0.028 0.158 -0.000 0.178
(0.029) (0.021) (0.027) (0.000) (0.051) (0.045) (0.001) .0%0)
Switching coefficients - Standard deviations Switchingfitcients

Korea Equation Hong Kong Equation Correlation Terms
01(07 ) 01(17') 02('70) 02('71) p(070) p(0> 1) p(170) p(171)

0.247 0.949 0.406 1.469 0.000 0.000 0.037 0.039

(0.024) (0.066) (0.035) (0.237) (0.097) (0.082) (0.209) .098)
Probability parameters

Korea Equation Hong Kong Equation
011(0, ) ﬁl(O, 1) 011(1,.) 51(1,1) 042(.,0) 042(.,1)
1.614 -1.203 1.053 0.000 1.199 0.012
(0.268) (0.377) (0.240) (0.137) (0.213) (0.112)
p-values of test statistics
Korea Hong Kong
JB LB(4) LBS(4) JB LB(4) LBS(4)
0.241 0.394 0.009 0.000 0.139 0.230
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Table 3: Estimated parameters of the MS—4 states Model fogapiore/Hong
Kong (robust standard errors in parentheses).
Switching coefficients - Constant Term
Singapore Equation Hong Kong Equation
pil) (2 m@B) o m(d) pe(l)  p2(2)  p2(3)  p2(4)
0.770 0.770 1528 3.394 0.257 1.019 2.072  3.267
(0.112) (0.115) (0.197) (0.352) (0.134) (0.215) (0.170).419)
Autoregressive Terms
Singapore Equation Hong Kong Equation
Gy Oh R T T
0.235 -0.007 0.159 0.012 0.171 0.179 0.035 0.139
(0.033) (0.042) (0.057) (0.039) (0.032) (0.042) (0.079).04®)
Switching coefficients - Standard deviations
Singapore Equation Hong Kong Equation
0'1(1) 0'1(2) 0'1(3) 0'1(4) 0'2(1) 0'2(2) 0'2(3) 0'2(4)
0.457 0.298  0.500 1.744 0.143 0.223 0.503 2.019
(0.072) (0.031) (0.051) (0.277) (0.052) (0.060) (0.061).316)
Switching coefficients - Correlations
p(1)  p(2)  p(3)  p(4)
0.330 0.0989 -0.424 0.536
(0.283) (0.201) (0.202) (0.086)
Transition Probabilities
P11 P12 P13 P21 P22 P23
0.124 0420 0.357 0.234 0.364 0.324
(0.077) (0.167) (0.167) (0.090) (0.113) (0.052)
p31 Pb32 P33 ba1 P42 P43
0.216 0.320 0.338 0.211 0.122 0.182
(0.105) (0.108) (0.083) (0.082) (0.077) (0.045)
p-values of test statistics

Singapore Hong Kong
JB LB(4) LBS(@4) JB LB(4) LBS®4)
0.180 0.001 0.101 0.000 0.942 0.649
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Table 4: Estimated parameters of the MCMS Model for Malaysag Kong
(robust standard errors in parentheses)
Switching coefficients - Constant Term

Malaysia Equation Hong Kong Equation
Nl(oao) :ul(oa 1) :ul(lao) Nl(lal) M2(07O) N2(17O) M2(07 1) N?(lal)
0.757 2.116 4.855 4.855 1.264 1.327 2.059 5.215

(0.083) (0.125) (0.594) (0.550) (0.114) (0.275) (0.218) .663)
Autoregressive Terms

Malaysia Equation Hong Kong Equation
(bh ¢%2 (b%l %2 (Z%l ¢%2 (b%l ¢%2

0.183 0.025 0.126 0.000 0.066 0.195 0.009 0.135
(0.024) (0.049) (0.024) (0.003) (0.036) (0.046) (0.054) .04@)
Switching coefficients - Standard deviations Switchingfiecients

Malaysia Equation Hong Kong Equation Correlation Terms

01(0,.) o1(1,.)  02(,0)  o2(,1)  p(0,0)  p(0,1)  p(1,0)  p(1,1)

