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Abstract

The Multiplicative Error Model introduced by Engle (2002) for positive valued
processes is specified as the product of a (conditionally autoregressive) scale factor
and an innovation process with positive support. In this paper we propose a multi-
variate extension of such a model, by taking into consideration the possibility that the
vector innovation process be contemporaneously correlated. The estimation proce-
dure is hindered by the lack of probability density functions for multivariate positive
valued random variables. We suggest the use of copula functions to jointly estimate
the parameters of the scale factors and of the correlations of the innovation pro-
cesses. We illustrate the feasibility of the procedure and the gains over the equation
by equation approach using a four variable fully interdependent model with different
volatility measures.
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1 INTRODUCTION 2
1 Introduction

The study of financial market behavior is increasingly based on the analysis of the dy-
namics of nonnegative valued processes, such as exchanged volume, high—low range, ab-
solute returns, financial durations, number of trades, and so on. Generalizing the GARCH
(Bollerslev (1986)) and ACD (Engle and Russell (1998)) approaches, Engle (2002) reck-
ons that one striking regularity of financial time series is that persistence and clustering
characterizes the evolution of such processes. As a result, the dynamics of such variables
can be specified as the product of a conditionally deterministic scale factor which evolves
according to a GARCH-type equation and an innovation term which is i.i.d. with unit
mean.

More recently, Engle and Gallo (2006) have investigated three different measures of
volatility, namely absolute returns, daily range and realized volatility in a multivariate
context in which each lagged indicator is allowed to enter the equation of the scale factor
of the other indicators. Model selection techniques are adopted to ascertain the statistical
relevance of such variables in explaining the dynamic behavior of each indicator. The
model was estimated assuming independence of the innovation terms.

Estimation equation—by—equation ensures consistency of the estimators in a quasi-maxim-
um likelihood context, given the stationarity conditions discussed by Engle (2002). This
simple procedure is obviously not efficient, since correlation among the innovation terms
is not taken into account: in several cases, especially when predetermined variables are
inserted in the specification of the conditional expectation of the variables, it would be
advisable to work with estimators with better statistical properties, since model selection
and ensuing interpretation of the specification is crucial in the analysis.

In this paper we investigate the problems connected to a multivariate specification and
estimation of the MEM. Since joint probability distributions for nonnegative—valued ran-
dom variables are not available except in very special cases, we resort to the adoption
of two different copula functions to link together marginal probability density functions
specified as Gamma as in Engle and Gallo (2006). The empirical applications performed
on the General Electric stock data show that there are some numerical differences in the
estimates obtained by the three methods: assuming innovation dependence gives results
which are fairly similar to one another while under the independence assumption we have
a substantial departure from the system based results.

2 Multiplicative Error Models

The Multiplicative Error Model (MEM) extends the GARCH approach to processes x;
with non-negative support (Engle (2002), Engle and Gallo (2006)). In a univariate (1, 1)
framework, the model is specified as the product of a scale factor conditionally dependent
on past information (F;_;) and an iid innovation term

Ty = per = (w4 axeq + Bue—1 + Y'2e-1) &4, (1)
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where z; ; denotes a set of predetermined variables. Typically, a flexible assumption
of a Gamma pdf with unit mean for the iid &, terms (henceforth Gamma(¢;, ¢;), where
V(ei|Fi—1) = 1/¢;) is adopted, which in turns allows for the interpretation of y, as the
conditional expectation of z;. The estimator of the parameters in y; is consistent by its
Quasi Maximum Likelihood derivation.

While the Autoregressive Conditional Duration model by Engle and Russell (1998) is a
special case of MEM, but absolute returns, high-low range, number of trades in a certain
interval, volume, various versions of ultra-high frequency based measures of volatility can
be modeled with MEMs. One of the advantages of such a model is to avoid the need to
resort to logs (not possible when zeros are present in the data) and to provide conditional
expectations of the variables of interest directly (rather than expectations of the logs). Em-
pirical results show a good performance of these types of models in capturing the stylized
facts of the observed series (e.g. for daily range, Chou (2005); for volume Manganelli
(2005)).

Extending the specification to a multivariate case, let x; be a K—dimensional process with
non—negative components;' a vector MEM for x; is defined as

x; = py © g, = diag(pe)ey, )

where © indicates the Hadamard (element—by—element) product. Conditionally on the in-
formation set F;_1, p; can be defined as before, except that now we are dealing with a K-
dimensional vector depending on a (larger) vector of parameters, say 8. The innovation
vector &; is a K—dimensional i.i.d. process with density function defined over a [0, +00)%
support, with unit vector 1 as expectation and a general variance—covariance matrix 3.,

€t|~7:t—1 ~ D(]l, E) (3)

The previous conditions guarantee that

E(x|Fi1) = pt “)
V(x| Fi1) = pupry © 3 = diag(p,) X diag(py), 5

where the latter is a positive definite matrix by construction.

A base (1, 1) multivariate specification for p; is

e =w + axi_1 + Bpy_1, (6)

where w, « and 3 (arranged in a vector 0) have dimensions, respectively, (K, 1), (K, K)
and (K, K) (the latter may be assumed diagonal to simplify matters).

