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ABSTRACT Adaptive cluster sampling can be a useful technique for parameter 
estimation when a population is highly clumped with clumps widely separated. 
In this design, however, the size of the final sample cannot be predicted prior to 
sampling, thus leading to design problems. In this paper a new version of 
adaptive cluster sampling which allows the sampler to know prior to sampling 
the exact upper limit of the final sample size and consequently the highest total 
sampling effort, is suggested. It is drawn from a combination of the restricted 
adaptive cluster sampling of Brown (1994) and a two-stage adaptive cluster 
sampling. For this new sampling design an unbiased estimator of the total and its 
sample variance are also suggested. The results of a simulation study, performed 
in order to provide a first evaluation of the method, are promising. 

 
KEYWORDS:  Clumped population, Murthy’s estimator, Variable sample size. 

 
 
1. INTRODUCTION 
 

In adaptive cluster sampling, introduced by Thompson (1990), an initial sample of 
fixed size is selected and for each unit in the initial sample the neighbouring units are 
sampled if the variable of interest satisfies a condition, say , specified a priori. If, in 
turn, any of the neighbouring units satisfy the condition, their neighbourhoods are 
sampled and so on, building up clusters of units. The condition for extra sampling 
might be, for example, the presence of rare animal or plant species, detection of “hot 
spots” in an environmental pollution study, infection with a rare disease in an 
epidemiological study or observation of a rare characteristic of interest in a household 
or firm survey. The neighbourhood of a unit may be defined by spatial proximity or, in 
the case of human populations, by social or genetic links or other connections. It is 
evident that the final sample size is unknown and can be quite variable depending on 
the patchiness of the population. In order to reduce the variability of the final sample 
size, Brown (1994) and Brown & Manly (1998) proposed an alternative method to 
select the sample. In their method, known as restricted adaptive cluster sampling, the 
units of the initial sample are drawn sequentially; for each unit its neighbouring units 
are sampled and a cluster is formed following the usual adaptive cluster method; the 
cumulating total sample size is then compared with a predefined limit on the number 
of units; if the total size is greater than or equal to the limit the process stops, otherwise 
it continues until such limit is reached or exceeded. Thus, restricted adaptive cluster 
sampling reduces the variability in the final sample size but does not remove it 
completely: the resultant final sample size may be much greater than the defined limit 
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depending on the size of the last selected cluster. In order to gain further reduction in 
the variability of the final sample size and, above all, to be able to determine the exact 
upper limit of the final sample size, we propose a new method that combines the 
restricted adaptive cluster sampling with a two-stage adaptive cluster sampling method 
(Salehi & Seber, 1997) in which an initial two-stage sample is selected and then the 
related clusters of secondary units truncated at the primary unit boundaries are added 
to the sample.  

The number of measurements of the variable of interest is controlled also with the 
adaptive cluster double sampling, recently suggested by Felix-Medina & Thompson 
(2004), in which a first-phase sample is selected using an adaptive cluster sampling 
design based on an inexpensive auxiliary variable associated with the survey variable 
and then the network structure of the adaptive cluster sample is used to select an 
ordinary one-phase or two-phase subsample of units and the values of the survey 
variable associated with those units are selected. However, this design has the 
following drawbacks: an auxiliary variable associated with the survey variable is 
required; the procedure does not control the number of measurements of auxiliary 
variable and so the sampler is not able to predict prior to sampling the whole sampling 
effort. 

With the design introduced in this paper, it is possible to know the exact upper limit 
of the number of selected units before sampling.  

The next section sets out the notation and describes the new sampling design 
denoted as two-stage restricted adaptive cluster sampling. In section 3 we derive an 
unbiased estimator of the total and its variance estimator by adopting a similar 
approach to Salehi & Seber (2002). In section 4, using a simulation, we give a first 
evaluation of the behaviour of the proposed method in terms of sample size variability. 
The unbiased estimator for the sample variance of the total is derived in the appendix. 

