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Abstract

Volatility measurement has received a boost from the availability of ultra–high
frequency data (UHFD) sampled at different frequencies which need to be com-
plemented by appropriate methods to project volatility behavior. In this paper we
take a risk management perspective and address the issue of forecasting Value–at–
Risk (VaR) using different volatility measures: realized volatility, bipower realized
volatility, two scales realized volatility, as well as the daily range. For the sample and
assets chosen, volatility clustering occurs around a changing level in average volatil-
ity; other features such as persistence and shape appear to change with the UHFD
sampling frequency. Building on the existing literature, we propose a novel model-
ing approach that captures the features of the series called P–Spline Multiplicative
Error Model. Such an approach consists of a dynamic model with a flexible trend
specification bonded with a penalized maximum likelihood estimation strategy that
enhances forecasting ability. Results show that exploiting UHFD volatility measures,
VaR predictive ability is improved upon relative to a baseline GARCH approach but
the range is not outperformed and that there are relevant gains from modeling volatil-
ity trends and the nonnormality of the conditional return distribution.
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1 Introduction
Measurement and forecasting latent volatility has many important applications in many
areas of finance including asset allocation, option pricing and risk management. The two
tasks have been successfully accomplished within the same ARCH framework (Engle
(1982), Bollerslev, Engle & Nelson (1994)) for the past 25 years. Alternative measure-
ments based on different assumptions and different information sets have been in use for
a while, such as historical standard deviations, range, implied volatilities; in recent times
the properties of volatility proxies derived from the availability of intra-daily data sam-
pled at high frequency have been the object of a sizeable strand of research (e.g. Andersen
& Bollerslev (1998), Andersen, Bollerslev, Diebold & Ebens (2001) Barndorff-Nielsen &
Shephard (2002), Andersen, Bollerslev, Diebold & Labys (2003)). Under suitable as-
sumptions they converge (as the sampling frequency of the intra-daily data increases) to
the integrated variance, that is the integral of instantaneous (or spot) volatility of an un-
derlying continuous time process over a short period. While it is possible, in theory, to
construct ex–post measures of return variability with arbitrary precision, their relationship
to the latent underlying process (e.g. with or without jumps) and how to forecast volatility
on the basis of existing information is still open to question.

Not knowing what latent process best describes the data generating process, in this
work we address the forecasting issue from a pragmatic point of view, trying to establish
to which extent different volatility measures improve upon the out–of–sample forecasting
ability of standard methods. Several metrics can be used to evaluate the forecasting per-
formance: a Mincer Zarnowitz type regression where each forecast is contrasted against
a suitable ‘target’ (typically one of the measures themselves), implied volatility measures
(such as VIX), or, within a risk management framework, the quality of the derived mea-
sures of Value at Risk (VaR) or Expected Shortfall (ES) which have emerged as a promi-
nent measure of market risk. A VaR forecasting application is an interesting battleground
(Andersen et al. (2003)), so to speak, for comparing different volatility measures. Here it
is limited to a single asset, but it could be extended to a multivariate context.

In this work we compare the VaR forecasting ability of three Ultra–High Frequency
Data (UHFD) based volatility measures computed each day using data sampled at dif-
ferent frequencies: realized volatility (Andersen & Bollerslev (1998), Andersen et al.
(2003)), bipower realized volatility (Barndorff-Nielsen & Shephard (2004)) and two scales
realized volatility (Zhang, Mykland & Aı̈t-Sahalia (2005) which vary in their theoretical
properties according to the nature of the underlying data generating process. For com-
parison purposes we also include the range (Parkinson (1980)). The out–of–sample risk
management forecasting comparison we build up uses a two-step procedure to forecast
VaR. The first step consists of using a dynamic specification for modeling the volatility
measures. We perform this task using a Multiplicative Error Model (MEM) (c.f. Engle
(2002), Engle & Gallo (2006)) and the novel P–Spline MEM, a modeling approach able
to capture the long and short run dynamics of the volatility series which builds up on
the recent proposal of Engle & Rangel (2007). Such an approach is based on a flexible
specification of the volatility trend based on B-splines bonded with a penalized maximum
likelihood estimation strategy which enhances forecasting ability (Eilers & Marx (1996)).
The second step consists of modeling returns using a conditional heteroskedastic model
based on the volatility predictions from different measures. We then evaluate the VaR
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performance within a risk management framework assessing the accuracy and adequacy
of VaR forecasts against a GARCH benchmark.

The out–of–sample forecasting results on a sample of NYSE blue chips hint that
UHFD volatility measures are more accurate than the benchmark ARCH type model
but they do not appear to outperform the range. We find that the sampling frequency
of the intra-daily data plays a bigger role in forecasting than the choice of the UHFD
volatility measures and “high” frequencies (20/30 minutes) perform better than “low”
frequencies (30 seconds/1 minute). The sampling frequency appears to have an impact
on both the distributional and dynamic features of the UHFD volatility measures. Our
findings are consistent with the claim that at very high frequencies microstructure dy-
namics bias volatility dynamics, so that there is a limit to the benefits of increasing the
sampling frequency. However, the ranking between volatility measures is dependent on
the choice of the forecasting models, and the differences between the forecasting abilities
become smaller when using better model specifications. The P–Spline MEM appears to
capture satisfactorily the series dynamics and it systematically improves out–of–sample
forecasting ability over simpler specifications.

The closest contributions to our paper is the work by Andersen et al. (2003) and
Giot & Laurent (2004) that contain VaR forecasting applications using realized volatil-
ity. Initial work on realized volatility includes Andersen & Bollerslev (1998), Ander-
sen et al. (2001), Barndorff-Nielsen & Shephard (2002), Meddahi (2002) and Andersen
et al. (2003). Recent extensions and refinement of the early results are found in, inter
alia, Bandi & Russell (2003), Oomen (2005), Zhang (2006), Barndorff-Nielsen, Hansen,
Lunde & Shepard (2006a). Stylized facts on pre February 2001 equity data are described
in Andersen et al. (2001) and Ebens (1999). MEMs are a generalization of the ARCH and
ACD for modeling nonnegative time series proposed in Engle (2002) and have had a sig-
nificant application in comparing different volatility indicators in Engle & Gallo (2006).
Further extensions and applications are presented in Chou (2005), Cipollini, Engle &
Gallo (2006) and Lanne (2006). Engle & Rangel (2007) proposed the spline modeling
approach for capturing volatility trends. The P-Spline modeling approach was proposed
in the context of smoothing in the GLM framework by Eilers & Marx (1996). This type
of modelling different frequencies of evolution of volatility is alternative to traditional ap-
proaches which take long-range dependence into account in the form of ARFIMA–type
of models on the logarithm of realized volatility (e.g. Andersen et al. (2003), Martens
& Zein (2004), Koopman, Jungbacker & E. (2005), Deo, Hurvich & Lu (2006), Pong,
Shacketon, Taylor & Xu (2004)) and regression models mixing information at different
frequencies (e.g. the so called Heterogeneous AR (HAR) model of Corsi (2004) extended
by Andersen, Bollerslev & Diebold (2007) and Ghysels, Santa-Clara & Valkanov (2006)
in a MIDAS framework). The evaluation of the VaR forecasts is based on the contri-
butions by Christoffersen (1998), Sarma, Thomas & Shah (2003), Engle & Manganelli
(2004) and Kuester, Mittnik & Paolella (2006).

The rest of the paper is organized as follows. Section 2 describes the VaR model-
ing framework based on volatility measures. Section 3 defines the volatility measures
used in this work and summarizes the stylized fact of the series. Section 4 discusses the
dynamic specifications for the volatility measures. Section 5 discusses a conditionally
heteroskedastic model for returns based on the volatility measures. Section 6 presents the
VaR forecasting results. Concluding remarks follow in Section 7.
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2 A Value–at–Risk Framework for the Comparison
There is a wide variety of methods for forecasting VaR in the literature: Historical Sim-
ulation, Extreme Value Theory, Conditional Autoregressive Value at Risk (CAViaR) and
so forth. Kuester et al. (2006) contains a review and comparison of many proposals.

Our VaR modelling approach builds up on the contribution of Giot & Laurent (2004)
for forecasting VaR using realized volatility. Let rt be the daily (close–to–close) return at
time t on a single asset. We assume that

rt =
√
ht zt, zt ∼ F,

where ht is the conditional variance of the daily return at time t and zt is an i.i.d. unit
variance and possibly skewed and leptokurtic random variable from some appropriate
cumulative distribution F . The 1 day ahead 100(1-p)% VaR is defined as the maximum 1
day ahead loss, that is

VaRpt|t−1 ≡ −F
−1(p)

√
ht,

assuming that ht is known conditional on the information available at time t − 1. In a
GARCH framework one would model the conditional variance of returns, project it one
day ahead and use some distributional assumption on F (either parametric or empirical
based) to provide the proper quantile of the distribution of the standardized residuals.

If a series for a return variance proxy is directly available, one can depart from this
standard procedure. Let such a generic proxy (computed according to definition m) be
denoted as rv(m,δ) t computed using intra-daily data sampled at frequency δ on day t and
let rv(m,δ) t|t−1 denote its expectation conditional on the information available at time t−1,
using some suitable model specification. Then we assume that the conditional variance of
returns is some function of rv(m,δ) t|t−1 and a vector of unknown parameters ψ:

ht = f( rv(m,δ) t|t−1 | ψ ).

We need to specify (i) a model that captures the dynamics of the volatility measures
in order to obtain the conditional expectations of volatility, (ii) a model that connects the
conditional variance of returns with the conditional expectation of the volatility measures
and (iii) an appropriate distribution for the standardized return distribution.

3 Definitions and Stylized Facts
The intuition behind UHFD volatility measures dates at least back to Merton (1980).
Authors including Andersen, Bollerslev, Diebold brought back the idea in the mid–90’s
in correspondence with the availability of large databases containing detailed information
of financial transactions in several financial markets.

3.1 Volatility Measures
The building blocks of the UHFD volatility measures are intra–daily prices. Let pi,t denote
the i-th log intra–daily price of day t sampled at frequency δ. The series is constructed
by taking the last recorded tick-by–tick price every δ units of time starting from an initial
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time of the day (typically the opening) until the closing1. Note that overnight information
is not included in these series and this has to be taken into account for in the modeling
of daily (close–to–close) returns (c.f. Gallo (2001), Martens (2002), Fleming, Kirby &
Ostdiek (2003) and Hansen & Lunde (2005)).

The Realized Volatility (Andersen et al. (2001)) has become the benchmark UHFD
volatility measure, commonly used in applied work. It is defined as

rv(V,δ) t ≡
n∑
i=2

(pi,t − pi−1,t)
2.

Under appropriate assumptions including the absence of jumps and microstructure noise,
rv(V,δ),t convergences to the latent volatility as the sampling frequency increases.

The Bipower Realized Volatility (Barndorff-Nielsen & Shephard (2004)is one of the
first variants of realized volatility proposed in the literature as a robust UHFD volatility
measure in the presence of infrequent jumps. It is defined as

rv(B,δ) t ≡
π

2

n∑
i=3

|pi,t − pi−1,t||pi−1,t − pi−2,t|.

Under appropriate assumptions including the absence of microstructure noise, bipower
realized volatility converges to the latent volatility while realized volatility converges to
the latent volatility plus a component depending on the jumps.

The Two Scales Realized Volatility (Zhang et al. (2005)) is the first consistent esti-
mator of latent volatility in the presence of iid microstructure noise. The definition of this
measure requires some further notation. Let pf

i,t denote the i–th log intra–daily price of
day t sampled at some “very high” fixed frequency δf and let p gj,t = pg+(δ/δf)(j−1),t, with
g = 1, ..., G and G = δ/δf , denote the log intra–daily price series obtained by sampling
observations from pi,t at frequency δ starting from G different initial times of day. Define
rv g(V,δ) t ≡

∑ng
j=2(p

g
j,t − p

g
j−1,t)

2 and rv(V,δf) t ≡
∑n

i=1(p
f
i,t − pf

i−1,t)
2. Then the two scales

realized volatility is defined as

rv(TS,δ) t ≡
1

G

G∑
g=1

rv g(V,δ) t −
ng
n
rv(V,δf) t.

The expression “two scales” derives from the fact that this estimator combines the infor-
mation from a slow (δ) and fast (δf) time scale. Under appropriate assumption (δ → 0 and
δ2/δf → 0), rv(TS,δ) t converges to the latent volatility while realized volatility diverges to
infinity.

For comparison purposes we also consider a rather old measure of volatility proposed
in the literature: the daily Range. The Range volatility estimator can be defined as

rv(R) t ≡
1

4 log(2)
(phigh,t − plow,t)

2

where phigh,t and plow,t are respectively the max and min log intra-daily prices of day t.
Interestingly, a number of authors have recently devoted attention to the range and found

1Recently, a number of researchers have claimed that sampling in tick time is more appropriate than
sampling in calendar time, see also Renault & Werker (2004).
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evidence of good forecasting performance of the models exploiting this indicator (c.f.
Alizadeh, Brandt & Diebold (2002), Chou (2005), Brandt & Jones (2006), Engle & Gallo
(2006), Ghysels et al. (2006), Christensen & Podolskij (2006)).

3.2 Data and Stylized Facts
Our empirical investigation is carried out on of three NYSE stocks: Boeing (BA), General
Electric (GE) and Johnson and Johnson (JNJ). The data is extracted from the NYSE-
TAQ database. All the series analyzed in this study are constructed using “cleaned” mid
quotes from the NYSE between 9:30 and 16:05. For each stock we construct the series
of volatility measures defined in the previous section and the series of daily returns. The
volatility series are constructed for 12 intra–daily frequencies ranging from 30 seconds
to 1 hour2. For two scales realized volatility the “high” fixed frequency is taken equal to
15 seconds. The sample period is from February 2001 to December 2006 and contains
1465 daily observations. The analysis of these years is challenging in that this sample
contains periods of very high volatility (early 2000s recession following the collapse of
the Dot-com bubble, 9/11) followed by a period of very low volatility. Moreover, at the
end of January 2001 the NYSE changed its ticksize3 and this event is bound to have had
some impact on the empirical properties of the UHFD volatility measures established in
studies on earlier samples. Further discussion of the features of the UHFD series can be
found in Brownlees & Gallo (2006).

