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50134 Florence, Italy
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Summary

This paper focuses on the use of nuclear DNA Short Tandem Repeat traits for the identi-

fication of the victims of a Mass Fatality Incident. The goal of the analysis is the assess-

ment of the identification probabilities concerning the recovered victims. Identification

hypotheses are evaluated conditionally to the DNA evidence observed both on the recov-

ered victims and on the relatives of the missing persons disappeared in the tragical event.

After specifying a set of conditional independence assertions suitable for the problem, an

inference strategy is provided, treating some points to achieve computational efficiency.

Alternative solutions to the problem will also be illustrated for comparison purposes. Fi-

nally, the proposal is tested through the simulation of a Mass Fatality Incident and the
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results are compared with the considered alternative solutions.

1. Introduction

Terroristic attacks, natural calamities and transportation crashes have in

the recent years caused a relevant number of Mass Fatality Incidents (MFI),

posing challenging identification problems to the authorities. In such circum-

stances, identification has traditionally been attempted through the bodies’

direct recognition and by a comparison of some victims’ characteristics to

the relevant records of missing persons presumably involved in the tragical

event.

Often, little but some biological material can be recovered from the vic-

tims and several DNA Short Tandem Repeat (STR) loci can be employed

to attempt identification. In such cases, the identification process does not

necessarily require the missing persons’ biological samples, since, exploiting

DNA heritability, some genetic material obtained from their relatives can be

used instead.

To find a specific missing person among the victims, Clayton et al. (1995)

and Cash et al. (2003) evaluated as many likelihood ratios (LR) as the num-

ber of recovered bodies. Each LR was separately assessed as the probability

to observe a victim and the missing-related evidence, conditionally to a pair
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of competitive hypotheses. The first conjecture reckons that the victim is

the missing individual; the alternative assumes that the missing person is

not related to the victim, being this latter a generic member of a specified

genetic population. The method is strictly derived from the widely accepted

solution of common identification problems in paternity cases. There, an

individual is alleged to be in a certain position in a pedigree and no one else

is alternatively specified. The approach, named kinship analysis by Brenner

(1997), if repetitively applied in a MFI setting, does not provide encouraging

results: in fact, often, for each missing person, some large LRs are obtained

with respect to different victims, not leading to conclusive results in terms of

identification. False positives were justified in Brenner & Weir (2003) by the

consideration that the expected number of individuals whose genetic profile

is compatible with the unobserved missing person’s one increases according

to the population size and this is not negligible. In the same work the authors

also recognized that: "the need to consider not only the evidence from the

similarity of a victim sample to a particular family, but also its dissimilarities

to other families, is overlooked".

This is exactly our opinion: the poor result obtained using STR DNA

evidence was due to an improper definition of the alternative hypothesis,

3



which is not constituted by the generic member of the genetic population

but must contemplate all the recovered and the unrecovered victims.

A step ahead has recently been suggested by Brenner (2006), who pro-

posed to consider at the same time all the missing individuals occurring in

each familial group. However, if this approach opens the way to identification

when no genetic data are available from the relatives of the missing persons,

the families are still considered separately.

Recently, Cavallini & Corradi (2006), considering another identification

problem, introduced the possibility to evaluate the probability that a trace

of unknown origin, a victim here, could be a certain individual, compared

to the alternative that considers other candidates to the identification, both

observed and unobserved. This approach will be considered later and referred

as the Victim model.

The identification of a victim starting from the hypothesis that he/she is

one of the missing persons is only one of the two possible ways to pose the

problem, the other is to start from the hypothesis that the missing person is

one of the recovered victims. This point of view will also be considered and

named the Family model.

The proposal we describe consists in considering simultaneously the prob-
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abilistic identification of all the victims and the probabilistic assignment of

the recovered bodies to the missing persons. For this reason we have named

the proposal the Complete model.

Finally, even if we are aware of the many other important questions im-

plied in a MFI identification process, like duplication of the traces or the

assessment of the true familial relationship, this paper concentrates only on

the probabilistic issues strictly related to the treatment of DNA evidence,

referring for detailed practical considerations to Cash et al. (2003).

2. Basic Ingredients

Let N the number of persons involved in a MFI. Temporarily assume

N exactly known, as it happens when an aircraft accident occurs and the

passenger and the crew lists are available. If less information is available, N

can be reckoned at a large conservative value or assessed probabilistically.