In some cases, the specification of u; can be extended to include asymmetric effects

'In what follows we will adopt the following conventions: if x is a vector or a matrix and a is a scalar,
then the expressions x > 0 and x* are meant element by element; if x1, ..., X, are (m, n) matrices then
(X1;...;xk) means the (mK, n) matrix obtained stacking the matrices x;’s columnwise.
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associated with the sign of an observed variable:
fe = W+ oxe + X + Bhet, (N

where the terms in the vector x\ ) contain x;;’s multiplied by a function related to a
signed variable, be it a return (0, 1 values) or a signed trade (buy or sell 1, —1 values). For
example, when different volatility indicators of the same asset are considered, such an
indicator assumes value one when its previous day’s return r,_; is negative. In a market
volatility spillover study, each market would have its own indicator function built from the
sign its own returns 7;_; ;. Finally, in a microstructure context, we can think of assigning
positive or negative values to volumes according to whether the trade was a buy or a sell.
The associated parameters -y are arranged in a (K, K') matrix.

The parameter space of 6 (including also -y if (7) is assumed) must be restricted to ensure
py > 0 for all ¢ and to ensure stationary distributions for x;: some technical details are
reported in Appendix A.

Before discussing some suitable solutions to handle the multivariate distribution of e, let
us provide some examples of cases where a multivariate MEM approach seems appropri-
ate.

Example 1: Volatility Forecasting

There is a huge literature on high—frequency data based measures of volatility. Various
forms of realized volatility summarize information on intra—daily activity. Is either of
these a sufficient measure of volatility (i.e. depending solely on its own past)?

Question: What are the dynamic interactions among different measures of volatility?

MEM Answer: we can build an interdependent model where realized, Bipower, Two-
Scale, Daily Range, Absolute Returns and others can engage in a horse race. We may
inspect whether there exists a measure depending just on its own past or the significance
of cross links. We can forecast volatility based on a full scale multiperiod interdependent
forecast and derive density forecasts for returns (VaR).

Example 2: Volatility Spillovers

There is a huge literature on transmission mechanisms (spillovers, contagion across mar-
kets). When the attention is devoted to volatility, typically the analysis is hindered by
parametric limitations (multivariate GARCH).

Question: What are the dynamic interactions among volatilities in different market in-
dices?

MEM Answer: we can build an interdependent model where one can use a volatility proxy
(e.g. daily range) for different markets and analyze interactions through model selection.
We may build interdependent forecasts, derive nonlinear impulse response functions as a
scenario analysis tool.

Example 3: Order Execution Dynamics
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In order-driven markets there is a tradeoff between the potential payoff of placing orders
at a better price, against the risk of these orders not executing.

Question: What is the distribution of the quantity of stock that will execute in the next
time period at a given distance from the current price? Is there an interaction between
such quantities?

MEM Answer: we can specify a MEM for execution depths: here zeros are relevant
because there are times when the quantity which could be executed at a certain distance
from current price can be zero. Forecasts can be used for a trading strategy (Noss (2007)).

Example 4: Trades, Duration, Volume and Volatility Dynamics

In a ultra-high frequency framework, trades occur at irregular moments but carry with
them information about the time elapsed since the last trade, the (possibly signed) volume
and the return associated with the trade (as analyzed by Manganelli (2005)).

Question #1: Can the dynamic interrelationship between the available variables reveal
the speed (in market and calendar time) at which private information is incorporated into
prices?

MEM Answer: we can specify a MEM for durations, volume and volatility in which
the conditional expectations depend just on the past values (not also some contemporary
information as in Manganelli (2005)) and take into account the contemporaneous correla-
tion of the innovation terms.

Question #2: Are return volatility, average trade size and number of trades per interval
driven by a common latent factor together with idiosyncratic components?

MEM Answer: Hautsch (2007) specifies a three variable Stochastic MEM with a latent
common AR(1) factor which is estimated by Simulated Maximum Likelihood.

2.1 Specifications for ¢,

In this section we consider some alternatives about the specification of the distribution of
the error term €;|F;_; of the vector MEM defined above.

2.1.1 Multivariate Gamma formulations

An attempt at generalizing the univariate gamma adopted by Engle and Gallo (2006) to
a suitable multivariate version is frustrated by the limitations of the multivariate Gamma
distributions available in the literature (Johnson et al. (2000, chapter 48)): many of them
are bivariate versions, not sufficiently general for our purposes, others are defined via
the joint characteristic function, and they require tedious numerical inversion formulas to
find their pdf’s. The only useful versions remain the multivariate Gamma’s of Cheriyan
and Ramabhadran (in their more general version, henceforth GammaC' R) (Johnson et al.
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(2000, 454-470), which is equivalent to other versions by Kowalckzyk and Trycha and
by Mathai and Moschopoulos):

&i|Fi1 ~ GammaCR(¢o, ¢, P),

where ¢ = (¢1;...;¢xk) and 0 < ¢y < min(¢y, ..., ¢x). All univariate marginal proba-
bility functions for ¢; ; are, as required, Gamma(¢;, ¢;) distributed, even if the multivari-
ate pdf is expressed in terms of a complicated integral. The conditional variance matrix
of &; has elements

Clips €jul Fimr) = qf;j (8)
so that the correlations are
%o ©)

P(gt,i,5t,j|ﬂ—1)= \/W
(]

This implies that the GammaC' R distribution admits only positive correlation among its
components and that the correlation between each couple of elements is strictly linked
to the corresponding variances 1/¢; and 1/¢;. These various drawbacks (the restrictions
on the correlation, the very complicated pdf and the constraint ¢g < min(¢y, ..., d¢x)),
suggest to investigate possible alternatives.