While the details of the stylized facts are reported in the appendix, it is worthwhile to
pinpoint some features of the series which we use as guidance for the subsequent model-
ing effort:

• Upon visual inspection of the graphs (Figure 2), volatility clustering occurs around
a changing level in average volatility (higher in the early part of the sample).

• The persistence and shape of the UHFD volatility measures appears to be frequency
dependent. Serial correlation is higher at higher frequencies while skewness and
kurtosis decrease.

• Since the mean of realized volatility across sampling frequencies in excess of 30
seconds is substantially constant, it seems that the impact of iid microstructure
noise for these series is less noticeable than in earlier/other datasets (c.f. Barndorff-
Nielsen et al. (2006a)). Whether this is common to other series computed from
mid-quotes of highly liquid stocks on a period when the minimum tick–size is USD
0.01 is open to further empirical investigation.

• There is evidence of dependence in microstructure noise. The increase in the serial
correlation and cross correlation between UHFD measures at higher frequencies
hints at the presence of dependent microstructure noise that appears to bias the
UHFD volatility measures (c.f. Barndorff-Nielsen et al. (2006a)).

2At the end of January 2001 the NYSE changed the minimum price variation of all securities from USD
0.0625 (1/16) to USD 0.01.

3The frequencies are: 30s, 1m, 2m, 3m, 4m, 5m, 6m, 10m, 15m, 20m, 30m and 1h.
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• Almost all volatility measures systematically underestimate the variance of returns.
This is due to the fact that the volatility measures are based only on intra–daily
information while the daily return is made up of an intra–daily and overnight com-
ponent.

• Daily returns standardized by the square root of the volatility measures do not ex-
hibit ARCH effects but do not always appear to be normal.

4 Modeling Volatility Measures
The volatility measures series exhibit different features depending on the choice of the
measure adopted and, eventually, the sampling frequency of the UHFD. The MEM class
is a convenient family of specifications for modeling and forecasting volatility measures
that impose reasonable amount of assumptions on the data.

4.1 A Family of Dynamic Models for Volatility Measures
Let rv(m,δ) t be the measure of volatility m sampled at frequency δ and let Ft−1 be the
information set at t−1. The Multiplicative Error Model for the volatility measure rv(m,δ) t

is defined as

rv(m,δ) t = σ2
(m,δ) t ε(m,δ) t, (1)

where, conditional on Ft−1, σ2
(m,δ) t is a nonnegative predictable process function of θ,

σ2
(m,δ) t = σ2

(m,δ) t(θ);

and ε(m,δ) t unit expected value iid innovation term,

ε(m,δ) t|Ft−1 ∼ Gamma(φ, 1/φ).

It then follows from standard properties of the gamma distribution that conditional on
time t, the volatility measures is distributed as

rv(m,δ) t+1|Ft ∼ Gamma
(
φ, σ2

(m,δ) t+1/φ
)
,

and the conditional expectation of the volatility measures rv(m,δ) t is

rv(m,δ) t+1|t ≡ E(rv(m,δ) t+1|Ft) = σ2
(m,δ) t+1.

Discussions and extensions on the properties of this model class can be found in Engle
(2002), Engle & Gallo (2006), Cipollini et al. (2006).

The are a number of reasons why we argue that MEMs are a suitable specification for
modeling volatility measures. The MEM is a nonnegative time series model and hence it
always produces nonnegative predictions. It provides unbiased predictions of the volatil-
ity measures without having to transform predictions and imposing extra assumptions on
the data.The Gamma innovation term assumption is a rather flexible distributional as-
sumption that is able to capture the different shapes exhibited by different volatility prox-
ies. Lastly, if σ2

(m,δ) t = E(rv(m,δ) t|Ft−1), the expected value of the score of θ evaluated
at the true parameters is zero irrespective of the Gamma assumption on ε(m,δ) t|Ft−1, the
ML estimator is also a QML estimator (White (1994)).
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4.2 Base MEM
The challenge for successful forecasting lies in choosing an appropriate specification for
the volatility measures dynamics σ2

(m,δ) t in Equation 1. The Base MEM specification for
σ2

(m,δ) t adopted in this work is

σ2
(m,δ) t = ω + αrv(m,δ) t−1 + βσ2

(m,δ) t−1 + α−rv−(m,δ) t−1 (2)

with rv−(m,δ) t−1 ≡ rv(m,δ) t−11{rt−1<0}. The base specification of Equation 2 represents the
analog of the GARCH(1,1) model with leverage effects (Glosten, Jagannanthan & Runkle
(1993)).

Tables 1, 2 and 3 about here.

The Base MEM specification of Equation 2 is estimated over the whole sample via
maximum likelihood. The left hand side of Tables 1, 2 and 3 report the parameter esti-
mates and residual diagnostics of the Base model. The model does not always appear to
be able to capture the dynamics of the series as the Ljung–Box test statistic is sometimes
significant at standard significance levels. The GE residuals appear to be quite dirty while
the BA and JNJ residuals are much better behaved. Interestingly, evidence of autocorre-
lation in the GE residuals decreases as the sampling frequency decreases. The estimation
results exhibit IGARCH type effects: the estimated persistence of shocks varies between
0.97 to 1.00, suggesting the presence of a unit root in the variance. The shape of the
innovation distribution appears to change with the sampling frequency: the higher the
frequency, the more mound-shaped it is.

4.3 P-Spline MEM
The Base MEM estimation results suggest the presence of a unit root in the volatility
measures which is consistent with the presence of long range dependence in the series. A
modeling approach that captures long range dependence and is consistent with the stylized
facts of Section 3 consists of specifying a trend component in the volatility dynamics.
Early theoretical and empirical economic justification of such an approach can be found in
the work by Olsen & Associates research institute (e.g. Mullër, Dacorogna, Davé, Olsen,
Pictet & von Weizsäcker (1997)). The Olsen researchers find that volatility dynamics are
well described by a model with a short and a long term component as a results of the
interactions of different agents with different time–horizons in the financial markets: the
long-term component is determined by “fundamentals” while the short-term component
generates volatility clusters around the long-term component.

Following Engle & Rangel (2007), a flexible MEM specification for σ2
(m,δ) t capable

of capture long and short run dynamics is given by

σ2
(m,δ) t = τ(m,δ) t g(m,δ) t, (3)

where

τ(m,δ) t ≡ exp
{∑

γiBi(t)
}
, (4)
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BA
Base P-Spline

Freq. Pers. φ̂ Q10(ε̂t) Pers. φ̂ λ̂ Q10(ε̂t)
V 30s 0.99 6.2 0.082 0.82 7.88 9 0.601

1m 0.98 6.32 0.075 0.82 7.35 4 0.477
2m 0.98 5.29 0.065 0.82 6.34 1 0.330
3m 0.98 4.75 0.269 0.82 5.47 6 0.666
4m 0.98 4.34 0.098 0.82 5.04 3 0.291
5m 0.98 4.14 0.462 0.83 4.7 13 0.965
6m 0.98 3.83 0.076 0.84 4.17 12 0.260
10m 0.98 3.19 0.472 0.79 3.47 5 0.963
15m 0.99 2.58 0.391 0.78 2.71 6 0.845
20m 0.99 2.26 0.176 0.70 2.4 1 0.775
30m 0.99 1.79 0.990 0.77 1.89 5 0.998
1h 0.99 1.29 0.686 0.70 1.36 1 0.760

B 30s 0.98 5.76 0.059 0.81 7.02 5 0.558
1m 0.98 5.74 0.078 0.82 6.58 4 0.444
2m 0.98 4.89 0.030 0.82 5.74 4 0.239
3m 0.98 4.1 0.246 0.83 4.99 11 0.652
4m 0.97 4.27 0.042 0.82 4.74 9 0.110
5m 0.98 3.87 0.305 0.84 4.39 17 0.881
6m 0.99 3.53 0.102 0.85 3.92 3 0.341
10m 0.98 2.9 0.366 0.79 3.18 4 0.823
15m 0.98 2.27 0.069 0.74 2.57 4 0.515
20m 0.99 2.03 0.128 0.67 2.29 3 0.726
30m 0.99 1.67 0.966 0.80 1.77 5 0.995
1h 0.99 1.15 0.657 0.61 1.25 1 0.557

TS 30s 0.98 6.31 0.055 0.83 7.57 11 0.436
1m 0.98 5.61 0.034 0.82 7.04 3 0.288
2m 0.98 5.07 0.088 0.84 6.22 14 0.454
3m 0.98 4.65 0.193 0.83 5.57 4 0.626
4m 0.98 4.45 0.152 0.83 5.11 4 0.626
5m 0.98 4.13 0.158 0.82 4.76 3 0.704
6m 0.98 4.23 0.164 0.82 4.49 12 0.730
10m 0.98 3.31 0.149 0.79 3.68 7 0.928
15m 0.98 2.81 0.106 0.74 3.1 2 0.848
20m 0.98 2.5 0.083 0.71 2.77 5 0.729
30m 0.98 2.04 0.219 0.67 2.29 4 0.719
1h 0.98 1.44 0.787 0.61 1.65 3 0.789

R 0.97 1.84 0.514 0.69 1.96 5 0.927

Table 1: Estimation results for the volatility models. For each volatility measures, sam-
pling frequency (when applicable) and volatility model (Base or P-Spline) the table re-
ports the estimated persistence (α̂+ β̂+ α̂−/2), shape parameter φ̂ and the p–value of the
Ljung–Box test of the residuals rv(m,δ) t/σ̂

2
(m,δ) t. Moreover the table reports the selected

shrinkage coefficients λ̂ for the P-Spline MEM.
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GE
Base P-Spline

Freq. Pers. φ̂ Q10(ε̂t) Pers. φ̂ λ̂ Q10(ε̂t)
V 30s 1.00 6.02 0.022 0.90 8.15 2 0.187

1m 1.00 4.91 0.156 0.89 7.15 3 0.258
2m 0.99 4.54 0.010 0.86 5.99 2 0.171
3m 0.99 4.57 0.032 0.84 5.35 2 0.299
4m 0.99 4.17 0.028 0.85 4.8 3 0.282
5m 1.00 3.51 0.083 0.85 4.47 3 0.383
6m 1.00 3.25 0.051 0.85 4.18 3 0.237
10m 1.00 2.63 0.059 0.87 3.64 3 0.313
15m 1.00 2.47 0.139 0.86 2.96 4 0.468
20m 1.00 2.64 0.074 0.86 2.69 4 0.536
30m 0.99 1.94 0.119 0.86 2.15 2 0.190
1h 1.00 1.42 0.916 0.80 1.47 2 0.886

B 30s 0.99 4.73 0.023 0.90 7.06 3 0.149
1m 0.99 4.88 0.023 0.88 6.34 2 0.196
2m 0.99 4.33 0.004 0.85 5.55 2 0.159
3m 0.99 4.23 0.020 0.84 4.97 2 0.351
4m 1.00 3.38 0.058 0.85 4.47 2 0.531
5m 0.99 3.23 0.047 0.85 4.15 3 0.339
6m 1.00 2.94 0.008 0.84 3.93 2 0.219
10m 0.99 2.84 0.030 0.87 3.41 3 0.321
15m 0.99 2.33 0.232 0.85 2.71 5 0.447
20m 1.00 2.05 0.210 0.86 2.46 5 0.636
30m 0.99 1.66 0.243 0.85 1.94 3 0.365
1h 0.99 1.26 0.743 0.81 1.33 3 0.957

TS 30s 0.99 5.93 0.024 0.88 7.69 1 0.171
1m 1.00 4.85 0.027 0.87 6.68 1 0.197
2m 1.00 4.64 0.015 0.86 5.89 2 0.152
3m 0.99 4.11 0.035 0.85 5.38 1 0.252
4m 0.99 4.2 0.039 0.85 5.02 3 0.304
5m 0.99 4.18 0.035 0.84 4.76 2 0.309
6m 0.99 3.66 0.043 0.84 4.57 3 0.288
10m 1.00 3.28 0.017 0.84 3.99 3 0.166
15m 1.00 2.79 0.010 0.83 3.57 3 0.084
20m 1.00 2.95 0.006 0.82 3.28 4 0.065
30m 0.99 2.32 0.022 0.80 2.8 4 0.125
1h 0.99 1.81 0.608 0.74 2.03 3 0.570

R 1.00 1.76 0.681 0.75 1.9 3 0.939

Table 2: Estimation results for the volatility models. For each volatility measures, sam-
pling frequency (when applicable) and volatility model (Base or P-Spline) the table re-
ports the estimated persistence (α̂+ β̂+ α̂−/2), shape parameter φ̂ and the p–value of the
Ljung–Box test of the residuals rv(m,δ) t/σ̂

2
(m,δ) t. Moreover the table reports the selected

shrinkage coefficients λ̂ for the P-Spline MEM.
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JNJ
Base P-Spline

Freq. Pers. φ̂ Q10(ε̂t) Pers. φ̂ λ̂ Q10(ε̂t)
V 30s 0.99 5.31 0.261 0.84 7.54 5 0.861

1m 0.99 4.25 0.441 0.85 6.43 6 0.868
2m 1.00 3.58 0.103 0.85 5.33 10 0.581
3m 0.99 3.25 0.840 0.85 4.63 19 0.978
4m 1.00 3.66 0.473 0.84 4.18 3 0.983
5m 0.99 2.92 0.237 0.82 3.64 6 0.367
6m 1.00 3.09 0.695 0.83 3.5 3 0.994
10m 1.00 2.63 0.160 0.83 2.79 3 0.584
15m 1.00 2.01 0.385 0.75 2.27 1 0.793
20m 0.98 1.85 0.903 0.80 2.07 4 0.984
30m 0.99 1.55 0.165 0.72 1.71 4 0.848
1h 0.99 1.28 0.140 0.52 1.3 3 0.179

B 30s 0.99 5 0.177 0.84 6.96 4 0.724
1m 0.99 4.48 0.512 0.86 6.08 6 0.834
2m 1.00 3.52 0.104 0.84 5.1 11 0.780
3m 1.00 3.54 0.822 0.86 4.51 3 0.960
4m 0.99 3.05 0.331 0.83 4.07 14 0.884
5m 1.01 2.28 0.380 0.83 3.46 3 0.712
6m 1.00 2.27 0.779 0.83 3.36 7 0.974
10m 1.00 2.56 0.385 0.81 2.68 6 0.729
15m 0.99 1.95 0.242 0.76 2.14 6 0.838
20m 0.99 1.65 0.879 0.79 1.94 3 0.965
30m 0.99 1.42 0.802 0.74 1.55 5 0.795
1h 1.00 1.18 0.073 0.85 1.15 4 0.112