The aim is to identify the members of the set of recovered victims set V

by means of the missing individuals in the setM. The latter are assumed to

belong to families placed in the set F . Missing individuals in each family are

posed in the setMf , besides the observed individualsOf , f ∈ F . Referring to

a certain family, the specification of a pedigree often requires the specification
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of some unobserved family’ members who are posed in the set Uf . Also

M =
⋃

f∈FMf , O =
⋃

f∈F Of , U =
⋃

f∈F Uf .

From now on, n(·) indicates the cardinality of the set in the argument;

IA(B) is the usual indicator function, which is 1 if A = B or it is 0 other-

wise; Pn, Dn,k and Cn,k indicate, respectively, permutations, dispositions and

combinations of k elements taken from a set of cardinality n.

We define the identification hypothesis, H, taking into account all possi-

ble ways in which the missing individuals can identify the recovered victims.

Once the support provided by all the evidence to each state of the iden-

tification hypothesis has been calculated, the probabilities evaluating the

assignment of the victims to each of the missing persons or, conversely, the

identification alternatives for each recovered victim, can be obtained from a

simple marginalization procedure.

To formalize the possibility that not all the victims have been recovered,

start augmenting V by a ?, a generic unrecovered victim, so that V∗ = V∪{?}.

Define Hm = v ∈ V∗, m ∈ M, the hypothesis random variable concerning

the assignment of one of the members of the set V∗ to the m-th missing per-

son. If the m-th missing person is considered in isolation, the corresponding

identification random variable can assume values in V∗ without constraints.
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Instead, if more than one Hm are considered jointly, a multivariate random

variable H must be defined such that multiple assignments of the same victim

to different missing persons are not allowed. Let H t, a generic configuration,

conform to the mentioned constraint and formally defined by:

H t = {H t
m : m ∈M} where, H t

s =? or ∀g 6= s H t
g 6= H t

s . (1)

If the number of the recovered victims is equal to the number of the

individuals involved in the disaster, n(H) = PN since each victim can be

identified by only one missing person; otherwise, if n(V) < N , then n(H) =

DN,n(V).

The individuals implied in the analysis are considered only with respect

to nuclear STR DNA loci, those commonly used for forensic identification.

We do not refer to a particular set of them since our findings are independent

of such choice.

In a locus we observe a genotype, i.e. two alleles inherited from the father

and the mother even if their origin is not recoverable. A random variable

X represents the uncertainty about genotypes and a determination of X is

simply indicated by x. The X probability function can be provided by two

kinds of models:
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• Segregation models: for a locus, they evaluate the probability of an off-

spring’s genotypes conditionally to their parents. The first mendelian

law specifies the genotype’ s probability of a child, c, given the geno-

types of their parents, m and f . If xc = (t, z), xm = (i, j) and

xf = (r, s), we have:

Pr(xc | xm, xf ) =
1

4
(I{i,r}(xc) + I{i,s}(xc) + I{j,r}(xc) + I{j,s}(xc)). (2)

If mutations or laboratory errors are involved, other more sophisticated

models are required to describe the segregation process Dawid et al.

(2007).

• Population models: they determine the probability of an individual’s

genotype conditionally to his \ her belonging to a specified population

in which the alleles’ probabilities, θ, are assumed known. The most

popular of such models derives by the conditions introduced by Hardy-

Weinberg for a population in equilibrium, Weir (1996). In this case the

genotypic probability is calculated from the probabilities of the alleles

in the population. For a generic individual m, the genotype probability
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is:

Pr(xm = (i, j) | θ) = θi · θj · (1 + I{i,j:i 6=j}{i, j}), (3)

If required, also in this case it is possible to make use of more sophisticated

models, as described in Evett & Weir (1998), to take into account possible

inbreeding and coancestry characteristics in the populations.

As a matter of notation XV = {XV
v : v ∈ V} refers to the recovered

victims genotypes; XF = {XF
f : f ∈ F} regards the families to which the

missing persons belong and can be split into XF
f = {XM

f , XO
f , XU

f }, according

to the family’s members introduced in section (3). We also define, with XM ,

the set of all the missing persons’ genotype random variables and, with XO

and XU , the sets of their observed and unobserved relatives.