2.1.2 Copula based formulations

A different and, in some sense, modular approach for defining the distribution of &;|F;_;
is to use copula functions.> Adopting copulas, the definition of the distribution of a mul-
tivariate r.v. can be splitted in:

e choice of the univariate marginals;

e choice of the copula linking them.

Within this framework, the conditional distribution of the error component of the vector
MEM can be expressed as

K

el Fia ~ C(&) x | [ Mi(e), (10)

i=1

where: C'(£) denotes a copula parameterized by a vector &; M;(¢;) indicates the distribu-
tion of the ¢-th marginal (again assumed absolutely continuous, with non-negative support
and unit expectation), having pdf f;(z; ¢;) and cdf F;(z; ¢;). The conditional pdf of &,

>The main characteristics of copulas are summarized, among others, in Joe (1997) and Nelsen (1999).
See also Embrechts ef al. (2002), Cherubini and Vecchiato (2004), McNeil et al. (2005) and the review of
Patton (2007) for financial applications.
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can then be written as
K
feled Feor) = cus ©) T fileri d0),
i=1

where w; = (uy4;...;uk:) and ug; = Fi(er; ;).

In empirical applications, specific choices of the copula and the univariate marginals are
needed. In the following sections we discuss some possible specifications of C'(£€) related
to the class of Elliptical copulas.

As far as the marginal functions are concerned, we can consider as natural candidates all
pdf’s with the characteristics mentioned above: examples are Gamma, Inverse-Gamma,
Weibull, Lognormal, mixtures of them. For practical reasons, in the following we will
make some references to the Gamma case (cf. the discussion on the flexibility of this
choice in Engle and Gallo (2006)).

2.1.3 Normal copula

The Normal copula is a very frequent choice in applications (McNeil et al. (2005), Cheru-
bini and Vecchiato (2004), Bouyé et al. (2000)). Its copula density function is given by

1
eN(wR) = [R|™Zexp | -2 (¢R™'qa — d'q) |, (11)

where 9 = (q1;...;qx), ¢ = P (u;) and ®(z) denotes the cdf of the standard Normal
distribution computed at x.

The Normal copula possesses many interesting properties: the capability of capturing a
broad range of dependencies (the bivariate Normal copula, according to the value of the
correlation parameter, is capable of attaining the lower Fréchet bound, the product copula
and the upper Fréchet bound.), the analytical tractability, the ease of simulation.

When combined with Gamma(¢;, ¢;) marginals, the resulting multivariate distribution is
a special case of dispersion distribution generated from a Gaussian copula, as discussed
in Song (2000). In such a case, the conditional variance—covariance matrix of &; has a
generic element which is approximately equal to (using a first order expansion)

Void;

C(Ei,ta €j,t|~7:t—1) ~

so that the correlations are, approximately,
pei €5l Fi1) ~ Raj.

Even if limited to a particular copula with particular marginals, this example shows clearly
the advantages of using copulas over a multivariate Gamma (or other similar) specifica-
tion: the covariance and correlation structures are more flexible (also negative correlations
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are permitted); the correlations do not depend heavily on the variances of the marginals;
there are no complicated constraints on the parameters; the pdf is more easily tractable.

2.1.4 Student-T copula

As an alternative, we consider the Student-T copula. In fact, even if the Normal copula
has a number of attractive features, one of its major drawbacks lies in the asymptotic in-
dependence of its tails. Empirically, tail dependence is a behaviour observed frequently
in financial time series (see McNeil et al. (2005), among others): extreme events in dif-
ferent assets tend to be combined. Summarizing, the Student-T copula shares many of
the characteristics of the Normal copula with the main differences in the tails, that are
asymptotically dependent.

The density of the Student-T copula is given by

L((v+ K)/2)T(v/2)5!
I'((r+1)/2)

(1+qR'q/v)~#+K)/2

|R‘71/2
[T, (1 4 ¢2/v) (4172

cT'(u; R, v) =

;o (12)

where q = (q1;...;9x), ¢ = T '(u;;v) and T'(x;v) denotes the cdf of the Student-T
distribution computed at x.

As a further difference relative to the Normal, for R = I we do not obtain the inde-
pendence copula, since uncorrelated multivariate T r.v.s are not independent (details in
McNeil et al. (2005)). For a deeper handling of the Student-T copula see Demarta and
McNeil (2005).

2.1.5 Elliptical copulas

Both Normal and Student-T copulas are members of the more general family of Elliptical
copulas. Elliptical copulas are copulas generated by Elliptical distributions, exactly in
the same way as the Normal copula and the Student-T copula stem from the multivariate
Normal and Student-T distributions, respectively. A deeper discussion of this kind of
copulas is beyond the scope of the paper: see McNeil et al. (2005), Frahm et al. (2003),
Schmidt (2002). For our purposes, it is sufficient to note that this family provides an
unified framework for handling together the Normal, the Student-T and any other member
of this family with an explicit density function.