TS 30s 0.99 5 0.342 0.84 7.16 5 0.923
1m 0.99 4.08 0.608 0.84 6.14 8 0.919
2m 0.99 3.41 0.694 0.84 5.17 8 0.877
3m 0.99 3.22 0.449 0.84 4.61 7 0.867
4m 0.96 2.68 0.052 0.83 4.15 7 0.880
5m 1.00 3.22 0.305 0.83 3.85 3 0.913
6m 0.97 2.46 0.002 0.83 3.62 3 0.934
10m 1.00 2.57 0.481 0.83 3.11 9 0.973
15m 1.00 2.31 0.922 0.81 2.74 9 0.995
20m 1.00 1.89 0.714 0.81 2.45 8 0.995
30m 0.98 1.97 0.820 0.75 2.13 4 0.989
1h 1.01 1.49 0.693 0.72 1.56 2 0.987

R 0.99 1.7 0.485 0.81 1.76 18 0.870

Table 3: Estimation results for the volatility models. For each volatility measures, sam-
pling frequency (when applicable) and volatility model (Base or P-Spline) the table re-
ports the estimated persistence (α̂+ β̂+ α̂−/2), shape parameter φ̂ and the p–value of the
Ljung–Box test of the residuals rv(m,δ) t/σ̂

2
(m,δ) t. Moreover the table reports the selected

shrinkage coefficients λ̂ for the P-Spline MEM.
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with {Bi(t)}i some linear basis expansion in t, captures the long run trend in volatility;
and

g(m,δ) t ≡ (1− α− β − α−/2) + α
rv(m,δ) t−1

τ(m,δ) t−1

+ βg(m,δ) t−1 + α−
rv−(m,δ) t−1

τ(m,δ) t−1

, (5)

captures the short run persistence.
To fully specify the model of Equations 3–5 some appropriate choice of the basis

functions Bi(·) in Equation 4 has to be made. The spline volatility modeling approach
à la Engle & Rangel (2007) fully specifies the spline model by using a quadratic splines
basis, that is

{Bi(t)} =
{
1, t, t2, (t− ξi)2

+, ..., (t− ξn)2
+

}
,

where (u)+ ≡ max{0, u} and ξ1, ..., ξn are some (equally) spaced knots. The degrees of
smoothness of the estimated trend will depend on the number of knots. Hence Engle &
Rangel (2007) resort to the BIC to estimate the optimal number of knots.

In practice, this modeling approach might have some drawbacks. Quadratic splines
have very poor numerical properties that are expected to tangle nonlinear estimation.
Choosing the knots via some model selection criterion is often not appealing in that it
is usually not feasible to search over all the 2K − 1 knots combinations and some subjec-
tive ordering of possible combinations has to be chosen. Lastly, the BIC is an information
criterion with very poor forecasting properties as the maximum asymptotic forecasting
MSE implied by a BIC estimation strategy is infinite (Leeb & Pötscher (2005)).

In light of these consideration and building on the proposal of Eilers & Marx (1996),
we propose a novel approach for the flexible modeling of volatility in the presence of
trends that we name P-Spline MEM. The term P-Splines is short notation for Penalized
B-splines. This modeling strategy consist of using a basis of B-splines with equidistant
knots in Equation 4 and fitting the model by a penalized maximum likelihood estimation
procedure depending on a shrinkage coefficient that controls the degree of smoothness of
the estimate trend.

B-splines are a common basis of functions used for smoothing and nonlinear approx-
imation in the linear regression framework (Eilers & Marx (1996), White (2006)). They
consists of a basis of functions made up of polynomial pieces indexed by a set of knots.

There are at least two properties of B-splines that turn out to be useful in this context.
First, B-splines allow to simplify the numerical nonlinear estimation relative to Splines.
Second, the derivatives of the log trend

∑
γiBi(t) can be expressed as a linear combina-

tion of the finite differences of adjacent B-splines coefficients γi, and it is hence possible
to control the degree of smoothness of the trend by appropriately constraining the model
parameters.

The connection between the finite differences of the B-spline coefficients and the
smoothness of the trend suggest a penalized maximum likelihood (PML) estimation strat-
egy. Let θ ≡ (γ1, ..., γk, ω, α, α

−, β, φ)′ denote the model parameters and let γ ≡ (γ1, ..., γk)
′

denote the B-splines parameters. Then the penalized maximum likelihood estimator is de-
fined as

θ̂λ ≡ arg max {LT (θ)− λγ′D′rDrγ}

where LT (.) is the log–likelihood function of the sample, Dr is the matrix representation
of the difference operator of order r, and λ is the shrinkage coefficient. The shrinkage

12



coefficients λ governs the bias/variance trade–off of the estimator: when λ is 0 the PML
estimator coincides with the ML estimator and, on the other extreme, as the shrinkage
coefficient λ grows to infinity the estimated log trend collapses to a polynomial of degree
r − 1.

We do not attempt to derive the the large sample properties of the PML estimator in
this work. Typically this can be done resorting a large sample framework under local
alternatives for the biased parameters as in Knight & Fu (2000) and Hjort & Claeskens
(2003)4.

PML estimation techniques are not very common in the financial econometrics time
series literature but have a long tradition in statistics since the seminal contribution of
Hoerl & Kennard (1970). From a forecasting perspective an appealing feature of PML
strategies is that the estimated trend tends not to be too sensitive to small changes in the
data. In fact, shrinkage estimation strategies are called stable regularizing procedures as
opposed to model selection strategies that are unstable (Breiman (1996)). This property
is important in rolling or recursive prediction exercises in that the sequence of predicted
values of the trend will not tend to change abruptly from one period to another.

In order to use the PML estimator in real applications, we need to determine some
data–driven method to choose the amount of shrinkage λ to impose on the estimates, We
resort to an Corrected AIC type information criterion (Hurvich & Tsai (1989)). The AICC

for the P–Spline MEM is defined as

AICC(λ) = −2LT (θ̂λ) + 2d̂λ +
2d̂λ(d̂λ + 1)

T − d̂λ − 1

where

d̂λ = tr

{(
I(θ̂ML) + 2λPr

)−1

I(θ̂ML)

}
,

with

Pr =

[
D′rDr 0

0 0

]
.

This criterion uses as penalty for model complexity a function that is inversely propor-
tional to the shrinkage coefficient λ in analogy to the effective dimension of a linear
smoother proposed in Hastie & Tibshirani (1990). We find this criterion appealing in that
it leads to more parsimonious specifications in comparison to an AIC type criterion when
the number of knots (hence parameters) is large with respect to the sample size.

Figure 1 about here.

Figure 1 shows the estimated trends obtained using the Engle & Rangel (2007) mod-
eling approach and the P-Spline approach. The visual inspection of the graphs suggest
that P–spline are able to better capture the features of the data. The condition number of
the Hessian of the wide models (that is all knots or no shrinkage) drops from 1019 to 106

using B-splines. As a result of the ill–conditioned Hessian, cubic splines tend to adapt
4As with other parameter reduction techniques there are problems with inference as Leeb & Pötscher

(2006) pointed out that the risk of PML estimator cannot be uniformly consistently estimated (see also Hur-
vich & Tsai (1990)). This however does not have any consequences if one is interested in point estimation
and forecasting, as it is the case in this work.

13



Spline P− Spline

Figure 1: Spline fit comparison: Cubic Splines with BIC P–Splines with AICC .
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very slowly to the data during the nonlinear estimation while B-splines are much better
behaved. The BIC over penalizes (it only selects two 2 knots) while our proposed AIC
appears to behave satisfactorily.

Figure 2 about here.

The P-Spline MEM model is estimated over the full sample using 20 equidistant
knots. The right hand side of Tables 1, 2 and 3 report the parameter estimates and residual
diagnostics of the model. Figure 2 reports the graphs of the annualized realized volatil-
ity series (5 minute frequency) together with their corresponding estimated trend. The
specification always appears to be able to capture the dynamics of the series satisfactorily
as the Ljung–Box test statistic appears to be always nonsignificant at a 5% level. The
persistence and shape of the innovation distribution depend of the sampling frequency
in a similar way across measures and stocks. The persistence varies between 0.90 and
0.60 and tends to be higher at higher frequencies, in accordance to the mentioned stylized
facts. The shape of the shocks distribution appears to be more mound-shaped at higher
frequencies, in accordance to the Base model results.

5 Modeling Returns
In order to be able to make VaR forecasts using the volatility measure we need to define
a model for the returns dynamics.

5.1 A Conditional Heteroskedastic Model for Returns
Based on Volatility Measures Predictions

Let rt denote the daily return, let ht be the conditional variance of the returns and let
rv(m,δ) t|t−1 be the conditional expectation of the volatility measure at day t. We assume
that the conditional variance ht is a linear function of the volatility measures conditional
expectation

ht = c+m rv(m,δ) t|t−1, (6)

and we assume that the return standardized by their conditional variance are well de-
scribed by a standardized Student’s t distribution, that is

rt =
√
ht zt, zt ∼ t1/ν , (7)

where t1/ν is a standardized (unit variance) t distribution with 1/ν dof (Fiorentini, Sentana
& Calzolari (2003)). In other words the model for the returns of Equations 6 and 7 implies
that the conditional heteroskedasticity of the returns series is captured by the conditional
expectation of the volatility measures. The specification, however, does not require the
volatility measures forecasts to be unbiased predictors of the returns’ variance. The model
allows us to test the Unbiased return Volatility Predictor hypothesis H0 : c = 0 m = 1
(UVP test).

Tables 4, 5, 6 about here.
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GE

JNJ

Figure 2: Annualized volatility Feb. 2001 – Dec 2006. The graphs displays the plot
of (annualized) realized volatility computed at a 5 min. frequency and the estimated
volatility trend of the series
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BA
Base P-Spline

Freq. ω̂ γ̂ ν̂ UVP Q10(ẑ2t ) ω̂ γ̂ ν̂ UVP Q10(ẑ2t )
V 30s 0.44

(0.21)
1.2

(0.12)
0.11
(0.02)

0.000 0.231 0.36
(0.21)

1.24
(0.12)

0.1
(0.02)

0.000 0.234

1m 0.48
(0.21)

1.11
(0.12)

0.11
(0.02)

0.000 0.235 0.41
(0.2)

1.14
(0.11)

0.1
(0.02)

0.000 0.231

2m 0.48
(0.2)

1.06
(0.11)

0.1
(0.02)

0.000 0.222 0.43
(0.19)

1.08
(0.11)

0.1
(0.02)

0.000 0.209

3m 0.48
(0.2)

1.04
(0.11)

0.1
(0.02)

0.000 0.221 0.43
(0.19)

1.07
(0.1)

0.1
(0.02)

0.000 0.213

4m 0.47
(0.2)

1.05
(0.11)

0.1
(0.02)

0.000 0.187 0.41
(0.19)

1.08
(0.1)

0.1
(0.02)

0.000 0.183

5m 0.47
(0.2)

1.08
(0.11)

0.1
(0.02)

0.000 0.182 0.41
(0.19)

1.1
(0.11)

0.1
(0.02)

0.000 0.181

6m 0.45
(0.2)

1.09
(0.11)

0.1
(0.02)

0.000 0.188 0.38
(0.18)

1.12
(0.11)

0.1
(0.02)

0.000 0.187

10m 0.39
(0.2)

1.17
(0.11)

0.09
(0.02)

0.000 0.154 0.35
(0.18)

1.2
(0.11)

0.09
(0.02)

0.000 0.142

15m 0.35
(0.2)

1.21
(0.11)

0.09
(0.02)

0.000 0.178 0.34
(0.17)

1.23
(0.11)

0.09
(0.02)

0.000 0.174

20m 0.35
(0.2)

1.25
(0.12)

0.09
(0.02)

0.000 0.153 0.34
(0.18)

1.26
(0.11)

0.09
(0.02)

0.000 0.161

30m 0.27
(0.21)

1.33
(0.13)

0.1
(0.02)

0.000 0.166 0.31
(0.18)

1.31
(0.12)

0.09
(0.02)

0.000 0.176

1h 0.11
(0.21)

1.69
(0.16)

0.09
(0.02)

0.000 0.118 0.22
(0.18)

1.64
(0.14)

0.09
(0.02)

0.000 0.125

B 30s 0.37
(0.23)

1.53
(0.16)

0.11
(0.02)

0.000 0.232 0.27
(0.22)

1.59
(0.16)

0.11
(0.02)

0.000 0.235

1m 0.48
(0.22)

1.24
(0.13)

0.11
(0.02)

0.000 0.242 0.37
(0.21)

1.3
(0.13)

0.11
(0.02)

0.000 0.228

2m 0.51
(0.21)

1.11
(0.12)

0.11
(0.02)

0.000 0.222 0.42
(0.2)

1.15
(0.11)

0.1
(0.02)

0.000 0.209

3m 0.49
(0.2)

1.09
(0.11)

0.1
(0.02)

0.000 0.239 0.42
(0.19)

1.12
(0.11)

0.1
(0.02)

0.000 0.232

4m 0.46
(0.2)

1.1
(0.11)

0.1
(0.02)

0.000 0.198 0.4
(0.19)

1.13
(0.11)

0.1
(0.02)

0.000 0.195

5m 0.48
(0.2)

1.1
(0.11)

0.1
(0.02)

0.000 0.186 0.4
(0.19)

1.13
(0.11)

0.1
(0.02)

0.000 0.188

6m 0.49
(0.2)

1.1
(0.11)

0.1
(0.02)

0.000 0.215 0.41
(0.19)

1.14
(0.11)

0.1
(0.02)

0.000 0.215

10m 0.38
(0.2)

1.21
(0.12)

0.09
(0.02)

0.000 0.158 0.35
(0.18)

1.22
(0.11)

0.09
(0.02)

0.000 0.147

15m 0.38
(0.19)

1.25
(0.12)

0.09
(0.02)

0.000 0.205 0.38
(0.17)