3. The complete Model

To make inference about H consider the following decomposition of the

joint probability distribution of the random variables implied in the analysis:

Pr(XV , XF , H) = Pr(XV | XF , H)Pr(XF | H)Pr(H). (4)

Each factor in (4) can be simplified by some conditional independence

assertions.
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a) XF ⊥⊥ H, i.e. the identification hypothesis does not modify the proba-

bilistic relations among the genotype random variables of the familial

groups asking for the identification of their members. This implies:

Pr(XF | H) = Pr(XF ) (5)

b) Familial groups are defined to that they include all the observed and un-

observed individuals known to be related. Two families cannot share

their members, otherwise they are merged. This implies that the ran-

dom variables related to the genotypes of individuals belonging ti dif-

ferent families are independent:

Pr(XF ) =
∏

f∈F
Pr(XF

f ). (6)

c) To decompose Pr(XV | XF , H) consider that, ∀t, ∃! m such that H t
m =

q ∈ V . This implies XV
q ≡ XM

m , providing XV ⊥⊥ XO, XU | XM , H,

so that:

Pr(XV | XF , H) = Pr(XV | XM , H). (7)

A formal expression of the likelihood of the observed evidence, XV =

xV , XO = xO, conditionally to each of the H t states, derived from (4), (5)

and (7), is:
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Pr(xV , xO | H t) =
∑

XM ,XU

Pr(xV | XM , H t)Pr(xO, XU , XM). (8)

To evaluate (8), define as Mt
f = {m ∈Mf : H t

m ∈ V} the sets of missing

persons in the families having victims assigned by a specified H t, being these

families posed in the set F t = {f ∈ F : Mt
f 6= ∅}. Also let XMt

f = {Xm :

m ∈Mt
f} the random variables of the missing persons’ genotype in the f -th

family, being XVt
f the matching victims’ genotypes assigned by H t, so that:

Pr(xV | XM , H t) =
∏

f∈Ft

Pr(xVt
f |XMt

f , H t), (9)

and:

Pr(xVt
f |XMt

f , H t) =





1 if XMt
f = xVt

f

0 otherwise.

(10)

Taking account of (6) and (9), ∀t, the likelihood can be factorized as

follows:

Pr(xV , xO|H t) =
∏

f∈Ft

∑

XM
f ,XU

f

Pr(xVt
f |XMt

f , H t)Pr(xO
f , XU

f , XM
f )

·
∏

f∈F\Ft

∑

XM
f ,XU

f

Pr(xO
f , XU

f , XM
f ).

(11)
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Then, by (10):

∑

XM
f ,XU

f

Pr(xVt
f |XMt

f , H t)Pr(xO
f , XU

f , XMt
f ) = Pr(xO

f , XMt
f = xVt

f ), (12)

which is equivalent to a transfer of evidence from the victims to the

corresponding missing individuals. Finally, the likelihood results to be:

Pr(xV , xO|H t) =
∏

f∈Ft

Pr(xO
f , XMt

f = xVt
f )

∏

f∈F\Ft

Pr(xO
f )

∝
∏

f∈Ft

Pr(xO
f , XMt

f = xVt
f )

Pr(xO
f )

,

(13)

where the final expression is obtained by dividing for
∏

f∈F Pr(xO
f ), a

quantity independent of H t.

A more intriguing formulation of the likelihood for H t is possible if all the

missing persons belong to the same genetic population. In such case, (13)

can be divided by the probability to observe the recovered victims, assuming

that they belong to the considered genetic population, so that:

Pr(xV , xO|H t) ∝
∏

f∈Ft

Pr(XMt
f = xVt

f , xO
f )

Pr(xO
f )

∏
m∈Mt

f :Ht
m=v Pr(XMt

m = xVt
v )

∝
∏

f∈Ft

LRt(f).

(14)
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This representation shows how the likelihood for H t can be expressed by

the likelihood ratios LRt(f), f ∈ F t, the usual result of a kinship analysis.

More specifically, each LRt(f) is the ratio between the probability of the

familial observed evidence if the missing individuals are the assigned victims

and the probability of the evidence obtained evaluated according to the hy-

pothesis that the recovered victims are not the families’ missing individuals

but simply belong to the relevant genetic population.