We consider a copula generated by an Elliptical distribution whose univariate ’standard-
ized’ marginals (intended here with location parameter 0 and dispersion parameter 1) have
an absolutely continuous symmetric distribution, centered at zero, with pdf ¢(.; v) and cdf
G(.;v) (v represents a vector of shape parameters). The density of the copula can then
be written as

(dR™'q;v, K)

IT5, 9(aisv)

for suitable choices of K*(.,.), ¢1(.;.,.) and ¢2(.;.), where @ = (q1;...;qx), ¢ =

CcE(u;R,v) = K*(v, K)|R| /2
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G~ (u;; v). For instance:

e in the Normal copula, where a shape parameter v is absent, we have K*(K) = 1,
91(7; K) = ga2(x) = exp(—x/2);

e in the Student-T copula, where the shape parameter is a scalar v, we have K*(v; K) =

L+ K)/)C (/2" ~ i o
Tt  a@nk) =0+ x/v) WHOR, go(ziv) = (1 +

:L‘/]/)_(V—‘rl)/z_

Elliptical copulas are very interesting and largely applicable. However they have a sub-
stantially symmetric behavior (elliptical symmetry) that can constitute a limit in some
applications. Different copulas (e.g. Gumbel) can be adopted, following the same scheme
proposed here, which may bypass the limitations proposed in the symmetry embedded in
the Elliptical copulas.

3 Maximum likelihood inference

We discuss here how to obtain inferences from the vector MEM specified in section 2
assuming that p; is governed by (6) or (7) and, for the moment, the general formulation
(10) of the conditional distribution of the error term. A vector MEM specified in this way
is driven by the following set of parameters: 6 (into the p, equations); £ (into the copula);
¢ (into the marginals).

It will be useful to recall the sequence in which some objects are computed (z = 1, ..., K),
namely: p;(0;) — i/ pw; = i — Fi(eri; i) = up; — c(uyg; €). For each of these
quantities, the bolded version without the index ¢ denotes the whole vector of the corre-
sponding quantities at time .

The conditional pdf of x; is given by
K
i\Et,i; Pi
(| Ficn) :c(ut;s)H—f <; 4"”
i=1 b

so that the log-likelihood of the model is

T T K

l :Zlnc(ut;ﬁ) + ZZ In (erifi(eri; i) — Inayy) (13)
t=1 i=1

[copula contribution(, ¢, £)] + [marginals contribution(0, ¢)]. (14)

(15)

In principle, this log-likelihood can be optimized directly using full ML estimators of the
three sets of parameters. However, for some choices of the copula, simple estimators of
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& (usually moment estimators) are available and can be computed from current values of
residuals €, or of u,’s. Examples are parameters of Archimedean copulas or of Elliptical
copulas derived from Kendall correlations of current estimates of €;. When this solution
is available, a pseudo-loglikelihood can be constructed as

T T K
[ = Zln c(ut;g) + Z Z ln et zfz €t ¢z)) - lnxt,ia] (16)
t=1

t=1 i=1

where E is the current estimate of £. Invoking asymptotic arguments for its adoption, such
a possibility can reduce considerably the amount of computations during optimization
because (16) depends only on 6 and ¢.

Another solution for speeding up computations and improve numerical stability is to use
analytical derivatives when optimization uses the score function. However, details about
this point are rather technical and given as a reference in Appendix B.

In the following section we illustrate some details of the estimation when the copula is
Normal or Student-T (presenting them within the unified framework of Elliptical copulas)
and when the marginals are Gamma distributed. Different choices can be accommodated
given the modular approach to the problem.

3.1 The Elliptical copula case

We discuss here full ML estimation of all parameters of the vector MEM when the con-
ditional distribution of the error term is specified as a Normal, Student-T or any other
Elliptical copula with explicit density function.

In order to perform full ML estimation of the correlation matrix of the copula, we repa-
rameterize it in an unconstrained way, as illustrated in McNeil et al. (2005, p. 235). In
fact any correlation matrix R can be represented as

R = Dc'cD, (17)

where c is an upper-triangular matrix with ones on the main diagonal and D is a diagonal
~1/2

matrix with diagonal entries D; = 1 and D; = (1 + ZZ 1 U) forj =2,..., K.

Using this approach, the estimation of R is transformed in an unconstrained problem,

since the K (K — 1)/2 free elements of ¢ can vary into R.

Using the notation given in section 2.1.5, the log-likelihood of the model can be written
as

T
== Inz,; +7T {——|R| +In K*(v; K)]
; (18)

K K
In g (q;R ™" qu; v; K) Zlngz(qgﬂ';’/) —|—Zln (erifi(ers; i) |
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where

e in the Normal copula case: In K*(K) = 0,1In g (z; K) = Inga(x) = —x/2;

e in the Student-T copula case: In K*(v; K) = In [F((u+1{<()(l//2+)1r)(72/)2)’<—1] Jngy (o0, K) =
—55 I (14 D), gowsv) = =45 In (1+5).

We remark that, using (17), % In(|R|) = Zfiz In D;. Furthermore, if ¢, ;| F;—1 ~ Gamma(¢p;, ¢;)
then e, f;(e14; ¢;) is the pdf of a Gamma(p; + 1, ¢;).

Of course, different methods relative to full ML estimation can be taken into account, in
particular for estimating the parameters of the copula: for instance, we can use Kendall
correlations for estimating R (Lindskog er al. (2003)) or tail dependence indices for es-
timating the shape parameter v (Kostadinov (2005)). Using this approach, a pseudo-
loglikelihood as in (16) can be constructed and optimized. We do not explore further
this alternative in the paper, even if this approach can be implemented along the lines
illustrated.

3.2 The Normal copula case

Even if the Normal case can be obtained as a special case of the Elliptical copula illus-
trated in the previous section, its particular analytical structure can suggest alternative
solutions for estimating R and hence the remaining parameters. In fact, using some ma-
trix algebra the contribution of the copula to the loglikelihood can be rewritten as

T
[copula contribution] = 3 [— In|R| — trace(R™'Q) + trace(Q)] ,

where .