 
 

2. TWO-STAGE RESTRICTED ADAPTIVE CLUSTER SAMPLING DESIGN 
 

Suppose that we have a population of  units partitioned into TN M  primary units 

 of size  ( MAA ,...,1 ) iN ( )∑ =
==

M

i Ti NNMi
1

;,...,1 . We assume  to be constant 

. We first select a simple random sample of  
iN

( iNNi ∀= ) m ( )2≥m   primary units 
without replacement and draw an initial simple random sample of   secondary 
units from each of them. Then we adaptively add to each secondary unit of the sample 
its neighbourhoods and build up clusters. The clusters are truncated at the primary 
units boundaries. If the cumulating total sample size is below a predefined limit 

n ( 2≥n )

υ , 
another primary unit is sampled,  more secondary units are drawn from it and the 
corresponding clusters are picked out. This last step of the procedure is repeated on 
remaining primary units as long as, the cumulating sample size is less than 

n

υ . Thus, 
the final sample size Fυ  will be equal to or greater than the defined limit υ , but the 
difference between Fυ  and υ  will be at most the known size of the last selected 
primary unit minus 1 and consequently the maximum sample size will be N+−1υ . If 
υ  is less than  and in the  population under study there are clusters so large that 
they can cover a whole primary unit, the final sample size 

Nm×
Fυ  could be .  

Therefore, the upper limit of 
Nm×

Fυ  is: 
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 ( ) ( )1,max −+×= NNmUP F υυ   (1)

Thus, with the two-stage restricted adaptive cluster sampling we can establish prior 
to sampling the upper limit of the final sample size and consequently choose the 
parameters of the survey, like the size of the primary units, the number of them 
initially selected and the limit on the number of observable units, according to the 
available budget. 

Usually the researchers design the primary units of the same size, however two-
stage restricted adaptive cluster sampling design may be applied also to the case in 
which the  are not constant. In this case the more general expression for the upper 
limit of 

iN

Fυ  is:  

  ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= ∑ 1max,max

*
i

U
iF NNUP

m

υυ  

where  is the set of the m larger size primary units. *

mU

 
 
3. AN UNBIASED TOTAL ESTIMATOR 
 

Let  denote unit ( ji, ) j  in primary unit  with an associated measurement . Let 

 be the sum of the  values in the primary unit i  and  the 

population total. In order to get an unbiased estimator of 

i ijy

∑ =
= iN

j iji y
1

τ y ∑=
=

M

i i1
ττ

τ  we adapt to the present 
situation the Murthy’s estimator (Murthy, 1957), originally proposed for one stage 
samples of fixed size and then extended by Salehi & Seber (2001) to any sequential 
one stage sampling scheme. For our two stage sequential sample design Murthy’s 
estimator can be written as: 

 

( )
( )∑ =

= fm

i i sP
isP

1

|ˆˆ ττ
 

 (2)

where  is the observed unordered set of distinct primary units, s ( )sP  is the probability 
of getting sample ,  is the conditional probability of getting the sample , 
given primary unit  is select first, 

s ( isP | ) s
i iτ̂  is an unbiased estimator of the total of the y 

variable in primary unit i  and   is the final number of sampled primary units. fm
To evaluate (2) we must determine: (a) the number of ordered samples giving rise to 

, (b)  the number of ordered sample giving rise to s { }sI i ,1=  where  is an indicator 
variable which takes the value 1 when the primary unit i  is selected as the first one 
and 0 otherwise, (c) an explicit expression for 

iI

iτ̂ . 
(a) Let Fυ  be the total number of distinct secondary units, including edge units, 

observed up to from a sample of  primary units. The last selected primary unit 
must satisfy the condition 

fm
011 >−≥− −− FFF υυυυ . Suppose that the number of 
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primary units in the sample satisfying this condition is l . These primary units  are 
indexed as  and their set is referred as li ,...,1= L , while the remaining primary 
units in the sample are indexed as fmli ,...,1+= . Whereas the last selected primary 
unit must belong to L , the remaining 1−fm  can be permuted in ( )!1−fm  ways, 
and thus the number ε  of  ordered sample giving rise to  is:  s