The expression of the likelihood in terms of LR has the advantage to allow

for separate computations at familial level, paving the way to parallel calculus

strategies. Furthermore, (14) points out which families potentially have a

LR 6= 1, excluding those which structurally cannot provide information to

the hypothesis, always showing a LR = 1.

A noticeable case arises if, in a familial group, the relationships are known

but no familial evidence is available and more than one missing individual

perished in the MFI. If a certain H t assigns more than one victim to the

family, LR 6= 1, since the probability to observe the victims - evaluated

assuming the familial relationship - differs if the assumption of independence

holds.

Among non informative families, unclaimed missing persons are a typical
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example. The case is formally represented by a missing individual searched

by an empty family so that, if a victim is assigned, the corresponding LR is

equal to one. This consideration has two important consequences.

First of all we can restrict the computation of (14) only to the potentially

informative families and the associated missing individuals, respectively de-

fined by:

F∗ = {f ∈ F : n(Mf ) > 1 or Of 6= ∅}

M∗ = {m ∈Mf : F ∈ F∗},
(15)

being the complementary set of the non informative families defined by:

F+ = {f ∈ F : n(Mf ) = 1 and Of = ∅}

M+ = {m ∈Mf : F ∈ F+}.
(16)

It follows that, for a given H t, not all the families contribute to the

likelihood (14) but only those in the set F t ∩ F∗, so that the likelihood can

be written as:

Pr(xV , xO|H t) ∝
∏

f∈Ft∩F∗
LRt(f). (17)

The second important consequence is that many configurations differ only

for the victims allocated in F+, so they have the same likelihood.
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Formally, if H t 6= Hs but F t ∩ F∗ = F s ∩ F∗, then

Pr(xV , xO|H t) = Pr(xV , xO|Hs). (18)

Since the goal of the analysis is to provide inference on the identification

hypotheses concerning the members of the set M∗, it is convenient to parti-

tion each H t accordingly. So we have H t = [H t
∗, H

t
+], being H t

∗ = {H t
m : m ∈

M∗} of real interest and H t
+ = {H t

m : m ∈M+} a nuisance random vector.

If, for t 6= s, (18) holds, these configurations belong to the same inferen-

tial class. It is computationally convenient to evaluate the classes’ cardinality

since inferring on the hypotheses concerning the M∗ members, the contri-

bution of each class is simply equal to its cardinality times its members’

likelihood.

To evaluate the classes’ cardinality consider that, if two configurations are

in the same class, they have H t
∗ = Hs

∗ and H t
+ 6= Hs

+. So, how many members

are in the class depends on the number of ways H+ can appear, i.e. on the

possible assortments of the victims allocated among the M+ members. If

it is the number of victims assigned by H t
∗, then the class at which the t-th

configuration belongs has cardinality Dn(M+),n(V)−it .

To produce inference on hypotheses concerning the members of M∗, it
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is convenient to define a new hypothesis random variable, H∗, concerning

exclusively the members ofM∗. Let H t
∗ a generic configuration characterizing

an inferential equivalent class, formally defined by:

H t
∗ = {H t

m : m ∈M∗} where, H t
s =? or ∀g 6= s H t

g 6= Ht
s. (19)

If a uniform prior was posed on the H t’s, i.e. no information is assumed

on the identity of the recovered victims, inference on H t
∗ can be obtained by

marginalizing with respect to H t
+, thus obtaining:

Pr(H t
∗|xO, xV ) ∝ Dn(M+),n(V)−it

∏

f∈Ft∩F∗
LRt(f). (20)

To appreciate the saving in computational efforts, note that the cardinal-

ity of H∗ can be evaluated and compared with n(H).

The cardinality of H∗ can be evaluated defining i ∈ I as the num-

ber of possible victims allocated to the M∗, with I = {max(0, n(V) −

n(M+)), . . . , min(n(M∗), n(V))}. For each i the number of possible equiva-

lent classes is Cn(V),i · Cn(M∗),i · Pi, so that:

n(H∗) =
∑
i∈I

Cn(V),i · Cn(M∗),i · Pi. (21)
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When the missing individuals belong to more than one population, infer-

ence requires more efforts. Actually, the probability for the victims to simply

belong to the specified genetic population, introduced to achieve (14), now

varies from a configuration to another, depending on which genetic popula-

tion belong the missing persons who have victims assigned.

