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SUMMARY 

 
The mean of a balanced ranked set sample is more efficient than the mean of a simple random 

sample of equal size and the precision of ranked set sampling may be increased by using an 

unbalanced allocation when the population distribution is highly skewed. The aim of this paper 

is to use the data of the Italian Fifth Agricultural Census driven in year 2000 and of the Italian 

Farm Structure Survey driven in year 2003 in order to compare several possible allocation rules 

and to identify the more appropriate one when several skewed distributed attributes of each 

sample are of interest. Our study shows that when an auxiliary variable correlated with the study 

variables is available and is used as ranking variable, a multivariate extension of the univariate 

unequal allocation models suggested for skew distributions by Kaur et al. (1997) may be a good 

choice. 

 

KEY WORDS: allocation rules; concomitant variables; multiple characteristics; skewness 

 

 

1. INTRODUCTION 

 

Observational economy can be achieved when is possible to identify a large number of 

sample units that represent the population of interest and yet only a carefully selected 

sub-sample is examined. This was first recognized by McIntyre (1952) who proposed 
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ranked set sampling (RSS) to estimate the mean pasture and forage yields. The RSS is a 

cost efficient alternative to the simple random sampling (SRS) for the population mean 

estimation. RSS performs better then SRS when the units corresponding to each rank 

are allocated equally and its performance further improves when appropriate unequal 

allocation is implemented. The variance of the balanced RSS mean estimator is not 

greater than the one of the SRS estimator regardless of either ranking errors or the shape 

of the underlying distribution of the study variable. This has been proven both 

theoretically and empirically by Dell and Clutter (1972) and Stokes (1977), among 

others. On the other hand, the unbalanced RSS - if not properly applied - may not 

produce the expected improvement respect to the balanced RSS and its performance 

may decrease becoming even worse of that of the SRS. The unbalanced RSS protocols 

are also sensible to possible errors in judgment ranking. 

Another element that may affect the choice between different RSS protocols is the 

number of attributes of each sample that are of interest. For estimating multiple 

characteristics using RSS, McIntyre (1952) suggests applying the RSS procedure to a 

single selected characteristic and taking one’s chance regarding the performance of the 

method for the other characteristics. Several other authors have considered estimating 

multiple characteristics using RSS and have introduced some possible solutions. This 

work compares some RSS protocols in order to find the more “advantageous” one in 

terms of variance reduction when the simultaneous estimation of the means of several 

skewed variables is of interest. 

The analysis is carried out through an empirical study based on the data of the Italian 

Fifth Agricultural Census driven in year 2000 and the data of the Italian Farm Structure 

Survey driven in year 2003. The sampling units are ranked on the basis of auxiliary 

variables provided by the frame. 

The next section briefly recalls the basic elements of each of the considered RSS 

protocols, the data and the empirical study are described respectively in section 3 and 4. 

Section 5 presents the results. Finally, some concluding remarks and open questions are 

given in section 6. 
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2. BASIC RANKED SET SAMPLING METHODOLOGY  

 

Originally the RSS methodology was developed considering the easier case in which 

only one variable is of interest. A ranked set sample can be considered as obtained from 

 sets of random sampling units, each of size m, by first ordering the units of 

each set and then, for , measuring the  ranked order statistics for  sets. 

When all the  are equal a balanced ranked set sample is obtained. In the other case 

several allocation rules have been proposed in literature to determine the  values. The 

sampled units are ordered according to the characteristic of interest, without quantifying 

it. Ranking could be based on judgment, visual inspection, covariates or any other 

method that does not require actual measurement of the units. 
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where  is the sum of the observations that were assigned to rank i. If all the  are 

greater than zero (1) is an unbiased estimator of the population mean. Moreover its 

variance is: 
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In the case of equal allocation the estimator (1) corresponds to the sample mean. 

In the Neyman unequal allocation, the number of sample units for each rank order 

statistic is allocated proportionally to its standard deviation (SD). Therefore this RSS 

protocol is the optimal one in terms of variance reduction of the mean estimator, but its 

implementation becomes impractical in many real applications in which the SD of order 

statistics are unavailable. If wrong values of the SD are used, the performance of RSS 
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based on Neyman allocation may become worse than that of the SRS. The negative 

effect of the approximate values for the standard deviation can be aggravate by errors in 

judgment ranking as an approximate good SD for an order statistics may not be good for 

a group of units erroneously ascribed to this order statistics. 

Kaur et al. (1997) suggested to make a “near” optimal allocation for the cases in which 

the underlying statistical distribution is unknown, and hence the standard deviations of 

the order statistics. The proposal consists of taking advantage of the knowledge of more 

easily available characteristics of the population such as skewness, kurtosis and 

coefficient of variation (CV). In the case of positively skewed or right-tailed distribution 

in , the variances of order statistics typically increase with the rank orders. 

According to this consideration Kaur et al. (1997) proposed two models of unequal 

allocation for skewed distributions that are conform with the Neyman’s optimal 

allocation. In the first one, referred as t-model, the largest order statistics is quantified 

 times more than the rest. In the second, referred as -model the two largest 

order statistics are quantified respectively by factors  and  (

( ∞,0 )

1≥t ),( ts

s t ts ≤≤1 ) more than the 

rest. The optimal values for the parameters t  and  of these allocation models are 

function of the variances of the order statistics, which are not generally available. Their 

unavailability was indeed the motivation of these models. In order to avoid this 

difficulty Kaur et al. (1997) suggest a rule of thumb based on skewness, kurtosis, or CV 

of the underlying distribution which allows to identify near optimal t  or  values. 