1.25
(0.11)

0.09
(0.02)

0.000 0.198

20m 0.39
(0.2)

1.27
(0.12)

0.1
(0.02)

0.000 0.183 0.37
(0.18)

1.29
(0.12)

0.09
(0.02)

0.000 0.217

30m 0.35
(0.21)

1.35
(0.14)

0.1
(0.02)

0.000 0.176 0.35
(0.18)

1.36
(0.12)

0.1
(0.02)

0.000 0.204

1h 0.12
(0.21)

1.76
(0.16)

0.09
(0.02)

0.000 0.110 0.24
(0.18)

1.71
(0.15)

0.09
(0.02)

0.000 0.123

TS 30s 0.39
(0.22)

0.66
(0.07)

0.11
(0.02)

0.000 0.228 0.3
(0.21)

0.68
(0.07)

0.11
(0.02)

0.000 0.227

1m 0.46
(0.21)

0.88
(0.09)

0.11
(0.02)

0.052 0.219 0.39
(0.2)

0.9
(0.09)

0.1
(0.02)

0.084 0.217

2m 0.48
(0.2)

0.95
(0.1)

0.1
(0.02)

0.001 0.204 0.42
(0.19)

0.97
(0.09)

0.1
(0.02)

0.001 0.199

3m 0.43
(0.2)

1
(0.1)

0.1
(0.02)

0.000 0.202 0.39
(0.19)

1.01
(0.1)

0.1
(0.02)

0.000 0.196

4m 0.42
(0.2)

1.02
(0.1)

0.1
(0.02)

0.000 0.194 0.37
(0.19)

1.04
(0.1)

0.1
(0.02)

0.000 0.188

5m 0.41
(0.2)

1.04
(0.1)

0.1
(0.02)

0.000 0.195 0.35
(0.19)

1.07
(0.1)

0.1
(0.02)

0.000 0.190

6m 0.39
(0.2)

1.06
(0.1)

0.1
(0.02)

0.000 0.197 0.34
(0.18)

1.08
(0.1)

0.09
(0.02)

0.000 0.189

10m 0.36
(0.2)

1.11
(0.11)

0.09
(0.02)

0.000 0.187 0.3
(0.18)

1.13
(0.1)

0.09
(0.02)

0.000 0.179

15m 0.33
(0.2)

1.14
(0.11)

0.09
(0.02)

0.000 0.172 0.29
(0.18)

1.16
(0.1)

0.09
(0.02)

0.000 0.164

20m 0.32
(0.2)

1.17
(0.11)

0.09
(0.02)

0.000 0.169 0.29
(0.18)

1.18
(0.11)

0.09
(0.02)

0.000 0.165

30m 0.26
(0.21)

1.22
(0.12)

0.09
(0.02)

0.000 0.179 0.28
(0.18)

1.21
(0.11)

0.09
(0.02)

0.000 0.183

1h 0.02
(0.23)

7.84
(0.76)

0.1
(0.02)

0.000 0.176 0.14
(0.19)

7.53
(0.66)

0.1
(0.02)

0.000 0.209

R 0.14
(0.22)

1.22
(0.12)

0.1
(0.02)

0.000 0.273 0.16
(0.19)

1.21
(0.11)

0.09
(0.02)

0.000 0.242

Table 4: Estimation results for the return model. For each measure, sampling frequencies
(when applicable) and volatility model (Base or P-Spline) the table reports the estimates
of the model parameters (standard errors in parenthesis) the p–value of the UVP test and
the p–value of the Ljung–Box test on the squared residuals r2

t /ĥt.
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GE
Base P-Spline

Freq. ω̂ γ̂ ν̂ UVP Q10(ẑ2t ) ω̂ γ̂ ν̂ UVP Q10(ẑ2t )
V 30s −0.23

(0.08)
1.62
(0.11)

0.1
(0.02)

0.000 0.977 −0.26
(0.08)

1.67
(0.12)

0.09
(0.02)

0.000 0.976

1m −0.14
(0.08)

1.47
(0.11)

0.1
(0.02)

0.000 0.980 −0.18
(0.08)

1.49
(0.11)

0.09
(0.02)

0.000 0.978

2m −0.11
(0.08)

1.37
(0.1)

0.1
(0.02)

0.000 0.985 −0.13
(0.08)

1.37
(0.1)

0.09
(0.02)

0.000 0.983

3m −0.1
(0.07)

1.33
(0.09)

0.1
(0.02)

0.000 0.991 −0.13
(0.08)

1.36
(0.09)

0.09
(0.02)

0.000 0.989

4m −0.09
(0.08)

1.33
(0.09)

0.1
(0.02)

0.000 0.988 −0.11
(0.07)

1.33
(0.09)

0.09
(0.02)

0.000 0.985

5m −0.07
(0.08)

1.31
(0.09)

0.1
(0.02)

0.000 0.988 −0.11
(0.07)

1.33
(0.09)

0.09
(0.02)

0.000 0.985

6m −0.07
(0.07)

1.32
(0.09)

0.1
(0.02)

0.000 0.988 −0.12
(0.07)

1.35
(0.09)

0.09
(0.02)

0.000 0.985

10m −0.07
(0.07)

1.37
(0.1)

0.1
(0.02)

0.000 0.987 −0.12
(0.07)

1.4
(0.1)

0.09
(0.02)

0.000 0.981

15m −0.08
(0.07)

1.4
(0.1)

0.1
(0.02)

0.000 0.989 −0.11
(0.07)

1.43
(0.1)

0.09
(0.02)

0.000 0.985

20m −0.11
(0.08)

1.43
(0.1)

0.1
(0.02)

0.000 0.988 −0.12
(0.07)

1.44
(0.1)

0.08
(0.02)

0.000 0.978

30m −0.05
(0.07)

1.44
(0.1)

0.1
(0.02)

0.000 0.986 −0.09
(0.07)

1.47
(0.1)

0.09
(0.02)

0.000 0.976

1h −0.06
(0.08)

1.61
(0.12)

0.1
(0.02)

0.000 0.990 −0.1
(0.07)

1.67
(0.11)

0.08
(0.02)

0.000 0.976

B 30s −0.14
(0.08)

1.86
(0.13)

0.1
(0.02)

0.000 0.975 −0.16
(0.08)

1.89
(0.13)

0.09
(0.02)

0.000 0.972

1m −0.1
(0.08)

1.56
(0.11)

0.1
(0.02)

0.000 0.983 −0.12
(0.08)

1.58
(0.11)

0.09
(0.02)

0.000 0.981

2m −0.09
(0.08)

1.42
(0.1)

0.1
(0.02)

0.000 0.986 −0.11
(0.07)

1.42
(0.1)

0.09
(0.02)

0.000 0.983

3m −0.09
(0.07)

1.38
(0.1)

0.1
(0.02)

0.000 0.993 −0.12
(0.07)

1.4
(0.1)

0.09
(0.02)

0.000 0.990

4m −0.06
(0.08)

1.32
(0.1)

0.1
(0.02)

0.000 0.986 −0.09
(0.07)

1.36
(0.1)

0.09
(0.02)

0.000 0.983

5m −0.06
(0.08)

1.35
(0.1)

0.1
(0.02)

0.000 0.988 −0.09
(0.07)

1.37
(0.1)

0.09
(0.02)

0.000 0.984

6m −0.05
(0.07)

1.34
(0.1)

0.1
(0.02)

0.000 0.986 −0.09
(0.07)

1.38
(0.1)

0.09
(0.02)

0.000 0.984

10m −0.07
(0.07)

1.43
(0.1)

0.1
(0.02)

0.000 0.984 −0.1
(0.07)

1.45
(0.1)

0.09
(0.02)

0.000 0.981

15m −0.08
(0.08)

1.49
(0.11)

0.1
(0.02)

0.000 0.985 −0.1
(0.07)

1.49
(0.1)

0.08
(0.02)

0.000 0.976

20m −0.09
(0.08)

1.42
(0.1)

0.1
(0.02)

0.000 0.985 −0.11
(0.07)

1.48
(0.1)

0.08
(0.02)

0.000 0.967

30m −0.08
(0.08)

1.58
(0.12)

0.11
(0.02)

0.000 0.979 −0.09
(0.07)

1.59
(0.11)

0.09
(0.02)

0.000 0.965

1h −0.03
(0.07)

1.72
(0.12)

0.11
(0.02)

0.000 0.989 −0.09
(0.07)

1.81
(0.13)

0.09
(0.02)

0.000 0.979

TS 30s −0.24
(0.08)

0.87
(0.06)

0.1
(0.02)

0.000 0.977 −0.27
(0.08)

0.88
(0.06)

0.09
(0.02)

0.000 0.977

1m −0.14
(0.08)

1.12
(0.08)

0.1
(0.02)

0.213 0.981 −0.18
(0.08)

1.14
(0.08)

0.09
(0.02)

0.083 0.981

2m −0.1
(0.08)

1.2
(0.09)

0.1
(0.02)

0.040 0.985 −0.14
(0.08)

1.22
(0.09)

0.09
(0.02)

0.029 0.984

3m −0.1
(0.08)

1.24
(0.09)

0.1
(0.02)

0.008 0.988 −0.14
(0.08)

1.25
(0.09)

0.09
(0.02)

0.008 0.987

4m −0.1
(0.08)

1.25
(0.09)

0.1
(0.02)

0.003 0.988 −0.13
(0.08)

1.27
(0.09)

0.09
(0.02)

0.003 0.986

5m −0.1
(0.08)

1.27
(0.09)

0.1
(0.02)

0.001 0.989 −0.13
(0.07)

1.28
(0.09)

0.08
(0.02)

0.002 0.987

6m −0.1
(0.08)

1.29
(0.09)

0.1
(0.02)

0.000 0.990 −0.13
(0.07)

1.3
(0.09)

0.08
(0.02)

0.001 0.987

10m −0.09
(0.08)

1.3
(0.09)

0.1
(0.02)

0.000 0.989 −0.12
(0.07)

1.33
(0.09)

0.09
(0.02)

0.000 0.983

15m −0.07
(0.07)

1.33
(0.09)

0.1
(0.02)

0.000 0.987 −0.11
(0.07)

1.36
(0.09)

0.08
(0.02)

0.000 0.981

20m −0.07
(0.07)

1.35
(0.1)

0.1
(0.02)

0.000 0.987 −0.11
(0.07)

1.38
(0.1)

0.08
(0.02)

0.000 0.979

30m −0.07
(0.07)

1.4
(0.1)

0.1
(0.02)

0.000 0.988 −0.1
(0.07)

1.41
(0.1)

0.08
(0.02)

0.000 0.975

1h −0.07
(0.08)

2.12
(0.16)

0.11
(0.02)

0.000 0.988 −0.1
(0.07)

2.17
(0.15)

0.09
(0.02)

0.000 0.966

R −0.03
(0.08)

1.17
(0.08)

0.1
(0.02)

0.010 0.986 −0.06
(0.07)

1.22
(0.08)

0.08
(0.02)

0.003 0.975

Table 5: Estimation results for the return model. For each measure, sampling frequencies
(when applicable) and volatility model (Base or P-Spline) the table reports the estimates
of the model parameters (standard errors in parenthesis) the p–value of the UVP test and
the p–value of the Ljung–Box test on the squared residuals r2

t /ĥt.
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JNJ
Base P-Spline

Freq. ω̂ γ̂ ν̂ UVP Q10(ẑ2t ) ω̂ γ̂ ν̂ UVP Q10(ẑ2t )
V 30s −0.09

(0.07)
1.4

(0.13)
0.17
(0.02)

0.000 0.199 −0.08
(0.07)

1.33
(0.11)

0.15
(0.02)

0.000 0.262

1m −0.05
(0.07)

1.25
(0.11)

0.17
(0.02)

0.002 0.194 −0.06
(0.06)

1.26
(0.11)

0.17
(0.02)

0.003 0.266

2m 0.04
(0.06)

1.07
(0.1)

0.17
(0.03)

0.062 0.202 0
(0.06)

1.12
(0.1)

0.17
(0.02)

0.059 0.282

3m 0.03
(0.06)

1.08
(0.1)

0.17
(0.03)

0.078 0.226 0.01
(0.06)

1.1
(0.1)

0.17
(0.02)

0.099 0.301

4m 0.06
(0.06)

1.03
(0.1)

0.17
(0.03)

0.078 0.232 0.02
(0.06)

1.08
(0.1)

0.16
(0.02)

0.096 0.301

5m 0.07
(0.06)

1.04
(0.1)

0.17
(0.03)

0.028 0.185 0.04
(0.06)

1.07
(0.1)

0.17
(0.02)

0.047 0.297

6m 0.06
(0.06)

1.06
(0.1)

0.17
(0.03)

0.018 0.210 0.04
(0.06)

1.09
(0.1)

0.16
(0.02)

0.017 0.288

10m 0.13
(0.06)

1.05
(0.1)

0.18
(0.03)

0.000 0.292 0.09
(0.06)

1.1
(0.1)

0.17
(0.02)

0.000 0.352

15m 0.13
(0.06)

1.09
(0.11)

0.18
(0.03)

0.000 0.262 0.09
(0.05)

1.13
(0.1)

0.16
(0.02)

0.000 0.330

20m 0.13
(0.06)

1.14
(0.12)

0.18
(0.03)

0.000 0.353 0.09
(0.06)

1.15
(0.1)

0.17
(0.02)

0.000 0.384

30m 0.12
(0.06)

1.18
(0.12)

0.18
(0.03)

0.000 0.282 0.07
(0.05)

1.24
(0.11)

0.16
(0.02)

0.000 0.307

1h 0.09
(0.06)

1.55
(0.15)

0.18
(0.03)

0.000 0.325 0.08
(0.06)

1.54
(0.14)

0.17
(0.02)

0.000 0.608

B 30s −0.08
(0.07)

1.64
(0.14)

0.16
(0.02)

0.000 0.220 −0.07
(0.07)

1.59
(0.13)

0.15
(0.02)

0.000 0.296

1m −0.05
(0.07)

1.37
(0.12)

0.17
(0.02)

0.000 0.190 −0.05
(0.06)

1.37
(0.12)

0.16
(0.02)

0.000 0.265

2m 0.03
(0.06)

1.14
(0.11)

0.17
(0.03)

0.003 0.238 0.01
(0.06)