( )!1−= fmlε  

(b)  If , the last selected primary unit must be chosen among the remaining Li∈ 1−l   
in L ; if , then it can be any of the  satisfying the condition; in both cases the 
remaining 

Li∉ l
2−fm  primary units can be permuted in ( )!2−m f  ways, therefore the 

number of  ordered sample giving rise to { }sI i ,1=  is: 

( )( )
( )⎩

⎨
⎧

∉−
∈−−

=
Liml
Liml

f

f
i if!2

if!21
ε  

Since the probability to select the primary unit  in the first draw is i Mpi 1= , 

( )
( )

( )
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

∉
−

∈
−
−

==
Li

m
M

Li
ml

lM

psP
isP

f

f

i

i

if
1

if
1
1

|
ε
ε  

(c) For iτ̂  we propose the following expression: ∑ =
= iK

k ikikiki Iy
1

* /ˆ ατ . Here , ,  

and  are, respectively, the number of networks in the primary unit , the sum of 
the 

iK *
iky

ikI i
y  values associated with network k  in primary unit i , and an indicator 

variable which takes the value 1 when network  is selected in primary unit  and 
0 otherwise. 

k i
ikα  is the probability that the set of n  units selected before starting the 

adaptive procedure in primary unit i  intersects network , and its expression is:  k

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

n
N

n
xN ik

ik /1α  

where  is the number of units in the network  in primary unit i . Actually ikx k iτ̂  
is nothing else than the modified Horvitz-Thompson total estimator proposed by 
Thompson (1990) and evaluated in primary unit . i

The expression of our estimator is then : 

 

( )
( ) ( ) ⎟
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−
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In the appendix we show that an unbiased variance estimator of τ̂  is given by 
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 (4)

with  ( ) ( )∑ ∑= =
−= i iK

k

K

k ikikikkikikikkikikikiki IyIyv
1 1' '''''

*
'

*
,2 / αααααα . 

It is important to note that for evaluating this variance estimator we need to select at 
least two primary units and at least two secondary units in each of them. 

Observing that, when , the two-stage restricted adaptive cluster sampling 
corresponds to the two-stage adaptive cluster sampling proposed by Salehi & Seber 
(1997), 

mm f =

τ̂  can be also written as 

( ) ( ) 21 ˆˆˆ τττ mmmm ff
II >= +=  

where  is  times the mean estimator proposed by Salehi 

& Seber (1997, pp.963) and the expression of 
∑=

==
m

i iT mMN
111 /ˆˆˆ τμτ TN

2τ̂  coincides with that of τ̂  in (3). 
Likewise its variance estimator can be rewritten as  

( ) ( ) ( ) ( ) ( )21 ˆarˆarˆar τττ vIvIv mmmm ff >= +=  

where ( )1̂ar τv  is  times the variance estimator proposed by Salehi & Seber (1997, 
pp.963) and 

2
TN

( 2ˆar )τv  is evaluated through (4).   
 
 
4. A SIMULATION STUDY AND SOME FINAL CONSIDERATIONS 
 

A simulation has been performed in order to evaluate the properties of two-stage 
restricted adaptive cluster sampling and, above all, to evaluate its behaviour in terms of 
sample size variability. To highlight the potential of the two-stage restricted adaptive 
cluster sampling in reducing the variance of the sample size without producing 
negative effects on the efficiency of the total estimator, we compare the  two-stage 
restricted adaptive cluster sampling strategy  proposed in this paper with the restricted 
adaptive cluster sampling design first proposed by Brown (1994) and Brown & Manly 
(1998), and the total unbiased estimator proposed for this sample design by Salehi & 
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Seber (2002). Brown (1994) and Brown & Manly (1998) used the standard but biased 
estimators that, according to the results of Salehi & Seber (2002) have also a worse 
performance than their unbiased estimator in terms of mean square error. 
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            10 8       
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Figure 1.  Population 1 coinciding with point-objects population of Thompson (1990). The 
number in each cell (unit) denotes the number of objects. Bold lines show the partition into 
primary units. 