To take account of the population variety, introduce the setK = {1, . . . , k},

containing the population labels and let Π = {πi : i = 1, . . . , k} be the

proportions of missing individuals belonging to each population. Also, let

Gm = i ∈ K the indicator random variable assigning the m-th missing per-

son to the i-th genetic population, being G = {Gm : m ∈M}.

Now we re-derive the likelihood from the first line of (13), splitting the

product into informative and non informative families:

Pr(xV , xO|H t) ∝
∏

f∈Ft∩F∗

Pr(xO
f , XMt

f = xVt
f )

Pr(xO
f )

∏

f∈Ft∩F+

Pr(XMt
f = xVt

f ). (22)

If we multiply and divide (22) by the probability to observe the victims,

arranged according to F∗ and F+, we get the likelihood expression:
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Pr(xV , xO|H t) ∝
∏

f∈Ft∩F∗
LRt(f)

∏

m∈M∗
f :Ht

m=v

Pr(XMt
m = xVt

v )

·
∏

f∈Ft∩F+

∏

m∈M+
f :Ht

m=v

Pr(XMt
m = xVt

v ),

(23)

where the likelihood ratios for the informative families in (20) still appear

but the probability to observe the victims now depends on H t, and becomes

informative too.

Now consider the marginalization procedure required to obtain inference

about H∗. Similarly to the previous case, the probability to observe the

victims assigned to the members of M∗
f does not vary; on the opposite, de-

pending on the elements of M+ to which the nt = n(V) − it victims are

assigned, this probability varies according to the population which the un-

claimed missing individuals belong to. This fact obviously ruins the idea of

inferential equivalent classes but it is still convenient to express the likeli-

hood, related to each different H t
∗, by means of a single expression. This

is obtainable considering all the possible ways the nt unclaimed victims can

be allocated among the populations and the joint assignment probability G,

finally providing the required marginalization.

To achieve this result, first consider the number of unclaimed missing
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individuals in each population,

N+
i = Nπi −

∑

f∈M∗
f

∑

m∈f

I{i}(Gm), ∀i ∈ K, (24)

and their total number,

N+ =
∑
i∈K

N+
i , (25)

two quantities not depending on the configurations.

Once an H t
∗ has assigned it victims among the M∗ missing individuals,

the remaining nt have potentially (nt)k ways to belong to the k different

populations even if not all the population assignments are allowed, since

∀i, ∑f∈M+
f

∑
m∈f I{i}(Gm) ≤ N+

i .

For every arbitrary order of the nt victims, the joint probability of the

G indicator random variables depends on the N+
i , i = 1, . . . , k and on N+;

moreover if G is decomposed accordingly to the telescopic rule, and g−m

indicates the population assigned to the first m − 1 missing persons, it can

be shown that, for every H t belonging to a specific equivalent class:

Pr(G) =
∏

m∈M+
f :Ht

m=v

Pr(Gm|G−m = g−m) =

∏k
i=1 DN+

i ,nt
i

DN+,nt

, (26)

where, according to the order of the set M+, g−m indicates the values
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assumed by ∧nt

m=m+1Gm random variables, being nt
i the victims assigned by

the H t to the i-th population. If, again, on the H t a uniform prior is posed,

inference on H t
∗ can finally be derived from:

Pr(H t
∗|xV , xO) ∝

∏

f∈Ft∩F∗
LRt(f)

∏

m∈M∗
f :Ht

m=v

Pr(XMt
m = xVt

v )

·
∑
G1

· · ·
∑
Gnt







∏

m∈M+
f :Ht

m=v

Pr(XMt
m = xV

v |Gm)


 Pr(G)


 ,

(27)

which represents the generalization of (20) to k populations.

4. An alternative inferential strategy

Starting from the seminal paper of Dawid et al. (2002), an increasing

number of complex identification issues based on DNA evidence has recently

been dealt with by means of Probabilistic Expert Systems (PES), see for

example Mortera et al. (2003), Cavallini & Corradi (2006) and Vicard et

al. (2007).

A PES, Cowell et al. (1999), is constituted by a Directed Acyclic Graph

(DAG) and a set of conditional probability distributions, one for each of the

DAG nodes. Nodes represent the relevant random variables for the problem
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at hand and some of them are suitably linked by arrows or directed edges.