1.17
(0.1)

0.16
(0.02)

0.004 0.291

3m 0.04
(0.06)

1.11
(0.11)

0.17
(0.03)

0.007 0.228 0.01
(0.06)

1.13
(0.1)

0.17
(0.02)

0.015 0.287

4m 0.05
(0.06)

1.09
(0.1)

0.17
(0.03)

0.013 0.212 0.02
(0.06)

1.12
(0.1)

0.16
(0.02)

0.022 0.295

5m 0.11
(0.06)

1
(0.1)

0.17
(0.03)

0.009 0.169 0.04
(0.06)

1.11
(0.1)

0.16
(0.02)

0.010 0.282

6m 0.07
(0.06)

1.11
(0.11)

0.17
(0.03)

0.001 0.194 0.04
(0.06)

1.12
(0.1)

0.16
(0.02)

0.002 0.267

10m 0.12
(0.06)

1.1
(0.11)

0.18
(0.03)

0.000 0.280 0.08
(0.06)

1.15
(0.11)

0.17
(0.02)

0.000 0.356

15m 0.13
(0.06)

1.13
(0.11)

0.18
(0.03)

0.000 0.258 0.09
(0.05)

1.17
(0.1)

0.16
(0.02)

0.000 0.312

20m 0.14
(0.06)

1.15
(0.12)

0.18
(0.03)

0.000 0.267 0.1
(0.05)

1.19
(0.11)

0.17
(0.02)

0.000 0.393

30m 0.13
(0.06)

1.25
(0.12)

0.18
(0.03)

0.000 0.180 0.1
(0.05)

1.27
(0.11)

0.17
(0.02)

0.000 0.292

1h 0.1
(0.06)

1.62
(0.16)

0.19
(0.03)

0.000 0.275 0.06
(0.05)

1.69
(0.15)

0.17
(0.02)

0.000 0.444

TS 30s −0.09
(0.07)

0.74
(0.07)

0.17
(0.02)

0.000 0.228 −0.08
(0.07)

0.72
(0.06)

0.16
(0.02)

0.000 0.283

1m −0.05
(0.07)

0.97
(0.09)

0.17
(0.03)

0.120 0.232 −0.06
(0.06)

0.96
(0.08)

0.16
(0.02)

0.050 0.292

2m 0.01
(0.07)

0.99
(0.09)

0.17
(0.03)

0.994 0.221 −0.01
(0.06)

1.01
(0.09)

0.17
(0.02)

0.992 0.303

3m 0.02
(0.07)

1.02
(0.1)

0.17
(0.03)

0.655 0.218 0.01
(0.06)

1.02
(0.09)

0.17
(0.02)

0.792 0.315

4m 0.03
(0.07)

1.06
(0.1)

0.18
(0.03)

0.110 0.418 0.02
(0.06)

1.04
(0.09)

0.16
(0.02)

0.497 0.329

5m 0.05
(0.06)

1.02
(0.1)

0.17
(0.03)

0.187 0.291 0.02
(0.06)

1.05
(0.09)

0.16
(0.02)

0.275 0.330

6m 0.06
(0.07)

1.05
(0.1)

0.18
(0.03)

0.042 0.471 0.03
(0.06)

1.07
(0.09)

0.16
(0.02)

0.134 0.341

10m 0.09
(0.06)

1.05
(0.1)

0.17
(0.03)

0.003 0.301 0.05
(0.06)

1.09
(0.1)

0.16
(0.02)

0.009 0.345

15m 0.09
(0.06)

1.08
(0.1)

0.17
(0.03)

0.000 0.233 0.06
(0.05)

1.12
(0.1)

0.16
(0.02)

0.001 0.328

20m 0.12
(0.06)

1.08
(0.1)

0.17
(0.03)

0.000 0.221 0.07
(0.05)

1.13
(0.1)

0.16
(0.02)

0.000 0.333

30m 0.1
(0.06)

1.2
(0.12)

0.18
(0.03)

0.000 0.407 0.07
(0.05)

1.17
(0.1)

0.16
(0.02)

0.000 0.362

1h 0.14
(0.06)

3.92
(0.39)

0.18
(0.03)

0.000 0.474 0.07
(0.05)

4.23
(0.36)

0.16
(0.02)

0.000 0.550

R 0.05
(0.06)

1.13
(0.1)

0.17
(0.03)

0.001 0.281 0.02
(0.05)

1.14
(0.09)

0.15
(0.02)

0.004 0.354

Table 6: Estimation results for the return model. For each measure, sampling frequencies
(when applicable) and volatility model (Base or P-Spline) the table reports the estimates
of the model parameters (standard errors in parenthesis) the p–value of the UVP test and
the p–value of the Ljung–Box test on the squared residuals r2

t /ĥt.
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Equations 6 and 7 are estimated over the full sample using the series of 1 day ahead
prediction of the volatility measures obtained by both the estimated Base and P-Spline
specifications. Tables 4, 5, 6 report parameter estimates and diagnostics. The model and
both series of volatility predictions always appear to be able to capture the squared returns
dynamics satisfactorily as the Ljung–Box test statistic appears to be always nonsignificant
at standard significance levels. However, the volatility predictions do not appear to pro-
vide unbiased forecasts of the variance of returns in the great majority of cases as the
p–value of the UVP test is almost always significant. The null of unbiasedness is con-
vincingly not rejected only for two scales realized volatility when sampled at frequencies
around 1 minute. The standardized returns exhibit a pronounced leptokurtosis. Interest-
ingly, the P-Spline based predictors systematically lead to thinner tails than the Base.

The UVP test may be a little bit too crude to evaluate the precision of the volatil-
ity measures predictions as the volatility measures are expected to be downward biased.
Straightforward calculations allow us to use the return specification to compute the MSE
of the volatility measures forecasts as predictors of the returns’ variance. Consider

MSE
(
rv(m,δ) t|t−1

)
≡ E

(
ht − rv(m,δ) t|t−1

)2
,

simple algebra leads to

E
(
ht − rv(m,δ) t|t−1

)2
= E

(
c+m rv(m,δ) t|t−1 − rv(m,δ) t|t−1

)2
=

(
c+ (m− 1) E(rv(m,δ) t|t−1)

)2
+ (m− 1)2 Var(rv(m,δ) t|t−1).

Figure 3 about here.

For diagnostic purposes we estimate such a quantity by plugging in the sample coun-
terparts of the population parameters and parameter estimates using the estimation results
over the full sample. Figure 3 displays the plots of the estimated MSE as a function of the
sampling frequency for each volatility measures, in the spirit of the volatility signature
plot (Andersen, Bollerslev, Christoffersen & Diebold (2006)). Interestingly, the graphs
appear to be remarkably similar across stocks and forecasting method with the only ex-
ception of the range whose relative position appears to be different from stock to stock.
The MSE of realized volatility appears to initially decrease as the sampling frequency
increases and to then to steadily increase as the sampling frequency is higher than a cou-
ple of minutes. The MSE of bipower realized volatility follows exactly the same pattern
but is systematically higher. The MSE of two scales realized volatility steeply decreases
as the sampling frequency increases and appears to be much smaller than the MSE of
the other UHFD measures. At a 30 seconds frequency the MSE of two scales realized
volatility does appear to increase abruptly but this is probably a consequence of the fail-
ure in meeting the requirements for the validity of the asymptotic results. The ranking
between UHFD volatility measures is rather clear: provided that the sampling frequency
is sufficiently high two scales realized volatility achieves the best performance followed
by realized volatility and bipower realized volatility. However, it has to be stressed that
two scales realized volatility uses much more data than its competitors and was expected
not to behave worse. Importantly, it appears that the simple range benchmark is difficult
to beat. Interestingly, the range appears to be convincingly beaten according to this metric
only when sampling at frequencies higher than 15 minutes.
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BA
Base P−Spline

GE
Base P−Spline

JNJ
Base P−Spline

Figure 3: In–sample volatility MSE of the volatility measures. The graphs display the
estimated MSE of the volatility measures as functions of the sampling frequency.

21



6 Forecasting Value–at–Risk
The literature on VaR forecasting has developed evaluation tools which explicitly un-
dertake a risk-management viewpoint. This has emerged as a consequence of the fact
that, despite the significant improvements in the evaluation of volatility predictions (e.g.
Andersen & Bollerslev (1998)), a volatility evaluation metric might fail to asses the use-
fulness of volatility forecasts form a risk-management point of view (Brooks & Persand
(2003)).

The performance of the VaR forecasts is assessed using a two stage procedure. The
first stage consist of the assessment of the adequacy of the VaR forecasts using a battery
of tests on the binary indicator of VaR failure. The second stage consists of an assessment
of the accuracy of the VaR forecasts using a loss function measuring the goodness of fit
of the predicted returns’ tails. Such an approach follows the lines of the methodology
proposed by Sarma et al. (2003).

The out–of–sample VaR forecasting exercise is performed using approximately the
last 3 years of data in the sample. For each day in the out–of–sample period we estimate
the Base and P-Spline models using approximately the last 900 days of data. We es-
timate the model for the returns using the series of 1 day ahead predictions obtained by
the two specifications. The P-Spline model is estimated using 10 knots and the choice of
the shrinkage coefficient λ is performed via the AIC on the first rolling sample and then
kept fixed for the rest of the prediction exercise. We then construct the 1 day ahead VaR
predictions as

V̂aR
p

t+1|t = −F−1
t1/ν̂

(p)
√
ĉ+ m̂ r̂v(m,δ) t+1|t,

where r̂v(m,δ) t+1|t is the one–step ahead volatility measure prediction obtained by either
the Base and P-Spline methods and (ĉ, m̂, ν̂)′ are the parameter estimates obtained from
the corresponding model for the returns. The VaR forecasting exercise is also performed
using a GARCH(1,1) model with leverage effects and Student’s t innovations for compar-
ison purposes.

6.1 VaR Forecasting Adequacy

Let
{

V̂aR
p

t|t−1

}
be a sequence of 1 day ahead (1− p) VaR forecasts and define the failure

process {Ht} as {
Ht ≡

(
rt < −V̂aR

p

t|t−1

)}
If the sequence of VaR prediction is adequate, then the VaR conditional coverage should
be equal to p for any t, that is

E(Ht|Ft−1) = p. (8)

Many of the VaR evaluation tests proposed in the literature attempt at assessing the ade-
quacy of VaR predictions by testing against different types of departures from Equation
8. In what follows we resort to the adequacy test proposed by Christoffersen (1998) and
Engle & Manganelli (2004)5.

5Berkowitz, Christoffersen & Pelletier (2006) contains a finite sample comparison of several VaR ade-
quacy tests.
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Unconditional Coverage test. Assuming that {Ht} is an independently distributed fail-
ure process, the null hypothesis of the unconditional coverage test is that the failure prob-
ability is equal to p, and it is tested against the alternative of a failure rate different from
p. Under the null, the test statistic is

LRuc = −2 log
pn1(1− p)n0

π̂n1(1− π̂)n0
∼ χ2

(1),

where n0 and n1 are, respectively, the number of 0’s and 1’s in the series and π̂ = n1/(n0+
n1).

Independence test. The null hypothesis of the independence test is that the failure pro-
cess {Ht} is independently distributed, and it is tested against the alternative of a first
order Markov process. Under the null, the test statistic is

LRind = −2 log
(1− π̂2)

(n00+n10)π̂
(n01+n11)
2

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

∼ χ2
(1),

where nij is the number of i values followed by a j in theHt series, π̂01 = n01/(n00+n01),
π̂11 = n11/(n10 + n11) and π̂2 = (n01 + n11)/(n00 + n01 + n10 + n11).

Conditional Coverage test. The null hypothesis of the conditional coverage test is that
the failure process {Ht} is an independent failure process with failure probability p, and
it is tested against the alternative of a first–order Markov failure process with a different
transition probability matrix. Under the null, the test statistic is

LRcc = −2 log
pn1(1− p)n0

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

∼ χ2
(2).

Note that conditionally on the first observation LRcc = LRuc + LRind.

Dynamic Quantile test. The null of the Dynamic Quantile test is that there is no cor-
relation between Ht and some appropriately chosen Ft−1 measurable variable xt−1 of
dimension q. Let X and H denote respectively the matrix of xt and vector of Ht+1 obser-
vations and consider the LS estimator of the regression of H − p1 on X , that is

β̂LS = (X ′X)−1X ′(H − p1);

the Dynamic Quantile test correspond to testing the hypothesis H0 : β = 0, whose test
statistic is

DQX =
β̂′LSX

′Xβ̂LS

p(1− p)
∼ χ2

q

under the null. In our exercise we consider the DQhit test, where it is tested weather the
last past 4 VaR failure indicators Ht are able predict the current VaR failure.

Tables 7, 8 and 9 about here.