0.314 2.373 0.528 1.207 0.139 0.000 0.581 0.085

(0.022) (0.354) (0.037) (0.199) (0.086) (0.184) (0.163) .140)
Probability parameters
Malaysia Equation Hong Kong Equation
041(0, ) 51(0, 1) 041(1,.) ﬂl(l,l) 042(.70) ﬂg(l,O) 042(.,1) ﬂg(l,l)
2.507 -1.149  -1.077 0.950 0.963 -1.219  -0.238 0.801
(0.294) (0.376) (0.532) (0.659) (0.191) (0.405) (0.274) .578@)
p-values of test statistics

Malaysia Hong Kong
JB LB(4) LBS(4) JB LB(4) LBS(4)
0.004 0.936 0.326 0.000 0.568 0.303

The residuals (calculated as a weighted sum of the residutiis four states,
with weights given by the filtered probabilities) exhibitmoormality in all cases
(except Singapore), but this is not surprising given thaaveemodelling the con-
ditional expectation of a positive valued process and te&itdution of residuals
is often asymmetric and affected by exceptionally high al(cf. also Figures 1
and 2); furthermore this kind of models implies densitiesorare mixtures of
Normal distributions.

We can note that the signs of the parameters of the logistictiions are con-
sistent with our expectations. In the KS11/HSI case the stitiSI has an impact
just on the probabilities in state 0. For the STI/HSI case,vblatility increases
from state 1 to state 4 and the intercept of STI is the sameate dtand 2. All
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Table 5: Estimated parameters of the MCMS Model for Thaildiothg Kong

(robust standard errors in parentheses)
Switching coefficients - Constant Term

Thailand Equation Hong Kong Equation
Nl(oao) :ul(oa 1) :ul(lao) Nl(lal) M2(07O) N2(17O) M2(07 1) N?(lal)
0.294 1.018 2.162 3.550 1.238 1.238 1.893 4.324

(0.045) (0.066) (0.191) (0.764) (0.109) (0.126) (0.211) .692)
Autoregressive Terms

Thailand Equation Hong Kong Equation
(bh ¢%2 (b%l %2 (Z%l ¢%2 (b%l ¢%2
0.357 -0.010 0.148 -0.000 0.038 0.230 -0.000 0.146

(0.020) (0.023) (0.010) (0.000) (0.039) (0.049) (0.001) .049)
Switching coefficients - Standard deviations  Switchingfitcients - Correlation Terms
Thailand Equation  Hong Kong Equation
01(0’ ) 01(1") UZ('aO) 02('71) P(07O) P(07 1) P(LO) p(l,l)
0.157 1.740 0.560 1.294 0.000 0.000 0.546 0.044
(0.013) (0.239) (0.074) (0.229) (0.058) (0.088) (0.239) .08a)
Probability parameters

Thailand Equation Hong Kong Equation

041(0, ) 51(0, 1) 041(1,.) ﬂl(l,l) 042(.70) 042(.,1)

1.544 -1.261 0.199 0.468 0.889 -0.166
(0.217) (0.306) (0.238) (0.489) (0.179) (0.349)

p-values of test statistics
Thailand Hong Kong
JB LB(4) LBS(4) JB LB(4) LBS(4)
0.000 0.087 0.082 0.000 0.536 0.552

the intercepts of the MCMS models exhibit a gradual changma tihe (0,0) to the
(1,1) state (note that in the Malaysia case — Table 4 — thecepe does not change
between (1,0) and (1,1); in the Hong Kong the same happengbaetstate (0,0)
and (1,0), when the other market is Thailand — Table 5).

Finally, we compare the ability of each selected model teiles the volatil-
ity behavior with respect to an alternative model, whichhe MMS—4 states
model for KS11/HSI, KLSE/HSI, SET/HSI, and the MCMS model &T1/HSI.
We will follow Hamilton and Susmel (1994) in carrying out angparison based
on in-sample goodness of fit performance using the Mean 8Sdtiaor (MSE)
and Mean Absolute Error (MAE) or their equivalents for theiables expressed
in logs (LE)? and|LE| respectively, following Hamilton and Susmel’s notation).
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Table 6: 1-step ahead forecasting performance of MMS and @hbdels in

terms of loss functions.