 
 

To compare the two strategies we use the same population adopted by Salehi & 
Seber (2002): the point-objects population of Thompson (1990) shown in Figure 1 and 
hereafter denoted as Population 1. It contains 400=TN  units and the  total number of 
objects in the population is 190. A unit satisfies the condition  if the number of 
objects inside it is greater than 0. For each stopping values 

0C
υ =20, 30, 40 we simulated 

20.000 two-stage restricted adaptive cluster samples and 20.000 restricted adaptive 
cluster samples. The two-stage restricted adaptive cluster samples are selected after the 
partition of the population in 20 primary units each of 20 units (see Figure 1) and 
adopting  and . For each two-stage restricted adaptive cluster sample we 
calculate 

2=m 2=n
τ̂  and its variance estimator and record the final sample size, Fυ . In the same 

way for each restricted adaptive cluster sample we calculate the Salehi & Seber’s 
estimator denoted as RBτ̂  and its variance estimator and record the final sample size, 

Fυ .  All sampling procedures use the same sequence of random values. Some results 
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are shown in Table 1: the first five rows report some empirical statistics about the 
sample size in the two designs, and the last row the empirical variance of the two total 
estimators. Both total estimators and their corresponding variance estimators are 
unbiased so we do not report their empirical expected values.  

 
 

 Sampling strategy 

Statistics TSRACS design and τ̂  estimator RACS design and RBτ̂  estimator 
    
υ 20 30 40 20 30 40
   
( )FE υ 21.52 31.60 41.63 25.29 34.24 43.79

   
( )Fυmax  32 42 53 43 53 63

   
( )Fυvar  6.32 6.39 6.25 43.50 39.24 34.97

% sample with 
( )FF UP υυ > - - - 3.58 3.98 3.01

Variance of 
total estimator 72005.71 37835.36 24272.15 439953.20 88735.89 50704.10

 
Table 1. Empirical statistics concerning the final size of  two-stage restricted adaptive cluster 
samples and restricted adaptive cluster samples and simulation variances of point-objects total 
estimators τ̂  and RBτ̂  evaluated  for υ equal to 20, 30 and 40. The study population is 
Population 1. The other parameters of the two-stage restricted adaptive cluster samples are 

,  and  primary units of 2=m 2=n 20=M 54×  units. 
 
 

From Table 1 we see that, for any stopping value, the final sample size in two-stage 
restricted adaptive cluster sampling is unequivocally better controlled than in restricted 
adaptive cluster sampling, with its expected value closer to υ and its variance by a 
long way lower. In restricted adaptive cluster sampling we observe also a percentage 
between 3.01 and 3.98 of samples with a final size over the upper limit achievable with 
the two-stage restricted adaptive cluster sampling design  that is 40, 49 and 59 for υ 
respectively equal to 20, 30 and 40. These samples might identify situations in which 
the experimenter may not be able to complete the survey because factors such as 
budget, time, etc have run out.  

The reduction in the variability of the final sample size also has a positive effect on 
the variability of the total estimator. From last row of Table 1 we can observe a 
relative gain of  about 84%, 57% and 52% respectively for υ equal to 20, 30 and 40. 
Finally we note that the gain in terms of both control of the sample size and variability 
of the total estimator, even if relevant for any υ, decreases as υ increases. 