The term PES emphasizes that the required conditional probability distribu-

tions are provided by experts, who exploit results achieved in many sciences

with a view to provide a coherent system of knowledge. The main aim of

a PES is to get, efficiently, the posteriors of some interesting and unobserv-

able random variables; this goal differs from the one of a Bayesian Network,

which is mainly interested in learning the structure and parameters of the

stochastic system.

The main advantage of a PES is the possibility to include a detailed

description of many sources of uncertainty obtaining inference numerically,

i.e. without deriving inference analytically. In a PES, exploiting conditional

independence relations, inference is performed for groups of random variables;

the results are then conveyed among groups through separators, i.e. nodes

belonging to more than one group. A comparison between the analytical

and graphical approaches to inference about identification can be appreciated

likening how the issue is handled for DNA mixed profiles by (Evett & Weir

(1998), cap. 7) and (Mortera et al. (2003)).

Now we turn our attention to the representation of the proposed Complete

Model, Fig. (1). The graph embeds the conditional independence assertions
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implied in (6) and (7) and all the relations among missing individuals, their

relatives, the victims and the identification hypothesis.

Each graph represents a family, not being displayed the specific relation-

ships among the missing individuals and their relatives. An example of a

possible box content is in Fig. (4). Although this representation can pro-

duce, by means of a propagation algorithm, the same numerical results as

(21) or (27), computations are possible only if a small number of victims

and/or missing persons is involved. The difficulty is due to the ambition

of the model, which requires to evaluate and compare simultaneously all

the possible ways to assign the recovered victims to the missing persons.

This implies an extremely large number of states for the hypothesis random

variable; also, the conditional probability tables (CPT) for each XV rapidly

increase in dimension, depending on the number of H states and of miss-

ing persons. Making computations with CPTs of such dimension, is a task

beyond customary computational resources and this motivates our efforts to

derive inference from a familial base. Expressing the Complete model by

a PES, not only produces a vivid representation of the relationships among

the random variables according to the assertions of conditional independence

but it also allows to easily derive the Victim model and the Family model
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introduced in section (1).

The Victim model, Fig. (2), restricts the victim set to only one victim at a

time, attempting identification through searching among the missing persons.

This model is essentially the one proposed, for another identification issue,

by Cavallini & Corradi (2006), who also provided a way to manipulate

the network so that standard propagation algorithms were able to derive

inference.

The Family model, Fig. (3), only considers one request from family at a

time, trying to find, among the victims, the individuals lost by the family.

This approach is similar but not identical to the model proposed by Brenner

(2006) since he introduced, separately, all the possible subsets of victims, as

candidates to identification and not jointly as we propose.

5. A simulation-based example

In this section we desplay the results of an identification process carried

on 14 individuals belonging to 10 families and disappeared in a simulated

MFI. The example has been expressly built to concentrate, on a manageable

number of individuals and families, many of the difficulties which typically

arises in the field. The choice to simulate data gives us the opportunity to

check the results, since we known the identity of the victims.
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In each family, individual genotypes posed on the roots of the graph are

simulated from a genetic population; the remaining nodes are derived from

the first mendelian law. The missing persons’ DNA profiles are removed from

the families they belong to and posed in the victims’ data set, canceling their

identity.

In the example, three families, labeled 1, 7 and 10, look for only one

missing person posed in direct lineage with the claiming relatives; in other

four families, 3, 4, 5, and 6, one sibling is looking for another sibling; the

remaining three families, 2, 8 and 9, search more than one of their members,

but only the relationship among the missing individuals is assumed known,

not being available any familial donor.

Starting from uninformative prior probabilities on every possible config-

uration H, the exercise consists in assessing the identification probability

making use of the Victim, the Family and the Complete models. For each

missing person we provide the posterior probabilities to find the correspond-

ing victim or, if this latter has not been recovered yet, the probability that

none of the recovered victims is the missing person.

Three different stages of the identification process are conceived. The first

one figures out the availability of all the victims’ profiles and of some pieces
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of information about all the missing persons. This setting is called the Final

stage of the identification process. Reducing the number of the recovered

victims and of the claimed missing persons, we provide the Intermediate

stage. Finally a further decrease in information produces the Early stage.