KS11/HSI STIUHSI
MMS(4) MCMS MMS(A) MCMS
MSE 5371 5330 4529  4.664
MAE — 2.342 2.292 1.981 2.045
[LE]> 0554  0.503 0.438 0.465
ILE)| 0.839  0.803 0.742 0.771
KLSE/HSI SETI/HSI
MMS(4) MCMS MMS(4) MCMS
MSE 6549 6.205 6.000 5.960
MAE  2.423 2.226 2314 2214
[LE]> 0582  0.498 0.612 0.568
ILE)| 0.867  0.795 0.877 0.833

The results are shown in Table 6 and evidence as the selecelsrhave a better
performance with respect to the alternatives.

We note that many correlation coefficients between estidnateovations are
equal to zero: this suggests that the consideration of thenes captures the
main features of the strong relationship seemingly exédbily the variables. To
reinforce our confidence in the modelling strategy adoptzé ha bivariate VAR
model on the four pairs of variables was estimated as wels{mitching whatso-
ever): the residuals in each case are strongly correlated.

Table 7: Means and standard deviation of correlation pateisier VAR(2) mod-
els estimated on 500 series generated by models descritathles 2-5, with
correlation parameters fixed equal to zero.

DGP mean st. dev.
KS11/HSI 0.229 0.033
STI/HSI 0.607 0.047
KLSE/HSI 0.460 0.047
SETI/HSI 0.444 0.037

To support our claim that undetected regimes induce spsigotrelations in
the residuals, we ran a few Monte Carlo experiments. Moreetaill we have
generated 500 series of length 544 from each data genemticgsses with pa-
rameters obtained by the four estimated models illustrateebles 2 to 5, but

20



fixing the correlation coefficients equal to zero; succedgiwe have estimated
a linear VAR(2) model. The outcome is that when MS and MCMS et®dvith
uncorrelated disturbances are simulated and then estrhbgta VAR the residu-
als are cross-correlated. The means and standard degiafitime 500 correlation
coefficients are shown in Table 7; the presence of spuriousletion is evident,
especially when the data are generated by the MMS modeiveetat STI/HSI.

5 Concluding Remarks

In this paper we propose a new model, based on correlatedoMathains, to
represent the case of interdependence among financial tsankth the case of
spillover and independent markets as particular cases.fath¢hat the two last
cases are nested in the more general model provides théibssd test statis-
tically the various scenarios. The case of comovement anaangbles, though,
which is characterized by a classical Markov Switching niégleot nested in the
MCMS model: we resorted to a separate test for common dyrsaafithe two
state variables.

The applications show the relevant role of Hong Kong as a dantimar-
ket over the period considered: it turns out that a plausitdeket characteri-
zation from the estimated models and the hypothesis tep@nfprmed is that
Hong Kong has a leading role relative to Korea and to Thail&nalaysia shows
some form of interdependence while for the case of Singaperestimated model
points rather to a situation of comovement between the twikets

The estimation of a bivariate model is forced by the diffigwdf increasing
the number of variables in the model without stumbling irtte tisual numeri-
cal problems encountered in Markov Switching models wittphler number of
regimes. An-variate model witht states per variable would have a transition
matrix of orderk™, which is rapidly intractable (flat likelihood function)feven
moderate numbers of or k£ above 2. There is therefore a trade-off between the
depth of the economic interpretation which one would hawlable if more than
two markets were to be compared and the numerical diffi@Attegich accompany
such an effort.

The definitions of spillover, interdependence, comoveraadtindependence
are consistent with large part of the literature, but we $thetress that their prac-
tical characterization is different in terms of the statetinstruments utilized.
For example, Forbes and Rigobon (2002) base their analgsison the behav-
ior of the correlation coefficients, and on a significant @age changing from a
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state of low to another of high volatility (with the periodslow and high volatil-
ity established a priori). In our approach, the analysisaslimited to specific
episodes of crisis, the periods of high and low volatilitg aelected by the model
itself. An important result is that the presence of corietabetween the residuals
disappears if one takes into proper consideration theanastof regimes and the
peculiar structure of the dynamics behind them.

A Comovementin the MCMS Model

In this Appendix we demonstrate that testing the null of ceemeent against the
hypothesis of MCMS model is equivalent to verifying a setioéar restrictions
on the MCMS model.