Some more considerations on the role of the population partition and the patchiness 
of the population are important. If the population is partitioned in a few big primary 
units and the clusters does not intersect them but are wholly in one of them, it is 
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obvious that the two-stage restricted adaptive cluster sampling control of the sample 
size with respect to the one of restricted adaptive cluster sampling decreases. At the 
worst with only one primary unit the two sample design coincide and the upper limit of 
the sample size is equal to the population size. On the other hand an excessive 
reduction of the size of the primary units may not be opportune as the other extreme 
case is that in which the primary units coincide with the secondary units. In this case 
the final size of the samples selected through the two-stage restricted adaptive cluster 
sampling design is always equal to υ, but the two-stage restricted adaptive cluster 
sampling design corresponds to the inverse sampling design which cannot take into 
account the aggregation of the units satisfying condition  and therefore works worse 
for the estimation of a total or mean than the adaptive cluster sampling designs for 
clustered populations (Rocco, 2003). 
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Figure 2. Population 2: Point-objects population obtained from joining all the networks in 
Population 1. Bold lines show the partition into primary units 

 
 
It is known that the final sample size for adaptive cluster sampling will depend on 

the patchiness of the population and for populations with many large clusters we 
believe that the control achievable with our strategy could be more sensible. At this 
end, the same Monte Carlo experiment  described above is repeated on one more 
population denoted as Population 2 and obtained joining all the networks in Population 
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1. Population 2 is represented in Figure 2 and the simulation results concerning it are 
shown in Table 2. From this table, as expected, we can conclude that with this second 
population the advantages of the two-stage restricted adaptive cluster sampling with 
respect to the restricted adaptive cluster sampling are striking. Note that the constant 
value for ( RBv )τ̂ar  is due to the presence in population 2 of only a network for which 
the sum of the  values is non zero and to the size of the corresponding cluster that is 
42. For these reasons for any 

y
υ lesser or equal to 42 RBτ̂  is zero if the first selected 

unit does not belong to the only relevant network and assume the same non zero value 
in all the other cases. Therefore, as all the sampling procedure use the same sequence 
of random number, the empirical distribution of  RBτ̂  is the same for υ equal to 20, 30 
and 40.  

 
 

 Sampling strategy 

Statistics TSRACS design and τ̂  estimator RACS design and RBτ̂  estimator 
    
υ 20 30 40 20 30 40
   
( )FE υ 21.44 31.52 41.59 39.69 47.98 52.64

   
( )Fυmax  30 40 50 61 71 81

   
( )Fυvar  5.53 5.48 5.52 208.93 121.57 103.25

% sample with 
( )FF UP υυ > - - - 67.13 44.54 24.70

Variance of 
total estimator 65904.03 35895.42 22656.11 665015.58 665015.58 665015.58

 
Table 2. Empirical statistics concerning the final size of  two-stage restricted adaptive cluster 
samples (TSRACS) and restricted adaptive cluster samples (RACS) and simulation variances 
of point-objects total estimators τ̂  and RBτ̂  evaluated  for υ equal to 20, 30 and 40. The study 
population is Population 2. The other parameters of the two-stage restricted adaptive cluster 
samples are ,  and 2=m 2=n 20=M  primary units of 54×  units. 

 
 
In all the simulations described until now we initially select 2=m  primary units 

and  secondary units, the number of  primary units is then increased if the size of 
the final sample does not reach the predefined stopping value, 

2=n
υ; while the number of 

secondary units to be selected not adaptively in each primary unit is fixed a priori and 
does not change until the selection process stops. To evaluate the effects of different 
values of , for each value  we generate 20.000 two-stage restricted 
adaptive cluster samples using the study Population 1 and assuming as stopping value 

n 10,6,5,3,2=n

30=υ . The results of these simulations are shown in Table 3, from which we see that 
the variance of the final sample size increases with ; otherwise the effect of  on the n n
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variance of the total estimator is not obvious depending on the distribution of the study 
variable which is obviously unknown and therefore cannot be used in the choice of the 
best . n

 
 