The synthesis of the Final stage state of information is in Table (1), the

labels explained in Fig. (4) and the models’ results in Table (2).

First, note that every time the observed relatives and the claimed miss-

ing persons are in a direct lineage, all the models provide a high posterior

probability of correct identification. This happens because the first Mendel

law produces a large number of exclusions, eliminating all the victims incom-

patible with the relatives in the direct lineage. On the contrary, for those

cases where one sibling is looking for another sibling, the Victim Model is

not always successful. For instance, although the siblings in the 5-th family

share one allele on many loci (data not displayed), since these alleles are very

common in the population, the probability to identify the correct victim is

not very high. Identification is also difficult when the Victim Model is asked

to cope with the case concerning the missing members in families 2, 8 and

9. In these cases the possibility to find the corresponding victims relies on

considering more than one victim at time, so that, when the correct victims
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are introduced in the familial pedigree, they identify themselves exploiting

the familial relationships.

On the opposite, using the Family model, the possibility to identify simul-

taneously groups of victims as the missing individuals in each family, allows

to find the bodies corresponding to all the missing individuals in families 2

and 8. The limit of the Family model arises when it attempts to find the

victims corresponding to the ninth family’s missing persons. In this case,

the correct victims receive a small identification probability since other two

victims, V2 and V3, are in a stricter familial relationship, and have a higher

probability to belong to the same familial group than victims V12 and V13.

Since, using the Family model, all the families are considered separately, the

stricter structure of the missing persons in Family 2 with respect to Family

9 is not taken into account, assigning victims V2 and V3 to Family 2, where

the stricter relationship is required. Finally, the Complete model provides a

joint analysis of all the families and all the victims, and provides the correct

answer in every circumstance.

Now analyze the Intermediate stage of the identification process. Here,

victims labeled 8 and 14 are assumed not to be recovered and Families 4 and

7 have not claimed their relatives. Data are in Table (3) and results in Table
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(4).

First consider the results concerning the missing individuals posed in

parent-child relation with the claiming relatives. In Family 1, the available

data and results are unchanged. The 7-th family does not appear since no

claiming relatives are available. The 10-th family is still asking for iden-

tification, but the victim, corresponding to their missing relative, has not

been recovered yet. In this case, since the victim is not available, the Victim

model has nothing to say but the Family model and the Complete model

assign, correctly, a very high probability to the event of no identification.

In the Intermediate stage, the identification of the missing person belong-

ing to the fifth family is a difficult task also making use of the Family and the

Complete model. This happens because the very common profile of the sixth

victim provides support to the hypotheses to be one of the missing persons

whose corresponding victims were not recovered yet.

Finally, consider the Early stage of the identification process, represented

in table (5). Here, the 3-rd family does not claim its missing relative so

that no result is available. Also, in the fifth family, the searched sibling is

not among the victims as well as one sibling in each of the families 5, 8,

9, 10. Looking at (6), the unavailability of the victim in the fifth family is
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correctly detected by the Family model and the Complete model which assign

a high probability to the no-identification event. A decay of the identification

performances for the three missing persons in Family 8 happens because one

of the victims has not been recovered, so that the identification of the right

triplet is impossible. As a further consequence of the lack of information,

both the Families 2 and 9 have now two victims recovered, without other

familial evidence, so that a confusion between the two cases arises.

6. Conclusions

In this paper we have proposed a new model to identify the victim of a

MFI. The starting point is the representation of an identification hypothesis

comprising all the possible ways the recovered victims can be identified among

the claimed missing persons. Then, inference is derived conditionally to all

the evidence concerning the claiming families, the ethnicity of the missing

persons and the genetic profiles of the recovered victims.

Conditional independence relations are of paramount importance to de-

rive inference as it happens for graphical models which, unfortunately, can-

not be directly employed given the very high dimensions of some conditional

probability tables necessary to the analysis. Inference is analytically derived

without resorting to standard propagation algorithms.
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The identification of the victims of a MFI making use of DNA evidence

is a task whose level of difficulty varies according to the available familial

information and the sources of uncertainty we want to take into account.

Starting from familial information, if there is at least one direct lineage

between the observed relatives and only one missing person is claimed by

each family, all the identification models we discussed in this paper appear

to be very reliable.