_ddq
Q=7
and q = (d};...;q}) isaT x K matrix. This implies

o T N
—=—R'-R'QR"H=R=Q.

5= 5 QR )= R-Q

Hence the unconstrained ML estimator of R has an explicit form. Replacing this estimator
of R in the log-likelihood function we obtain a concentrated log-likelihood

T
le = 3 [—In |Q| — K + trace(Q)] + [marginals contribution], (19)

However, the estimator of R above is obtained without imposing any constraint relative
to its nature as a correlation matrix (diag(R) = 1 and positive definiteness). Computing
directly the derivatives with respect to the off-diagonal elements of R we obtain, after
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some algebra, that the ML estimate of R satisfies the following equations:

/
(R — (R TR, =0
fori # j=1,..., K, where R; and R ; indicate, respectively, the i—th row and the j—th
column of the matrix R. Unfortunately, these equations do not have an explicit solution.
An acceptable compromise which should increase efficiency, although formally it cannot
be interpreted as an ML estimator, is to normalize the estimator obtained above, R, in
order to transform it in a correlation matrix:

R =D,’QD,’,

where Dy = diag(Q11,...,Qkk). This solution can be justified observing that the
copula contribution to the likelihood depends on R exactly as if it was the correlation
matrix of i.i.d. r.v.s q; normally distributed with mean 0 and correlation matrix R (see
also McNeil et al. (2005, p. 235)). Using this constrained estimator of R, the concentrated
log-likelihood becomes

T ~ ~
le = 51 In|R| — trace(R™'Q) + trace(Q)| + (marginals contribution).  (20)
It is interesting to note that, as long as (19), (20) also gives a relatively simple structure of
the score function (see appendix B), even if the second one provides better estimates of
parameters (consideration based on simulations not reported here).

4 An Illustrative Example

The multivariate extension of the MEM model is illustrated on the GE daily stock (time
period 01/03/1995-12/29/2001, corresponding to 1515 observations) for which the fol-
lowing four indicators of volatility are considered:

1. one is the absolute daily return |r;|, taken to be the absolute value of the open-to-
close difference between log-prices;

2. the second is the realized absolute variation av, (Barndorff-Nielsen and Shephard
(2004)), computed as the sum of the absolute value of the M intra-daily returns,
1 2 M
namely, arvy = a0/ 37 Doa=t [Tdel;

3. the third is the realized bi-power variation brv; (Barndorff-Nielsen and Shephard
(2004)), defined as the sum of the M — 1 products of pairs of subsequent intra-daily

3Even when R is a (2, 2) matrix, the value of R has to satisfy a cubic equation as the following:

4192 Q| 9hq2 71q2
Ri, ~ Riy =5 + Raz [?r*?r‘l] — =0
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absolute returns, namely, bv; = ﬁ\/ 2> o Irat||ra—1,.| (the scale transforma-
tion is needed to have it comparable with the other indicators)

4. the fourth is realized volatility rv, (Andersen et al. (2003)), defined as the sum of

the squares of the M intra-daily returns, namely rv; = 4 /Zy:l r2..

Within the last three measures, the r4,’s represent the log differences of the transaction
price series recorded at or about five minute intervals; here M is 77, as we are excluding
overnight returns.

All these variables were rescaled multiplying them by 1004/252. In Table 1 we report
some descriptive statistics relative to the variables analyzed, the time series of which are
depicted in Figure 1. As one may expect, realized absolute and bi-power variations show
a relatively close behavior. Realized volatility, although very similar to the previous ones,
has a slightly larger mean and higher kurtosis that, however, depends essentially on an
extreme observation located at the end of 1997. As usual, absolute returns have a more
erratic behavior, as witnessed by the graph and the larger standard deviation. Furthermore,
there are some zero values in absolute daily returns. Unconditional correlations across the
whole sample period confirm the fact that the ultra-high frequency based measures share
a great deal of common information: the values concerning realized volatilities only are
above 0.97, whereas correlations of |r;| with each one of the remaining are just above 0.4.

Table 1: Some descriptive statistics of the indicators |r;|, arv,, brv; rv, — GE stock,

01/03/1995-12/29/2001 (1515 obs).

Indicator
Statistics |7¢] arvy bru, TV
min 0.00 1199 1504 19.05
max | 176.77 97.36  99.15 142.83
mean | 19.16 30.22 3248 36.03
sd | 16.80 8.96 9.38 9.41
skewness 2.20 1.98 1.95 2.65
kurtosis | 12.42  10.05 944  18.69

Correlations arvy bru, Uy
7] 0.4202 0.4207 0.4403

arvy 0.9832 0.9741

bru, 0.9751

As an initial benchmark to describe the characteristics of the series examined in isolation,
let us consider a diagonal model in which all matrices «, 3 and =y are taken to be diagonal
and hence no interdependence is allowed among indicators. Such diagonal model is esti-
mated equation by equation and the results are reported in table 2. The familiar GARCH
range of values for 7; and (3; surfaces for the absolute returns, while quite different val-
ues are obtained for the ultra-high frequencies based measures. The shape parameter for
the Gamma marginals are reported at the bottom of the table pointing to absolute returns
being more noisy as expected.
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Figure 1: Time series of the indicators |r|, arv,, brv; rv; — GE stock, 01/03/1995-
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Table 2: vMEM on Four Volatility Indicators: Parameter estimates assuming diagonal o,
3 and ~ matrices and the Independent copula (standard errors in small font).