23



BA
Base P-Spline

Meas. Freq. H VaR LRuc LRind LRcc DQHit H VaR LRuc LRind LRcc DQHit
V 30s 0.36 334 0.081 0.904 0.217 0.811 0.36 326.83 0.081 0.904 0.217 0.811

1m 0.36 334.94 0.081 0.904 0.217 0.811 0.36 328.02 0.081 0.904 0.217 0.811
2m 0.18 333.31 0.017 0.952 0.057 0.589 0.54 325.99 0.233 0.857 0.484 0.946
3m 0.18 332.52 0.017 0.952 0.057 0.589 0.36 325.62 0.081 0.904 0.217 0.811
4m 0.18 330.41 0.017 0.952 0.057 0.589 0.54 322.56 0.233 0.857 0.484 0.946
5m 0.18 330.57 0.017 0.952 0.057 0.589 0.36 320.92 0.081 0.904 0.217 0.811
6m 0.36 326.75 0.081 0.904 0.217 0.811 0.36 315.98 0.081 0.904 0.217 0.811

10m 0.18 327.41 0.017 0.952 0.057 0.589 0.54 316.59 0.233 0.857 0.484 0.946
15m 0.18 324.84 0.017 0.952 0.057 0.589 0.36 313.44 0.081 0.904 0.217 0.811
20m 0.36 326.87 0.081 0.904 0.217 0.811 0.54 317.32 0.233 0.857 0.484 0.946
30m 0.36 323.72 0.081 0.904 0.217 0.811 0.54 318.23 0.233 0.857 0.484 0.946
1h 0.37 328.26 0.090 0.903 0.236 0.827 0.55 315.33 0.254 0.855 0.513 0.954

B 30s 0.36 342.74 0.081 0.904 0.217 0.811 0.36 334.19 0.081 0.904 0.217 0.811
1m 0.18 340.49 0.017 0.952 0.057 0.589 0.36 332.64 0.081 0.904 0.217 0.811
2m 0.18 336.76 0.017 0.952 0.057 0.589 0.36 329.13 0.081 0.904 0.217 0.811
3m 0.18 333.67 0.017 0.952 0.057 0.589 0.54 327.36 0.233 0.857 0.484 0.946
4m 0.18 331.68 0.017 0.952 0.057 0.589 0.36 323.38 0.081 0.904 0.217 0.811
5m 0.18 331.96 0.017 0.952 0.057 0.589 0.36 322.24 0.081 0.904 0.217 0.811
6m 0.18 328.43 0.017 0.952 0.057 0.589 0.36 318.78 0.081 0.904 0.217 0.811

10m 0.18 328.26 0.017 0.952 0.057 0.589 0.36 318.21 0.081 0.904 0.217 0.811
15m 0.18 325.27 0.017 0.952 0.057 0.589 0.36 313.48 0.081 0.904 0.217 0.811
20m 0.36 327.31 0.081 0.904 0.217 0.811 0.54 314.30 0.233 0.857 0.484 0.946
30m 0.36 326.1 0.081 0.904 0.217 0.811 0.54 313.34 0.233 0.857 0.484 0.946
1h 0.37 328.64 0.090 0.903 0.236 0.827 0.54 315.47 0.233 0.857 0.484 0.946

TS 30s 0.36 336.77 0.081 0.904 0.217 0.811 0.36 329.48 0.081 0.904 0.217 0.811
1m 0.36 336.18 0.081 0.904 0.217 0.811 0.36 328.45 0.081 0.904 0.217 0.811
2m 0.18 334.3 0.017 0.952 0.057 0.589 0.36 327.15 0.081 0.904 0.217 0.811
3m 0.18 332.43 0.017 0.952 0.057 0.589 0.36 324.19 0.081 0.904 0.217 0.811
4m 0.18 330.41 0.017 0.952 0.057 0.589 0.54 321.76 0.233 0.857 0.484 0.946
5m 0.18 328.94 0.017 0.952 0.057 0.589 0.54 320.17 0.233 0.857 0.484 0.946
6m 0.18 327.69 0.017 0.952 0.057 0.589 0.54 318.92 0.233 0.857 0.484 0.946

10m 0.18 326.82 0.017 0.952 0.057 0.589 0.54 315.63 0.233 0.857 0.484 0.946
15m 0.18 327.86 0.017 0.952 0.057 0.589 0.54 315.88 0.233 0.857 0.484 0.946
20m 0.36 328.17 0.081 0.904 0.217 0.811 0.54 316.02 0.233 0.857 0.484 0.946
30m 0.36 329.6 0.081 0.904 0.217 0.811 0.54 316.68 0.233 0.857 0.484 0.946
1h 0.37 332.67 0.090 0.903 0.236 0.827 0.37 315.39 0.090 0.903 0.236 0.827

R 0.36 340.44 0.081 0.904 0.217 0.811 0.54 319.69 0.233 0.857 0.484 0.946
GARCH 0.9 380.1 0.233 0.857 0.484 0.946

Table 7: 99% VaR forecasting adequacy. For each measure, sampling frequencies (when
applicable) and volatility model (Base or P-Spline) the table reports the average number
of VaR failures, the average VaR and the p–values of the adequacy tests.
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GE
Base P-Spline

Meas. Freq. H VaR LRuc LRind LRcc DQHit H VaR LRuc LRind LRcc DQHit
V 30s 0.36 231.91 0.081 0.904 0.217 0.811 0.36 222.86 0.081 0.904 0.217 0.811

1m 0.36 230.39 0.081 0.904 0.217 0.811 0.36 220.63 0.081 0.904 0.217 0.811
2m 0.36 228.77 0.081 0.904 0.217 0.811 0.36 217.61 0.081 0.904 0.217 0.811
3m 0.36 229.74 0.081 0.904 0.217 0.811 0.36 216.54 0.081 0.904 0.217 0.811
4m 0.36 229.28 0.081 0.904 0.217 0.811 0.36 217.77 0.081 0.904 0.217 0.811
5m 0.36 229.09 0.081 0.904 0.217 0.811 0.36 215.58 0.081 0.904 0.217 0.811
6m 0.36 228.28 0.081 0.904 0.217 0.811 0.36 214.53 0.081 0.904 0.217 0.811

10m 0.36 229.55 0.081 0.904 0.217 0.811 0.54 215.4 0.233 0.857 0.484 0.946
15m 0.36 226.4 0.081 0.904 0.217 0.811 0.54 211.11 0.233 0.857 0.484 0.946
20m 0.36 224.93 0.081 0.904 0.217 0.811 0.54 210.39 0.233 0.857 0.484 0.946
30m 0.36 232.53 0.081 0.904 0.217 0.811 0.54 215.26 0.233 0.857 0.484 0.946
1h 0.36 232.93 0.081 0.904 0.217 0.811 0.36 213.25 0.081 0.904 0.217 0.811

B 30s 0.36 232.03 0.081 0.904 0.217 0.811 0.36 223.08 0.081 0.904 0.217 0.811
1m 0.36 229.96 0.081 0.904 0.217 0.811 0.36 220.04 0.081 0.904 0.217 0.811
2m 0.36 228.25 0.081 0.904 0.217 0.811 0.36 216.64 0.081 0.904 0.217 0.811
3m 0.36 229 0.081 0.904 0.217 0.811 0.36 214.92 0.081 0.904 0.217 0.811
4m 0.36 230.08 0.081 0.904 0.217 0.811 0.36 217.82 0.081 0.904 0.217 0.811
5m 0.36 231.35 0.081 0.904 0.217 0.811 0.36 217.7 0.081 0.904 0.217 0.811
6m 0.36 229.12 0.081 0.904 0.217 0.811 0.36 215.03 0.081 0.904 0.217 0.811

10m 0.36 229.84 0.081 0.904 0.217 0.811 0.54 215.82 0.233 0.857 0.484 0.946
15m 0.36 226.81 0.081 0.904 0.217 0.811 0.54 211.11 0.233 0.857 0.484 0.946
20m 0.36 221.16 0.081 0.904 0.217 0.811 0.54 209.17 0.233 0.857 0.484 0.946
30m 0.36 230.77 0.081 0.904 0.217 0.811 0.54 213.46 0.233 0.857 0.484 0.946
1h 0.37 237.83 0.092 0.903 0.240 0.831 0.37 218.25 0.092 0.903 0.240 0.831

TS 30s 0.36 232.65 0.081 0.904 0.217 0.811 0.36 223.5 0.081 0.904 0.217 0.811
1m 0.36 231.64 0.081 0.904 0.217 0.811 0.36 221.52 0.081 0.904 0.217 0.811
2m 0.36 230.28 0.081 0.904 0.217 0.811 0.36 219.75 0.081 0.904 0.217 0.811
3m 0.36 229.69 0.081 0.904 0.217 0.811 0.36 218.03 0.081 0.904 0.217 0.811
4m 0.36 229.55 0.081 0.904 0.217 0.811 0.36 217.17 0.081 0.904 0.217 0.811
5m 0.36 229.56 0.081 0.904 0.217 0.811 0.54 216.55 0.233 0.857 0.484 0.946
6m 0.36 229.44 0.081 0.904 0.217 0.811 0.54 216.88 0.233 0.857 0.484 0.946

10m 0.36 230.08 0.081 0.904 0.217 0.811 0.54 216.94 0.233 0.857 0.484 0.946
15m 0.36 228.59 0.081 0.904 0.217 0.811 0.54 215.13 0.233 0.857 0.484 0.946
20m 0.36 226.74 0.081 0.904 0.217 0.811 0.54 212.07 0.233 0.857 0.484 0.946
30m 0.36 226.81 0.081 0.904 0.217 0.811 0.54 213.21 0.233 0.857 0.484 0.946
1h 0.36 232.7 0.081 0.904 0.217 0.811 0.36 212.39 0.081 0.904 0.217 0.811

R 0.36 224.53 0.081 0.904 0.217 0.811 0.72 204.32 0.486 0.809 0.762 0.992
GARCH 0.36 240.8 0.081 0.904 0.217 0.811

Table 8: 99% VaR forecasting adequacy. For each measure, sampling frequencies (when
applicable) and volatility model (Base or P-Spline) the table reports the average number
of VaR failures, the average VaR and the p–values of the adequacy tests.
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JNJ
Base P-Spline

Meas. Freq. H VaR LRuc LRind LRcc DQHit H VaR LRuc LRind LRcc DQHit
V 30s 0.54 218.02 0.233 0.857 0.484 0.946 0.9 207.28 0.811 0.763 0.929 0.999

1m 0.9 213.54 0.811 0.763 0.929 0.999 0.9 203.24 0.811 0.763 0.929 0.999
2m 0.9 211.44 0.811 0.763 0.929 0.999 1.08 200.52 0.850 0.717 0.920 0.997
3m 1.08 212.08 0.850 0.717 0.920 0.997 1.08 201.32 0.850 0.717 0.920 0.997
4m 1.08 211.53 0.850 0.717 0.920 0.997 1.08 199.75 0.850 0.717 0.920 0.997
5m 0.9 213.37 0.811 0.763 0.929 0.999 1.26 200.63 0.552 0.672 0.766 0.020
6m 1.08 209.39 0.850 0.717 0.920 0.997 1.26 196.7 0.552 0.672 0.766 0.020

10m 0.9 215.36 0.811 0.763 0.929 0.999 1.26 199.18 0.552 0.672 0.766 0.020
15m 1.08 218.07 0.850 0.717 0.920 0.997 1.26 198.77 0.552 0.672 0.766 0.020
20m 0.9 220.65 0.811 0.763 0.929 0.999 1.26 202.1 0.552 0.672 0.766 0.020
30m 0.9 215.6 0.811 0.763 0.929 0.999 0.9 198.3 0.811 0.763 0.929 0.001
1h 0.75 213.26 0.547 0.805 0.810 0.995 0.94 199.38 0.888 0.758 0.944 0.999

B 30s 0.54 224.33 0.233 0.857 0.484 0.946 0.72 211.79 0.486 0.809 0.762 0.992
1m 0.54 215.2 0.233 0.857 0.484 0.946 0.9 204.39 0.811 0.763 0.929 0.999
2m 0.9 212.67 0.811 0.763 0.929 0.999 1.08 200.71 0.850 0.717 0.920 0.997
3m 1.08 211.61 0.850 0.717 0.920 0.997 1.08 200.92 0.850 0.717 0.920 0.997
4m 1.08 211.36 0.850 0.717 0.920 0.997 1.08 199.8 0.850 0.717 0.920 0.997
5m 0.9 213.07 0.811 0.763 0.929 0.999 1.26 201.12 0.552 0.672 0.766 0.020
6m 0.9 210.83 0.811 0.763 0.929 0.999 1.26 197.92 0.552 0.672 0.766 0.020

10m 0.9 215.99 0.811 0.763 0.929 0.999 1.26 199.85 0.552 0.672 0.766 0.020
15m 1.08 218.11 0.850 0.717 0.920 0.997 1.26 197.08 0.552 0.672 0.766 0.020
20m 0.9 220.22 0.811 0.763 0.929 0.999 1.26 202.16 0.552 0.672 0.766 0.020
30m 1.08 218.5 0.850 0.717 0.920 0.997 0.9 200.96 0.811 0.763 0.929 0.001
1h 0.75 215.63 0.547 0.805 0.810 0.995 0.94 201.24 0.888 0.758 0.944 0.999

TS 30s 0.54 219.39 0.233 0.857 0.484 0.946 0.72 208.76 0.486 0.809 0.762 0.992
1m 0.72 213.67 0.486 0.809 0.762 0.992 1.08 204.2 0.850 0.717 0.920 0.007
2m 0.9 212.45 0.811 0.763 0.929 0.999 1.08 201.63 0.850 0.717 0.920 0.997
3m 1.08 212.93 0.850 0.717 0.920 0.997 1.08 201.26 0.850 0.717 0.920 0.997
4m 1.08 213.78 0.850 0.717 0.920 0.997 1.08 201.08 0.850 0.717 0.920 0.997
5m 1.08 213.89 0.850 0.717 0.920 0.997 1.26 201.13 0.552 0.672 0.766 0.020
6m 1.08 214.18 0.850 0.717 0.920 0.997 1.26 200.29 0.552 0.672 0.766 0.020

10m 1.08 215.56 0.850 0.717 0.920 0.997 1.26 200.52 0.552 0.672 0.766 0.020
15m 1.08 215.89 0.850 0.717 0.920 0.997 1.26 198.93 0.552 0.672 0.766 0.020
20m 1.08 216.36 0.850 0.717 0.920 0.997 1.26 199.17 0.552 0.672 0.766 0.020
30m 0.9 218.5 0.811 0.763 0.929 0.999 1.08 199.51 0.850 0.717 0.920 0.007
1h 0.75 221.8 0.547 0.805 0.810 0.995 0.94 199.87 0.888 0.758 0.944 0.001

R 0.9 226.82 0.811 0.763 0.929 0.999 1.08 207.39 0.850 0.717 0.920 0.007
GARCH 0.9 254.03 0.811 0.763 0.929 0.999

Table 9: 99% VaR forecasting adequacy. For each measure, sampling frequencies (when
applicable) and volatility model (Base or P-Spline) the table reports the average number
of VaR failures, the average VaR and the p–values of the adequacy tests.
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Tables 7, 8 and 9 report the out–of–sample 99% VaR adequacy results of the predic-
tion exercise. The tables report the average number of failures, the average VaR and the
p–values of the adequacy tests. At a 1% significance level all the nulls of VaR adequacy
are not rejected. In the BA and GE stock there is some mild evidence of over coverage
that appears to be stronger in the BA case using the Base forecasts and becomes weaker
using the P-Spline forecasts at lower frequencies. In the JNJ stock there is some mild
evidence of dependence in the VaR failures using the P-Spline forecasts. The volatility
measure systematically lead to smaller average VaR than a GARCH and the P-Spline
predictions systematically lead to smaller average VaR than the corresponding Base pre-
dictions. Overall, the adequacy of the VaR forecasts appears to be quite similar across
all forecasting methods and it is difficult to find evidence that UHFD volatility measure
provide significantly more adequate VaR forecasts than the forecasts based on the range
or GARCH.