If, instead, the search is among relatives indirectly related or more missing

persons are searched in the same family, the Family and the Complete Model

fit the problem much better than the Victim Model.

Identifying more than one familial group, whose familial relationships is

the only available evidence, is the most difficult task which can be safely

accomplished only by the Complete Model, being some conditions satisfied.

The most important is that of victims are recovered. Alternatively some

further characteristics must be introduced to differentiate families, the most

obvious being the gender of the missing persons. Another possibility is the

introduction of some Y chromosome STR loci, even if this evidence can be

used only if a paternal lineage is established between an observed member of

a family and the missing person.

29



Finally two other sources of uncertainty, not included here but of some

importance, must be mentioned.

First, some possible uncorrect specification of the kinship relations could

be intentionally or unintentionally provided. A probabilistic treatment of

such form of uncertainty is possible and outlined by Baio & Corradi (2007).

Then, a more detailed representation of the segregation process, through

a convincing mutation model among those considered by Vicard et al. (2007)

is attractive but some computational problems arise, related to the impossi-

bility to restrict the analysis in each family to the observed alleles by means

of a simple but computationally essential procedure, named recoding by Lau-

ritzen & Sheehan (2003).

Researches on these fields have reached some encouraging results and will

be provided in a forthcoming paper.
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Figure 1: PES representation of the Complete Model for the MFI identification
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Figure 2: PES representation of the Complete Model for the MFI identification
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Figure 3: PES representation of the Family model for the MFI identification
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Figure 4: A generic family representation
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Table 1: The Final stage available information

Family no. Available relatives Missing Persons Victims

1 S1, S2 P1 V1

2 −−− P1, S1 V2,V3

3 S1 S2 V4

4 S1 S2 V5

5 S1 S2 V6

6 S1 S2 V7

7 P1, S1 P2 V8

8 −−− S1, S2, S3 V9,V10,V11

9 −−− S1, S2 V12,V13

10 P1 S1 V14

Table 2: The Final stage: posterior probabilities of correct identification

Families 1 2 2 3 4 5 6 7 8 8 8 9 9 10

Missing Persons P1 P1 S1 S2 S2 S2 S2 P2 S1 S2 S3 S1 S2 S1

Victim Approach .99 .28 .28 .99 .85 .02 .99 1 .42 .42 .42 .24 .24 1

Familial Approach 1 .99 .99 .99 .88 .96 .99 1 .99 .99 .99 .02 .02 1

Complete Approach 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 3: The Intermediate stage available information

Family no. Available relatives Missing Persons Victims

1 S1S2 P1 V1

2 −−− P1, S1 V2, V3

3 S1 S2 V4

4 NA NA V5

5 S1 S2 V6

6 S1 S2 V7

7 NA NA NA)

8 −−− S1, S2, S3 V9,V10,V11

9 −−− S1, S2 V12,V13

10 P1 S1 NA

Table 4: The Intermediate stage posterior probabilities of correct identification

Families 1 2 2 3 5 6 8 8 8 9 9 10

Missing Persons P1 P1 S1 S2 S2 S2 S1 S2 S3 S1 S2 S1

Victim Model .99 .22 .22 .99 .01 .99 .33 .33 .33 .22 .22 -

Familial Model .99 .99 .99 .99 .06 .99 .99 .99 .99 .02 .02 .99

Complete Model 1 1 1 1 .11 1 1 1 1 1 1 .99
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Table 5: The Early stage available information

Family no. Available relatives Missing Persons Victims

1 S1S2 P1 V1

2 −−− P1, S1 V2, V3

3 NA NA V4

4 NA NA V5

5 S1 S2 NA

6 S1 S2 V7

7 NA NA NA

8 −−− S1, S2, S3 V9, V10, NA

9 −−− S1, S2 V12, NA

10 NA S1 NA

Table 6: The Early stage posterior probabilities of correct identification

Families 1 2 2 5 6 8 8 8 9 9

Missing Persons P1 P1 S1 S2 S2 S1 S2 S3 S1 S2

Victim Model .99 .18 .18 - .99 .18 .18 .18 .18 .18

Familial Model .99 .99 .99 .99 .99 .04 .04 .04 .01 .01

Complete Model .99 .22 .22 .99 .99 0.54 0.54 0.54 0.04 0.04
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