|7 arvy bru, &

w; | 04622 2.6794 2.6320 3.5493
oy 0 04020 0.3726 0.4131
- 0.0399 0.0402 0.0463

v | 0.0637 0 0 0
0.0212 - - -

G; 1 0.9441  0.5094 0.5463  0.4884
0.0239 0.0537 0.0544 0.0560

¢; | 1.2852 279853 28.6715 36.3381
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We then formulated a vMEM for these four measures of volatility assuming that each
one of the multiplicative error terms has a Gamma marginal distribution. We compared
three different assumptions about the copula linking these marginals: T copula, Normal
copula, Independent copula. The vMEM relative to the first assumption has been esti-
mated using full ML, as illustrated in section 3.1; that corresponding to the second one
has been estimated using a concentrated ML approach (see section 3.2); that concerning
last assumption has been estimated equation by equation.

In Table 3 we compare estimates of the o, -y, and 3 matrices corresponding to these
different assumptions. In order to make comparisons easier, we report the vVMEM in
the specification obtaining the smallest BIC when a Student-T copula is assumed. The
results show that the T copula and the Normal copula deliver substantially similar results.
The equation by equation method, on the contrary, has some trouble in estimating some
parameters as they are absorbed by the boundary of zero.

Note that lagged absolute returns enter significantly in all specifications (as an asymmetric
term), realized volatility does not spill over onto other indicators and that absolute and bi-
power volatility show links with one another and with absolute returns (the former) and
with realized volatility (the latter).

A comment on the shape of the conditional distribution of the multiplicative error terms
can be based on the estimated parameters of the assumed Gamma marginals and of the
copula linking them. Tables 4 and 5 show the estimates for the three formulations in-
vestigated. The estimated ¢; parameters are quite different from one to another, with the
exceptions of arv and bro that are very similar. Residuals from absolute returns display
higher variability (we recall that V (e, ;|F;_1) = 1/¢;) than those from realized volatil-
ities. Furthermore, there some difference depending on the assumed copula. In fact, ¢;
parameters estimated when the copula is Student-T are smaller than those obtained as-
suming the Normal or the Independent copula. We speculate that this is due to the tail
dependence parameter v, estimated around 13, that can take into account some combined
extreme values of the error terms, otherwise inputed to the marginals. On the contrary,
the estimated correlations R are substantially similar.

A synthetic picture of the total influence of variables can be measured by means of an
Impact Matrix A = o+ 3+ /2 (see appendix B) displayed in Table 6. We can note that
those obtained assuming the Student-T and the Normal copula are substantially similar,
and substantially different from those obtained under the Independent copula. Similar
comments can be made for the estimated characteristic roots of the impact matrix ruling
the dynamics of the system: in this particular case, the estimated persistence is underesti-
mated, relative to the other two cases, assuming the Independent copula.

As a way to illustrate the practical implications of the estimated system by different meth-
ods, we can produce dynamic volatility forecasts. Figure 2 shows forecasts of the four
indicators choosing some dates as starting values and projecting the model 40 periods
ahead. The results for the Student-T copula are superimposed to those of the Normal
copula in all cases. The difference over the Independent copula is that not taking into
consideration the simultaneous correlation of the innovations, one has a faster reversion
to the long run expectation with differences which can be in the order of 3—4 volatility
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Table 4: vVMEM on Four Volatility Indicators: Estimated parameters of the Gamma
marginals (¢; = 1/V (e1:|Fi—1))-

‘ |7¢] arvy bru, TV

T copula | 1.2624 27.0821 28.1324 35.8882

Normal copula | 1.2946 29.0425 30.1491 38.6049
Independent copula | 1.2958 29.0442 30.1346 38.1665

Table 5: vMEM on Four Volatility Indicators: Estimated parameters of the Copulas for
the Student-T and the Normal choices.

T copula
v| 13.27
R arvy bru, Uy
|re| | 0.2257 0.2246 0.2357
arvy 0.9691 0.9636
brug 0.9588
Normal copula

R arvy bru, Uy
|| | 0.2219 0.2219 0.2385
aruvy 0.9634 0.9572
bru, 0.9542

percentage points (on an annual basis).

5 Conclusions

In this paper we have presented a general discussion of the vector specification of the
Multiplicative Error Models introduced by Engle (2002): a positive valued process is
seen as the product of a scale factor which follows a GARCH type specification and a
unit mean innovation process. Engle and Gallo (2006) estimate a system version of the
MEM by adopting a dynamically interdependent specification for the scale factors (each
variable enters other variables’ specifications with a lag) but keeping a diagonal variance—
covariance matrix for the Gamma—distributed innovations. The extension to a multivariate
process requires interdependence among the innovation terms. The specification in a mul-
tivariate framework cannot exploit multivariate Gamma distributions because they appear
too restrictive. The maximum likelihood estimator can be derived by setting the multi-
variate innovation process in a copula with Gamma marginals framework. The empirical
results with daily data on the GE stock show the feasibility of both procedures: the sys-
tem estimator shows deviations from the equation—by—equation approach. Overall, the
applications show the need to incorporate several measures of volatility in a single model
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Table 6: vVMEM on Four Volatility Indicators: Impact matrices and corresponding eigen-
values.