6.2 VaR Forecasting Accuracy
Statistical adequacy is a necessary requirement that VaR forecasts must satisfy, but it does
not provide information as to the accuracy of such predictions and it does not always help
to discriminate among different VaR forecasting methods.

We evaluate the out–of–sample accuracy of the VaR forecast using the probability
deviation loss functions proposed by Kuester et al. (2006), The loss function is computed
using the series of probability integral transformations of the returns using their estimated
one day ahead cdf, i.e. ût+1 = F̂t+1|t(rt+1). For each of such ût+1 in (0, 0.10], the
probability deviations d̂u are defined as the difference between the empirical cdf of the
û’s and a uniform cdf. We can then construct measure of fit as the sum of squared and
sum of absolute probability deviations, that is

MSE ≡
∑

û∈(0,0.10]

d̂ 2
u MAE ≡

∑
û∈(0,0.10]

|d̂u|;

which measure the goodness of fit of the models on the left tail of the return distribu-
tion. Such loss function has interesting prequential appeal (Dawid (1984)) and is also
reminiscent of previous work on density forecast evaluation like Diebold, Gunther & Tay
(1998).

Tables 10, 11 and 12 about here.

Figure 4 about here.

Tables 10, 11 and 12 report the probability deviations MSE and MAE of the VaR
forecasting exercise. Figure 4 displays the graphs of the probability deviations MSE of
the volatility measures as functions of the sampling frequency. The out of sample perfor-
mance of the UHFD volatility measures appears to behave rather similarly across stocks.
The graphs suggest that it is very difficult to discriminate between different UHFD volatil-
ity measures in that they all have very similar MSE profiles. In most cases performance
appears to increase as the sampling frequency decreases and the best out of sample per-
formance is obtained around 20–30 minutes. Moreover, the P-Spline forecasts system-
atically increase the out–of–sample accuracy of the VaR forecasts over the Base coun-
terparts. The UHFD measures always produce more accurate forecasts than the GARCH
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BA
Base P-Spline

Freq. MSE MAE MSE MAE
V 30s 3.147 1.683 2.229 1.409

1m 3.343 1.73 2.492 1.469
2m 3.222 1.704 2.066 1.342
3m 3.024 1.656 1.968 1.306
4m 2.477 1.497 1.436 1.075
5m 2.707 1.551 1.454 1.084
6m 2.497 1.492 0.889 0.786
10m 2.057 1.379 0.551 0.68
15m 2.191 1.403 0.32 0.513
20m 2.282 1.459 0.298 0.478
30m 1.639 1.202 0.132 0.32
1h 1.933 1.288 0.03 0.143

B 30s 4.391 2.004 3.059 1.661
1m 4.51 2.012 3.308 1.705
2m 3.689 1.824 2.279 1.395
3m 3.417 1.739 2.135 1.348
4m 2.694 1.561 1.374 1.045
5m 2.921 1.602 1.498 1.075
6m 2.424 1.462 0.989 0.858
10m 2.156 1.416 0.652 0.771
15m 2.303 1.44 0.464 0.591
20m 2.275 1.463 0.295 0.496
30m 1.536 1.157 0.441 0.727
1h 1.571 1.188 0.792 0.851

TS 30s 3.725 1.829 2.547 1.504
1m 3.647 1.808 2.478 1.471
2m 3.461 1.761 2.309 1.377
3m 3.252 1.709 1.867 1.213
4m 2.753 1.581 1.287 0.98
5m 2.485 1.496 1.041 0.866
6m 2.376 1.459 0.995 0.854
10m 2.267 1.426 0.47 0.564
15m 2.23 1.426 0.356 0.468
20m 2.307 1.456 0.341 0.472
30m 2.477 1.504 0.197 0.395
1h 2.578 1.467 0.276 0.443

R 3.225 1.661 0.266 0.462
GARCH 10.858 2.863

Table 10: VaR forecasting accuracy. For each measure, sampling frequencies (when appli-
cable) and volatility model (Base or P-Spline) the table reports the probability deviations
MSE and MAE
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GE
Base P-Spline

Freq. MSE MAE MSE MAE
V 30s 10.492 3.131 7.334 2.628

1m 9.366 2.966 6.037 2.382
2m 7.994 2.741 4.433 2.032
3m 8.511 2.829 3.634 1.842
4m 8.213 2.777 3.423 1.795
5m 7.918 2.724 2.884 1.644
6m 7.877 2.721 2.062 1.388
10m 8.035 2.733 2.758 1.588
15m 7.596 2.666 1.617 1.199
20m 6.697 2.502 1.977 1.312
30m 8.602 2.835 1.35 1.109
1h 8.145 2.758 0.483 0.641

B 30s 10.537 3.147 7.471 2.654
1m 9.305 2.96 5.811 2.335
2m 7.801 2.707 4.138 1.96
3m 7.53 2.661 3.315 1.76
4m 8.355 2.801 3.03 1.687
5m 8.376 2.799 2.991 1.676
6m 7.721 2.691 1.993 1.345
10m 7.727 2.68 2.898 1.632
15m 8.11 2.749 2.352 1.447
20m 6.274 2.43 2.101 1.377
30m 7.523 2.649 1.087 0.963
1h 10.208 3.088 1.775 1.271

TS 30s 10.492 3.13 6.688 2.511
1m 10.108 3.08 5.711 2.314
2m 9.056 2.913 4.301 1.993
3m 8.3 2.785 3.619 1.839
4m 8.027 2.74 3.103 1.705
5m 7.909 2.721 3.035 1.687
6m 7.813 2.704 2.585 1.555
10m 7.902 2.716 2.518 1.532
15m 7.353 2.621 2.094 1.381
20m 7.405 2.63 2.1 1.393
30m 7.574 2.665 2.123 1.395
1h 9.977 3.055 3.068 1.646

R 5.367 2.257 0.314 0.428
GARCH 7.791 2.7

Table 11: VaR forecasting accuracy. For each measure, sampling frequencies (when appli-
cable) and volatility model (Base or P-Spline) the table reports the probability deviations
MSE and MAE
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JNJ

Base P-Spline
Freq. MSE MAE MSE MAE

V 30s 2.374 1.385 0.503 0.609
1m 2.008 1.263 0.338 0.487
2m 2.133 1.288 0.47 0.544
3m 2.4 1.378 0.445 0.581
4m 2.307 1.352 0.341 0.488
5m 2.519 1.402 0.108 0.244
6m 1.768 1.145 0.18 0.314

10m 2.288 1.323 0.191 0.333
15m 3.082 1.57 0.07 0.222
20m 3.885 1.726 0.09 0.242
30m 1.993 1.248 0.09 0.242
1h 2.85 1.446 0.404 0.508

B 30s 3.563 1.697 0.712 0.763
1m 2.183 1.32 0.361 0.478
2m 2.405 1.371 0.449 0.529
3m 2.228 1.333 0.417 0.532
4m 2.493 1.396 0.382 0.52
5m 2.326 1.35 0.077 0.211
6m 1.939 1.205 0.189 0.327

10m 2.601 1.416 0.236 0.427
15m 3.175 1.584 0.07 0.224
20m 3.63 1.663 0.15 0.32
30m 2.261 1.357 0.102 0.26
1h 3.516 1.578 0.628 0.633

TS 30s 2.912 1.531 0.438 0.579
1m 2.26 1.332 0.343 0.501
2m 2.47 1.399 0.443 0.57
3m 2.644 1.449 0.419 0.553
4m 2.823 1.5 0.238 0.39
5m 2.773 1.48 0.144 0.295
6m 2.772 1.47 0.121 0.268

10m 3.136 1.54 0.153 0.332
15m 2.965 1.491 0.097 0.241
20m 2.881 1.481 0.076 0.226
30m 3.204 1.563 0.077 0.238
1h 5.658 2.143 0.426 0.568

R 5.188 1.954 0.431 0.54
GARCH 9.36 2.783

Table 12: VaR forecasting accuracy. For each measure, sampling frequencies (when appli-
cable) and volatility model (Base or P-Spline) the table reports the probability deviations
MSE and MAE
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BA

GE

JNJ

Figure 4: Out–of–sample VaR MSE of the volatility measures. The graphs display the
estimated MSE of the volatility measures as functions of the sampling frequency.
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benchmark, with the exception of the Base forecasts for the GE stock. However, the
range appears hard to beat. In the GE stock the range forecasts systematically perform
better than all the measures. In the BA and JNJ stock the Base range forecasts are beaten
by the UHFD measures at most sampling frequency but the P-Spline range forecasts
appear to have a substantially close performance to the UHFD measures.

7 Conclusion
We find that UHFD volatility measures perform similarly in terms of VaR forecasting,
obtain the best forecasting results at “low” frequencies (20/30min), and do not appear to
outperform range. In comparison to a standard GARCH, models for realized volatility
measures produce VaR forecasts which are more accurate but yet as adequate. Modeling
volatility trends using our novel P–Spline MEM systematically improves forecasting abil-
ity. The empirical evidence suggests that the range has a very good cost–to–quality ratio
for VaR prediction.

The empirical evidence of this paper can be somehow counterintuitive. The UHFD
volatility measures literature argues that by using all the data it is possible to construct
arbitrarily precise estimates of volatility and it is not uncommon to find papers claiming
that using UHFD volatility measures corresponds to “observe” volatility.

We believe that there are some straightforward arguments that explain our findings.
A contribution of Granger (Granger (1998)) on the advent of UHFD points out that

asymptotic theory assumes that the amount of information increases with the amount of
data, but there are many situations in which this will just not hold. Put concisely “by
observing earth movements more carefully we do not observe more large earthquakes”
(Granger (1998)).

The empirical findings suggest that microstructure dynamics seem to bias volatility
dynamics at very high frequencies and this compromises the benefits of sampling at ultra
high–frequencies. Suppose that the timing between price changes is irregularly spaced
(c.f. Engle & Russell (1998)) and that the prices are sampled over a regular scale: Jordà
& Marcellino (2003) have shown that the aggregated data will exhibit conditional het-
eroskedasticity even if such feature is absent in the data generating process. The re-
cently proposed realized kernel (Barndorff-Nielsen et al. (2006a) and Barndorff-Nielsen,
Hansen, Lunde & Shepard (2006b)) appear to be more robust to these type of microstruc-
ture dynamics and it will be interesting to see if such estimators will be able to improve
upon the forecasting ability of the UHFD measures used in this work.
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A Stylized Facts
All the series analyzed in this study are constructed using “cleaned” mid quotes from the NYSE between
9:30 and 16:05. The data is extracted from the NYSE-TAQ database. More detailed discussion on the
features of the UHFD series can be found in Brownlees & Gallo (2006). This study highlights some features
of the volatility measures series which do not appear to have been extensively documented in the literature
yet.

Table 13, 14 and 15 about here.

Tables 13, 14 and 15 report a number of descriptive statistics on the volatility measures. The tables re-
port for each measures and sampling frequency (when applicable) the sample moments, first autocorrelation
and the correlation with realized volatility computed at the same frequency. The bottom row of each table
reports the sample moments and first autocorrelation of squared returns. Almost all volatility measures tend
to systematically underestimate the returns variance at almost all frequencies. This is due to fact that UHFD
volatility measures are intra–daily measures of volatility while the daily close–to–close return is made up of
an overnight component (close–to–open) and an intra-daily component (open–to–close). The sample mo-
ments suggest that the shape of the distribution of the volatility measures depends not only on the measure
but also on the sampling frequency. The sample skewness and kurtosis indices also appear to be quite noisy
at times. Judging from the realized volatility sample mean it is unclear if the impact of iid microstructure
noise is substantial. In the presence of iid microstructure noise as the sampling frequency gets very high
realized volatility diverges to infinity (e.g. Bandi & Russell (2003)). The weak evidence of this effect in
the sample, at least up to a 30 seconds frequency, is probably due to the fact that the decimalization, using
mid–quotes and the high liquidity of the stocks considered make the extent of some frictions less strong
in comparison to earlier/other datasets. This is also in line with the empirical evidence on the magnitude
of the microstructure noise in Barndorff-Nielsen et al. (2006a). The degree of persistence of the volatility
measures is higher when sampling at higher frequencies and is always larger than the persistence in the
squared returns. The correlation with realized volatility appears to be frequency dependent as well, and the
higher the frequency the higher the correlation. The increase in the persistence and the correlation between
UHFD measures at higher frequencies hint at the presence of a some sort dependent noise that appears
to bias the UHFD volatility measures. Some analogous results are also found in the empirical analysis of
Barndorff-Nielsen et al. (2006a) and Barndorff-Nielsen et al. (2006b).

Tables 16, 17, 18 about here.