 
 Number of units selected not adaptively in each primary unit 

Statistics 2 3 5 6 10 
( )FE υ 31.60 31.91 32.36 32.83 33.07 

   
( )Fυmax  42 43 44 46 46 

   
( )Fυvar  6.39 6.62 7.67 8.87 9.42 

   
( )τ̂var  37835.36 36322.24 36944.10 38247.23 41803.73 

 
Table 3. Simulation statistics about the sample size and simulation  variances of point-objects 
total estimators τ̂  for the two-stage restricted adaptive cluster sampling applied to Population 
1 with different values for the  number  of units selected not adaptively in each primary 
units. 

n

 
 
We are aware that while all the simulation results are favourable to the two-stage 

restricted cluster adaptive sampling strategy, they are not exhaustive. However the 
main feature of our design is the possibility to know before sampling the exact upper 
limit of the final sample size; this property holds on for each population and for each 
choice of the design parameters. 
 
 
APPENDIX: UNBIASED VARIANCE ESTIMATOR  

In order to find an unbiased variance estimator of τ̂  we note that it is nothing else that 
a particular case of  a typical estimator of the total in multi-stage sampling. When the 
first-stage sample is taken without replacement, a typical estimator of τ  is of the form: 

( ) i
si

Ai
A

sde τ̂∑
∈

=  

where  is the sample of primary unit labels selected in the first stage, As iτ̂  is an 
unbiased estimator of the total within  and iA ( )Ai sd  ( )Mi ,...,1=  are coefficients 
chosen so that for any Mξξξ ,...,, 21 , ( ) i

si
Ai

A

sd ξ∑
∈

 is an unbiased or nearly unbiased 

estimator of ∑ with respect to the first stage of sampling. As shown in Thompson 

(1997, p. 35) an unbiased estimator of 
=

M

i i1
ξ

( )evar  is: 
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 ( ) ( ) i
si

Ai vsdvev
A

,2
*

1ar ∑
∈

+=   (5)

where  is an unbiased estimator of the variance of iv ,2 iτ̂  respect to the second stage of 

sampling,  satisfies the same unbiasedness condition as ( Ai sd * ) ( )Ai sd  and  is an 
unbiased estimator with respect to the first stage design of  

1v
( )Mise i ,...,1|var1 =  and 

 is the sample of secondary units selected from . is iA
τ̂  is a particular case of  , with  e

( ) ( )
( )

( )
( )
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⎪
⎩

⎪⎪
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⎧

∉
−

∈
−
−

==
Li
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M

Li
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lM

sP
isPsd

f

f
Ai

if
1

if
1
1

|  

Its variance estimator is derived from (5) observing that: 
(a)   and so:  ( ) ( )AiAi sdsd =*

 ( ) ( )
( ) ( ) i

l

i

m

li
if

i
f

v
m

Mv
ml

Mlvv f

,21 1,21 11
1ˆar ∑ ∑= += −

+
−

−
+=τ   (6)

 (b)    is nothing else than a classical adaptive cluster sampling in  
and 

is ( Mi ,...,1= ) iA

iτ̂  the corresponding total modified Horvitz-Thompson estimator proposed 
by Thompson (1990), so: 

 ( ) ( )∑ ∑= =
−= i iK

k

K

k ikikikkikikikkikikikiki IyIyv
1 1' '''''

*
'

*
,2 / αααααα   (7)

where all the symbols are defined above apart from 'ikkα  which is the probability 
that the set of  units initially selected, before starting the adaptive procedure, in 
primary unit  intersects both the  and  networks, its expression being: 

n
i k 'k

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛ −−
−−+=

n
N

n
xxN ikik

ikikikk /1 '
'' ααα  

(c) The expression of  is immediately derived from the expression of the variance 
estimator of Murthy’s estimator: 

1v
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( ) ( )
( ) ji

i

j
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i

m

ij
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jisPv f f
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1 21
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⎠
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⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
−= ∑ ∑= <

ττ  
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To evaluate it we must determine the number of ordered samples in which units 
 and i j  are the first two selected primary units, in any order. Following the same 

reasoning used to define iε , we have: 
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Final variance estimator expression is obtained putting together (6), (7) and (8).  
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