T copula

71| arviey brvgy rve eigenvalues

|re| | 0.8432 0 0.0813 0 0.9419
arvy | 0.0328 0.8572 0.0548 0 0.8342
brvg | 0.0329 0.1914 0.7300 0 0.8150
ru; | 0.0342  0.0765 0 0.8342 0.6735

Normal copula

Ire_1|  arvey brugy rueg eigenvalues

|r¢| | 0.8210 0 0.0982 0 0.9430
arvy | 0.0288 0.8636 0.0529 0 0.8389
brvg | 0.0289 0.1864 0.7409 0 0.7963
rug | 0.0298 0.0775 0 0.8389 0.6863

Independent copula

11| arvey brvgy rveg eigenvalues

|re| | 0.7574 0 0.1346 0 0.9106
arvey | 0.0372  0.8765 0.0000 0 0.7222
brvy | 0.0376 0.3439 0.5489 0 0.6767
rvy | 0.0399 0.1940 0 0.6767 0.5499

and illustrate the dynamic impact that such measures have on one another (especially the
absolute returns with asymmetric effects). At least for the example at hand, there are no
major differences between the two chosen copulas.

Departing from the need of distributional assumptions, we may provide alternative esti-
mators: in Cipollini ef al. (2006) we suggested the use of estimating equations (cf. Vinod
(1998)) which provides results very similar to the system estimation used here.
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A Some Details on the VMEM Properties

A.1 Stationarity conditions

Sufficient conditions for stationarity of p, are a simple generalization of those of the
univariate case: a vector MEM with u,; defined as in equation (7) is stationary in mean if
all characteristic roots of A = a + 3 + «/2 are smaller than 1 in modulus. We can think
of A as the impact matrix in the expression

He = Apgi. 21

If more lags are considered, a similar result can be obtained replacing «, 3 and ~ with
the sum of the corresponding matrices o, (3; and =, for all lags considered.

A.2 Non-negativity conditions

Sufficient conditions for non—negativity of the components of p; are again a generaliza-
tion of the corresponding conditions of the univariate model: the vector MEM with i,
defined as in equation (7) gives p; > O forall tif w; > 0, B3;; > 0, cij; > 0, 5 + Y255 > 0
foralli,j =1,..., K.

A more involved results can be obtained when a different type of asymmetric effect is
considered. We provide here some details.

Proposition 1 The relation

n

> (a} + b)) +¢ >0 (22)

i=1

is satisfied for all x; > 0 (i = 1,...,n) if and only if the coefficients a;, b; and c satisfy
all the following conditions:
1. a; > O0foralli € S,

2. b; > 0foralli € S, such that a; = 0;

J
. _ _lI’L IZ > )
3. ¢ 421 i(b<0) (a; >0) >0

where S, = {1,...,n}.

Proof:



A SOME DETAILS ON THE VMEM PROPERTIES 23

The minimum of
n

> (@i} + biwy) + ¢ (23)

=1
with respect to the z;’s is simply the sum of ¢ and the minima of the additive quantities
(a;x? + b;w;). Hence, considering assumption z; > 0:

1. if a; < 0, the minimum of (a;2? + b;x;) is always —oo;
2. if a; = 0, the minimum of (a;z? + b;z;) = b;z; is nonnegative (0) only if b; > 0;

3. if a; > 0, the minimum of (a;z? + b;x;) for x; > 0 is reached for z; = ———1I(b; <
a;

b2
0) and is given by —41 I(b; <0).
a

(2

Requiring that (23) has a nonnegative minimum, from the above conditions those in the
proposition follow immediately.

O

As a corollary of the previous proposition, we prove sufficient conditions for nonnegativ-
ity of the components of g; in a more general formulation.

Corollary 1 Let

L
o=+ > Bt s+ axes + yix() + x| 24)
=1
be the equation that describes the evolution of p, in the vector MEM, where:

o x4, i (t=1,...,T)and w are (K, 1)-vectors;
e B, a,vandd,(l=1,...,L)are (K, K) matrices;
e in the 'volatility indicators’ formulation: IE;) =2, 1(ry <0), :Bz(st) = x%z sign(ry);

e in the 'splillover’ formulation: x(;) =z L(rip <0), xﬁ? = lef sign(r;.4).

1:’

We assume that x; and p,, fort =1, ... L, have non-negative components.

Then p; has non-negative components if all the following conditions are satisfied (i,) =
,....K,l=1,...,L):

1. Bii >0, ajy > 0, i + viji > 0;
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2. ifaijl = 0 then (Siﬂ >0; lfOéijl + Yiji = 0 then 51']'[ <0,

K L
3w — lz Z 52, [I(dijl < 0) I{ai; > 0) " 1(dij0 > 0) leviji + viju > 0) >0,
4 =1 =1 Qiji Q451+ Vi

Proof:

The proof is by induction on ¢. Assume that x; ;, p;—; > 0 for [ = 1,..., L. Then the
i-th subequation of (24) can be rewritten taking:

(153 0) = (et oo en Xem1 - Xgmp) 2

)
(a1,...,0n) = (Bity -, Biry oy +9ial(rie1 <0), ..o o +in L(re-r <0))
(bl, . ,bn) = (O/, . ,0,, (52‘.1 Sigl’l(?"t_l), . ,Ji.L Sign(rt_L))

c

where 3;, a1, vi., and §;; denote the i-th row of the corresponding matrix of coefficients
at lag [.