Tables 16, 17, 18 report the sample skewness and kurtosis of the series of returns standardized by the
square root of the volatility measures, as well as the p–value of the Ljung–Box test for autocorrelation. All
the volatility measures are always capable of washing away the dependence in the squared returns as the
Ljung–Box test is always not rejected at standard significance levels. However, it is unclear if the normality
assumption of the standardized returns is always satisfactory. Focusing on the returns standardized by
the UHFD volatility measures, it appears that the BA ticker does not exhibit a significant skewness and
leptkurtosis when using data sampled at sufficiently high frequencies; the GE ticker exhibits a significant
asymmetry at high frequencies while it exhibits evidence of leptokurtosis at lower frequencies and the JNJ
ticker does not exhibit strong skewness but does exhibit a significant leptokurtosis. Interestingly, returns
standardized by the range always appear to be symmetric and platikurtic.
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BA
Meas. Freq. Mean Std.Dev. Skew. Kurt. ρ̂1 ρ̂rv

V 30s 2.61 2.63 3.61 25.10 0.81
1m 2.80 2.91 3.56 23.50 0.82
2m 2.92 3.15 3.79 25.62 0.81
3m 2.95 3.29 4.10 30.20 0.76
4m 2.92 3.31 4.07 28.21 0.77
5m 2.87 3.32 4.22 29.84 0.77
6m 2.83 3.38 4.61 36.42 0.71

10m 2.69 3.35 5.10 43.29 0.71
15m 2.61 3.27 4.31 31.11 0.59
20m 2.54 3.48 5.10 40.48 0.58
30m 2.47 3.84 7.12 90.56 0.40
1h 2.04 3.20 4.72 33.16 0.42

B 30s 2.07 2.01 3.57 24.03 0.79 0.99
1m 2.48 2.57 3.51 21.99 0.80 0.99
2m 2.77 3 3.56 21.56 0.81 0.99
3m 2.82 3.14 3.65 22.42 0.78 0.99
4m 2.82 3.21 4.07 27.56 0.77 0.99
5m 2.80 3.26 4.14 27.94 0.77 0.99
6m 2.77 3.3 4.47 34.41 0.71 0.99

10m 2.64 3.43 5.47 49.93 0.66 0.99
15m 2.51 3.2 4.22 29.12 0.59 0.98
20m 2.44 3.32 5.08 40.99 0.53 0.98
30m 2.34 3.60 6.83 84.09 0.37 0.98
1h 1.94 3.09 4.74 34.06 0.37 0.97

TS 30s 4.83 4.69 2.97 15.24 0.82 0.99
1m 3.56 3.62 3.05 16.03 0.82 0.99
2m 3.26 3.46 3.41 20.15 0.80 0.98
3m 3.14 3.43 3.73 23.60 0.77 0.98
4m 3.06 3.40 3.88 25.18 0.76 0.98
5m 3.00 3.38 3.98 26.12 0.73 0.98
6m 2.96 3.41 4.14 27.92 0.73 0.97

10m 2.86 3.44 4.48 32.73 0.69 0.96
15m 2.79 3.46 5.10 48.47 0.63 0.94
20m 2.73 3.48 5.21 50.31 0.60 0.92
30m 2.67 3.52 4.85 40.74 0.54 0.91
1h 0.451 0.638 4.10 24.69 0.43 0.77

R 2.80 3.82 5.19 46.23 0.51
r2t 3.74 12.3 20.27 575.78 0.17

Table 13: Descriptive statistics of the volatility measures. For each volatility measures
and sampling frequency (when applicable) the table reports mean, standard deviation,
skewness, kurtosis, first autocorrelation and the correlation with realized volatility rvV
computed at the same frequency
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GE
Meas. Freq. Mean Std.Dev. Skew. Kurt. ρ̂1 ρ̂rv

V 30s 1.94 2.38 3.87 31.55 0.79
1m 2.13 2.72 3.72 26.54 0.78
2m 2.27 3.08 4.36 36.16 0.74
3m 2.29 3.25 5.37 58.05 0.72
4m 2.30 3.4 5.50 54.99 0.68
5m 2.29 3.44 6.08 69.25 0.65
6m 2.27 3.42 5.55 52.61 0.65

10m 2.17 3.27 5.81 57.76 0.59
15m 2.13 3.67 9.32 160.59 0.46
20m 2.12 3.45 6.22 68.60 0.46
30m 2.05 3.62 9.72 182.23 0.43
1h 1.80 3.2 5.75 52.94 0.38

B 30s 1.67 2.09 3.48 23.95 0.81 1.00
1m 1.98 2.59 3.73 26.77 0.79 1.00
2m 2.18 2.99 4.34 35.82 0.75 1.00
3m 2.23 3.33 6.33 80.94 0.69 0.99
4m 2.25 3.47 5.99 65.13 0.65 0.99
5m 2.22 3.47 6.35 73.28 0.63 0.99
6m 2.21 3.5 5.95 58.14 0.63 0.99

10m 2.09 3.22 6.11 65.96 0.60 0.99
15m 2.05 3.79 10.67 203.66 0.43 0.99
20m 2.05 3.25 5.03 38.63 0.47 0.97
30m 1.91 3.40 8.71 146.51 0.43 0.98
1h 1.67 3.09 5.81 51.75 0.40 0.97

TS 30s 3.71 4.63 4.31 40.45 0.76 1.00
1m 2.78 3.64 4.20 35.39 0.75 0.99
2m 2.55 3.5 4.59 40.04 0.73 0.99
3m 2.48 3.48 4.88 43.53 0.71 0.99
4m 2.43 3.51 5.28 50.41 0.69 0.99
5m 2.4 3.56 5.82 61.93 0.66 0.99
6m 2.35 3.49 5.85 62.28 0.64 0.98

10m 2.27 3.45 6.42 76.37 0.59 0.97
15m 2.22 3.42 6.84 88.75 0.54 0.97
20m 2.19 3.41 6.65 83.24 0.53 0.96
30m 2.14 3.47 7.25 100.58 0.48 0.93
1h 1.41 2.61 9.24 150.75 0.35 0.74

R 2.43 4.64 8.15 103.03 0.41
r2t 3.03 8.65 8.52 102.23 0.17

Table 14: Descriptive statistics of the volatility measures. For each volatility measures
and sampling frequency (when applicable) the table reports mean, standard deviation,
skewness, kurtosis, first autocorrelation and the correlation with realized volatility rvV
computed at the same frequency
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JNJ
Meas. Freq. Mean Std.Dev. Skew. Kurt. ρ̂1 ρ̂rv

V 30s 1.17 1.18 4.32 33.89 0.78
1m 1.33 1.51 4.87 42.13 0.76
2m 1.47 1.89 5.81 58.83 0.73
3m 1.50 2.08 6.38 68.52 0.71
4m 1.51 2.22 7.28 87.23 0.70
5m 1.51 2.33 7.75 96.69 0.72
6m 1.50 2.59 9.64 143.58 0.62
10m 1.41 2.43 9.10 132.41 0.55
15m 1.36 2.18 6.96 85.96 0.53
20m 1.33 2.26 7.74 99.01 0.48
30m 1.25 2.03 5.57 47.77 0.48
1h 0.99 2.05 12.95 281.07 0.29

B 30s 0.95 0.936 4.38 34.18 0.77 0.99
1m 1.2 1.38 5.14 48.43 0.77 0.99
2m 1.41 1.87 6.29 70.78 0.75 0.99
3m 1.46 2.08 6.71 75.72 0.70 0.99
4m 1.47 2.24 8.11 108.57 0.68 0.99
5m 1.46 2.37 8.99 133.29 0.66 0.99
6m 1.46 2.75 11.73 208.52 0.56 0.99
10m 1.36 2.47 10.42 178.58 0.52 0.99
15m 1.32 2.23 8.66 139.34 0.49 0.98
20m 1.29 2.26 8.43 115.30 0.45 0.98
30m 1.19 2.16 6.79 69.45 0.43 0.98
1h 0.91 1.79 10.25 180.22 0.29 0.97

TS 30s 2.20 2.24 4.39 34.63 0.78 1.00
1m 1.73 2.02 4.96 42.17 0.77 1.00
2m 1.65 2.20 5.98 58.31 0.75 0.99
3m 1.62 2.32 6.66 69.48 0.72 0.99
4m 1.59 2.40 7.27 80.96 0.70 0.99
5m 1.56 2.41 7.68 90.83 0.68 0.99
6m 1.53 2.43 8.02 98.89 0.66 0.98
10m 1.46 2.45 8.48 109.09 0.61 0.97
15m 1.41 2.28 7.46 83.74 0.59 0.94
20m 1.37 2.16 7.05 77.55 0.55 0.95
30m 1.30 2.03 6.97 81.28 0.52 0.92
1h 0.35 0.639 9.85 162.23 0.34 0.80

R 1.36 2.23 7.44 93.03 0.47
r2t 1.68 8.4 30.35 1058.03 0.052

Table 15: Descriptive statistics of the volatility measures. For each volatility measures
and sampling frequency (when applicable) the table reports mean, standard deviation,
skewness, kurtosis, first autocorrelation and the correlation with realized volatility rvV
computed at the same frequency
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BA
Meas Freq Skew. Kurt Q10(z2t )

V 30s 0.05 2.99 0.219
1m 0.06 2.94 0.353
2m 0.09 2.84 0.734
3m 0.06 2.84 0.791
4m 0.06 2.78∗ 0.883
5m 0.03 2.76∗∗ 0.858
6m 0.07 2.77∗∗ 0.956

10m 0.08 2.78∗ 0.906
15m 0.09 2.96 0.920
20m 0.14 2.95 0.510
30m 0.09 3.36∗∗ 0.447
1h 0.37∗∗∗ 5.38∗∗∗ 0.628

B 30s 0.04 3.00 0.013
1m 0.05 2.97 0.143
2m 0.08 2.84 0.561
3m 0.03 2.91 0.460
4m 0.04 2.83 0.670
5m 0.03 2.80∗ 0.565
6m 0.06 2.83 0.877

10m 0.11 2.83 0.942
15m 0.07 3.05 0.832
20m 0.17∗ 2.99 0.330
30m -0.03 4.80∗∗∗ 0.881
1h 0.55∗∗∗ 6.65∗∗∗ 0.655

TS 30s 0.04 3.05 0.063
1m 0.05 2.96 0.245
2m 0.05 2.87 0.572
3m 0.04 2.80 0.752
4m 0.04 2.78∗ 0.826
5m 0.04 2.76∗∗ 0.907
6m 0.04 2.71∗∗∗ 0.896

10m 0.04 2.67∗∗∗ 0.905
15m 0.03 2.71∗∗∗ 0.908
20m 0.04 2.80∗ 0.853
30m 0.03 2.92 0.732
1h 0.08 3.12 0.608

R 0.07 2.46∗∗∗ 0.572

Table 16: Descriptive of returns standardized by the square root of the variance measures.
For each volatility measures and sampling frequency (when applicable) the table reports
skewness, kurtosis and p–value of Ljung–Box statistic.
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GE
Meas Freq Skew. Kurt Q10(z2t )

V 30s 0.21∗∗ 3.44∗∗∗ 0.825
1m 0.22∗∗ 3.28∗∗ 0.795
2m 0.22∗∗ 3.27∗∗ 0.686
3m 0.22∗∗ 3.26∗ 0.611
4m 0.22∗∗ 3.28∗∗ 0.504
5m 0.22∗∗ 3.19 0.407
6m 0.18∗ 3.18 0.609

10m 0.19∗ 3.29∗∗ 0.142
15m 0.13 3.44∗∗∗ 0.114
20m 0.15 3.45∗∗∗ 0.130
30m 0.06 3.81∗∗∗ 0.659
1h 0.04 4.79∗∗∗ 0.490

B 30s 0.20∗∗ 3.43∗∗∗ 0.860
1m 0.23∗∗ 3.26∗ 0.785
2m 0.21∗∗ 3.25∗ 0.590
3m 0.21∗∗ 3.26∗ 0.624
4m 0.22∗∗ 3.25∗ 0.536
5m 0.25∗∗ 3.27∗∗ 0.442
6m 0.19∗ 3.23∗ 0.524

10m 0.20∗∗ 3.39∗∗∗ 0.152
15m 0.21∗∗ 3.67∗∗∗ 0.162
20m 0.18∗ 3.52∗∗∗ 0.097
30m -0.04 5.38∗∗∗ 0.051
1h 0.44∗∗∗ 9.91∗∗∗ 0.882

TS 30s 0.22∗∗ 3.41∗∗∗ 0.759
1m 0.23∗∗ 3.28∗∗ 0.760
2m 0.25∗∗ 3.23∗ 0.722
3m 0.24∗∗ 3.23∗ 0.637
4m 0.24∗∗ 3.21 0.582
5m 0.23∗∗ 3.19 0.522
6m 0.22∗∗ 3.18 0.483

10m 0.19∗ 3.19 0.267
15m 0.14 3.12 0.178
20m 0.12 3.13 0.164
30m 0.08 3.23∗ 0.192
1h 0.06 3.68∗∗∗ 0.360

R 0.15 2.67∗∗∗ 0.045

Table 17: Descriptive of returns standardized by the square root of the variance measures.
For each volatility measures and sampling frequency (when applicable) the table reports
skewness, kurtosis and p–value of Ljung–Box statistic.
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JNJ
Meas Freq Skew. Kurt Q10(z2t )

V 30s 0.11 4.20∗∗∗ 0.758
1m 0.10 3.98∗∗∗ 0.864
2m 0.11 3.72∗∗∗ 0.853
3m 0.11 3.67∗∗∗ 0.765
4m 0.10 3.49∗∗∗ 0.811
5m 0.08 3.34∗∗ 0.819
6m 0.08 3.36∗∗ 0.704

10m 0.05 3.61∗∗∗ 0.504
15m -0.01 3.70∗∗∗ 0.581
20m 0.02 3.66∗∗∗ 0.631
30m -0.08 4.26∗∗∗ 0.656
1h -0.10 4.92∗∗∗ 0.742

B 30s 0.09 4.20∗∗∗ 0.786
1m 0.12 3.97∗∗∗ 0.940
2m 0.14 3.83∗∗∗ 0.858
3m 0.12 3.67∗∗∗ 0.801
4m 0.10 3.40∗∗∗ 0.817
5m 0.06 3.34∗∗ 0.825
6m 0.05 3.33∗∗ 0.856

10m 0.08 3.55∗∗∗ 0.390
15m 0.06 3.93∗∗∗ 0.455
20m 0.01 3.58∗∗∗ 0.565
30m -0.09 4.48∗∗∗ 0.657
1h -0.58∗∗∗ 7.51∗∗∗ 0.869

TS 30s 0.11 4.13∗∗∗ 0.773
1m 0.10 3.86∗∗∗ 0.873
2m 0.09 3.61∗∗∗ 0.843
3m 0.08 3.51∗∗∗ 0.815
4m 0.07 3.45∗∗∗ 0.815
5m 0.07 3.36∗∗ 0.854
6m 0.07 3.32∗∗ 0.878

10m 0.05 3.27∗∗ 0.889
15m 0.05 3.39∗∗∗ 0.883
20m 0.04 3.32∗∗ 0.862
30m -0.02 3.47∗∗∗ 0.831
1h -0.04 3.89∗∗∗ 0.352

R 0.02 2.73∗∗ 0.656

Table 18: Descriptive of returns standardized by the square root of the variance measures.
For each volatility measures and sampling frequency (when applicable) the table reports
skewness, kurtosis and p–value of Ljung–Box statistic.
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