The case of comovement corresponds to the case in whichateedasy;; and
yo; IS the same for each this situation can justify the adoption of a classical MS
model. The MS model is not nested into the MCMS model givendifferent
number of states: hence the classical tests based on thiedib@ function cannot
be applied.

In view of Hamilton (1994), a Markov chain can be represere@n AR(1)
process:

&1 = P&+ vy,

whereg; is a vector containing 1 in correspondence of the state &ttt is the
transition probability matrix and, is a vector innovation with zero mean. In our
case, the multiple states are (0,0), (0,1), (1,0), (1,Xyespondingly, for example,
& =10,0,0, 1] points to a value of the multiple state at timas(1, 1).

The conditional expectation gf_ ; is:

E(&111€&) = P'&.

If we are interested in the behavior of the single regimgsand sy, let us note
that they can be represented as the ve@preespectivelyg;*. Correspondingly,
their expected values are given by the 1 vectors:

. (110 0]
E(€t+1|€t) = 00 1 1 P/ét
and

o 1 010
E(€t+1|€t) = 010 1 P/ét



To investigate the presence of comovement, as defined in #ie mody of the
paper, let us test the equality of the two previous vectbed, i,

11007, 101071,
{0011}13:{ }P' )

It is easy to verify that the two rows provide equal constiaionce it is verified
that the first element f; is equal to the first element gf* for eacht, automati-
cally the second elements of the two vectors will be equataas of them are the
complements to 1 of the previous corresponding elementsid @enote the prob-
ability Prsy; = 4,89, = j|s1-1 = w, s—1 = 2] by p(ij|wz); as a consequence,
the P matrix is:

p(00]00) p(01]00) p(10[00) p(11/00)
p(00j01) p(01]01) p(10[01) p(1101)
p(00[10) p(01]10) p(10[10) p(11]10)
p(00[11) p(01[11) p(10[11) p(11[11)

Developing the first (or the second) equation of (5), the foomstraints to be
verified are:

Pr(sit =0,s2¢ = 1|s11—1 =0,802¢-1 =0] = Prs;z =1,s2¢ =0|s1t—1 =0,s2¢-1 =0],

]

Pr(sit =0,s2¢ = 1|s11—1 =0,80,-1 =1] = Prs;z =1,s2¢ =0|s14—1 =0,s2¢-1 = 1],

| = Prlsit=1,s2t =0|s1t—1 = 1,82t—1 = 0]

and (6)
]

Prisit =0,s2t = 1]s14—1 =1,80¢—1 =1

Pr(sit =0,s2¢ = 1|s1¢—1 = 1,82¢-1 =0

= Prsit = 1,52t = 0fs1t—1 = 1,52:—1 = 1]

Recalling the hypothesis of conditional independence ({8)the parameteri-
zation (4), we obtain that (6) corresponds to the four n@arconstraints:

exp[ai (0,.)] 1 - 1 explaz(.,0)]
T+explan (0,.)] 1+explaz(-,0)] 1+exp[an (0.)] 1+explaz(.,0)]*
expla1(0,.)+51(0,1)]  explaz(.,1)] — 1 1
1+explai (0,.)+61(0,1)] 1+exp[az(.,1)] 1+exp[a1(0,.)+31(0,1)] 1+exp[az(.,0)]’
1 1 — explai(l,)] _explas(.,0)+62(1,0)]
1+expon (-,1)] 1+explaz(.,0)+62(1,0)] 1+exploa (1,.)] 1+explaz(.,0)+82(1,0)]
and
1 explaz(.,1)+62(1,1)] - explag (1,.)+61(1,1)] 1
1+exploa (1,.)+B1(1,1)] 1+explaz(.,1)+62(1,1)] 1+explaa (1,.)+81(1,1)] 1+explaz(.,1)+82(1,1)]
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After simple algebraic manipulations, the previous nogdirrelationships among
the probabilities parameters are equivalent to the folgwinear restrictions:

0,.) = a(,0),
a1 (0,.)+ 41 (0,1) +az(.,1) = 0,
al(.,1)+a2(.,0)+ﬁ2(1,0) =
d
)

= a(,1)+06h(11)

In the simultaneous presence of these four constraints awehenk of common
dynamics for the state variables and therefore of comovemen
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