At this point we can apply proposition 1 to the formulation obtained. Rewriting conditions
1, 2 and 3 of the proposition in the model notation and considering that, in the whole time
series, the returns 7;_; take both positive and negative signs, the result follows.

B Computational details

We provide details on computing the score function depending on the choice of the copula
used in specifying the conditional distribution of £,. We consider full ML estimation of
all parameters in these two cases: Elliptical copula (in order to handle together the Nor-
mal and the Student-T copulas); Normal copula with concentration of the R parameter.
The general case in (13) and the situations in which the parameters of the copula can be
estimated from moment conditions can be trivially obtained from the cases presented.

B.1 The score function with Elliptical copulas

We assume that the loglikelihood of the model is given in (18). We consider separately the
different set of parameters and we will use the following symbols: C = ¢D, q =C"q,

q; =R 'aq. ¢, = R 'q; = q,q;.
Parameters into c

The portion of the score relative to the free parameters of the ¢ matrix (those above the
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main diagonal) has elements

K T K
Vel =V, —TZln(Di) + Z Zln g1 qt, v; K)
=2

t=1 i=1
Using some algebra we can show that

K

Ve, Y In(Di) = =D;Cy

=2

Ve,ngi(q;v; K) = =2V= (Ingi(q,;v; K)) Djgf j(qei — Cijae.)

Parameters into v

The portion of the score relative to v is

T
Thh K*(v; K) +Z

t=1

Vul =V,

K
In g ( qt,l/ K) Zlngg(qfﬂ-;l/)”
i=1

The derivative of In K*(v; K') can sometimes be computed analytically. For instance, in
the Student-T copula we have

V,In K*(v; K) = % [¢ (”;K> + (K - 1)y (g) — (”;1)} .

For the remaining quantities we suggest numerical derivatives when, as in the Student-T
case, the quantile function G~!(z; v) cannot be computed analytically.

Parameters into 0

The portion of the score relative to 0 is

T

K
Vol = ng [lngl g v; K) Zlngz Gsv)+ Zln (8“f1(5“,¢2))] :
i=1

t=1

After some algebra we obtain that

T
Vol = Z Voway

where a; has components

fi(l)(ft,i§ $i)b; + 117 (e0is )
Hti

Qi =
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with

0V 0 go(2;v) — ¢7, V= In gy (G; v, K)
by = 2 T voa T (25)
9(qui;v)

F (s 0) =20 fi(enss bi)
fi(2) (eris @i) = — [&t,ivsmln fileri; i) + 1}

For instance, if a marginal has a distribution Gamma(¢;, ¢;) then
Ji (e 60) =dGamma(eri; ¢ + 1, 1)
12 (eris 00) =6i(era = 1).

where dgamma(z; o, 3) denotes the pdf of the Gamma(c, 3) distribution computed at
.

Parameters into ¢

The portion of the score relative to ¢ has elements

T

K
Vel =V, > |Ingi(q;v: K) Zlng2 Giiv)+ > Infilei ¢)
=1

t=1

After some algebra we obtain

T
Z vdh €t2; ¢z)btz + vd)lln f2<5t17 ¢'L)]

where b;; are given in (25). For instance, if a marginal has a distribution Gamma(;, ¢;)
then

v¢z‘fi(5t,i; ¢i) = In(¢s) — V(ds) + ln(em) —é&i+1

whereas F;(e;;; ¢;) can be computed numerically.

B.2 The score function with Normal copula and concentrated log-
likelihood

Using some tedious algebra, we can show that the components of the score Vglc and
V 4lc have exactly the same structure as before, with the quantity b, ; into (25) changed to

b= == (26)
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where the C matrix is here given by

B.3 Details about the estimation of 6

If one assumes that p; evolves following equation (7), its dynamical behavior depends in
general from K + 2K? parameters, which reduce to 2K + K? if we assume a diagonal
3. For instance, when K = 3 there are 21 parameters in the general case and 15 if 3 is
diagonal.

A further reduction in the number of free parameters can be obtained estimating w from
stationary conditions (variance targeting). Imposing that p; is stationary we have

w=[I—-(a+B+7v/2)n,
where pu = F(x;), and then

(e — 1) = (X1 — p) + () — 1/2) + Bpe—1 — p).

Replacing o with its natural estimate, that is the unconditional average X, we obtain

e = oXq + ’Y;(,E:% + B

- - 27)
=o'x;  + B

where the symbol X means the demeaned version of x, X; = (X; x\7) ) and a* = (a; 7).
This strategy saves K parameters in the iterative estimation, provides very good perfor-
mances in comparison with direct ML estimates of w and improves numerical stability of

the algorithms (the last two consideration are based on simulations not reported here).

To save time, it is also useful take into account analytic derivatives of p1; with respect to
the parameters. They can be expressed as

H—1,(1) 0
oy aﬁ;-l,@)@, aﬁ’;—l,(K)B/ n 0 Pot—1,(K)
50 99 "W T g P X} 11 0

0 X{_ 1 (k)

where: 8 = (vec(B), vec(a™)) (the operator vec(-) stacks the columns of the matrix
inside brackets); 3;. denotes the i-th row of 3; the notation v, applied to a vector of pa-
rameters means that only those elements that are unconstrained (to zero) are selected; the
notation vy; applied to ft,; or X; means that only elements corresponding to unconstrained
parameters are selected.
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