),( ts

),( ts

If more variables are of interest, the amount of correlation between them affects the 

choice between different RSS protocols. If all the study variables are correlated, a 

balanced ranked set sample with respect to one variable may be appropriate for the other 

variables as well. The efficiency gains for the ranked set sample mean with respect to 

the mean of a simple random sample for the variables not explicitly considered in the 

sample selection process is a function of their correlation with the only study variable 

considered in the sample selection process. Indeed, for each of them the ranking errors 
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will increase and consequently the efficiency gains will decrease as the correlation 

coefficient decreases. 

The application to the multiple characteristics case of the unbalanced RSS based on 

Neyman allocation is not obvious because the optimal allocation for one variable may 

be not the optimal one for another variable even if the two variables are correlated. 

For correlated positively skewed variables the RSS protocol of Kaur et al. (1997) with 

respect to one variable may be appropriate for the other variables as well. The 

application of one of the two unequal allocation models proposed by Kaur et al. (1997) 

to one study variable ensures the larger efficiency gains over equal allocation when the 

parameters of the models are optimal. Moreover, it also performs better than equal 

allocation when approximate values of the model parameters are used and such values 

are inside a reasonably broad interval that depends on the underlying distribution. In the 

multiple variable case efficiency gains may be obtained as well for all the study 

variables because the chosen t-  parameters with respect to one variable should be 

reasonably close to the optimal t-  parameters of the others. 

),( ts

),( ts

In the paper we assume the Kaur et al. -model but we does not use the method that 

they suggest to estimate the  parameters. We consider an alternative allocation rule 

given that we are dealing with a multivariate problem and that we are not willing to 

make any assumption on the parameters of the distributions. We propose to equally split 

a portion of the sample units in all the ranks and to assign the remaining units to the two 

largest order statistics, more to the largest than to the second largest. 

),( ts

),( ts

Specific RSS protocols for the simultaneous estimation of the mean of two or more 

characteristics are present in literature; the bivariate version of balanced RSS proposed 

by Al-Saleh and Zheng (2002) and the RSS protocol proposed by Ridout (2003) are two 

of them. Both these two multivariate RSS protocols are referred to situations in which 

the balanced allocation is suitable. However, even if for skewed variables an unbalanced 

allocation may be preferable, they are considered for their peculiarity of taking into 

account explicitly more variables during the ranking process. 
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3. THE DATA 

 

The data on Italian farms may be considered a natural setting to apply RSS protocols 

and to investigate how they work when the mean estimation of more skewed variables 

is of interest. 

The Italian Statistical Institute (ISTAT) ten-yearly drives an Agricultural Census and 

two-yearly drives a sample Farm Structure Survey (FSS). Both in the census and in the 

FSS the unit of observation is the farm and for each farm are registered the data on the 

surface areas allocated to different crops. In the FSS, until 2005, the productions of each 

crop were also observed for each farm. 

In our study we assume as population the set of the farms in the province of Florence 

included in the Fifth Italian Agricultural Census driven in the year 2000 and pick as 

study variables the variables in the year 2003 (the last year for which, at the time of 

writing, the data of the FSS are available) related to the main cultivation of the 

Florentine area, that is the surface areas allocated to grapevines and olives and the 

corresponding productions. The arable crops surface, even if it is not much cultivated in 

the area, has been included in the set of study variables because it allows us to evaluate 

the performance of the RSS solutions with low correlated variables. 

We use as ranking criterion known variables for all the farms that are correlated with 

the study variables: the surface area allocated to olives, grapevines and arable crops and 

the European size unit (UDE), all registered at 2000 Census. 

The census information are, obviously, available for all the farms. The information 

collected with FSS are available only for the sampled farms. As in our study more RSS 

protocols are empirically compared using Monte Carlo experiments we need to know 

the study variables for all the farms, thus for the farms not sampled they are simulated 

in the following way: 

a) using the Census information, the population is first divided into clusters according 

to the surface area allocated to olives, grapevines and arable crops, the UDE, and 
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the utilized agricultural surface (SAU), all at year 2000, requiring at least one farm 

from the 2003 FSS in each group; 

b) then the missing values of the study variables for the non FSS farms are imputed 

through a hot deck method based on random donor. 

Table 1 summarizes the main characteristics of the study variables with respect to the 

whole population. It is evident that all the study variables have a highly positively 

skewed distribution and in all the cases the density is concentrated in the last 

percentiles. 

 

Table 1: Distribution analysis of the study variables 
 

Distribution 
Analysis 

olives 
surface 

2003 (are) 

olives 
production 

2003 (q) 

grapevines 
surface  

2003 (are) 

grapevines 
production 

2003 (q) 

arable crops 
surface 

2003 (are) 
Mean 169.007 12.451 122.672 80.678 314.103 
CV 3.005 3.830 4.474 4.197 4.441 
Skewness 12.344 13.824 14.969 11.285 12.966 
Kurtosis 299.035 289.876 430.826 193.962 270.470 
Q1 (25%) 0 0 0 0 0 
Median (50%) 60 2 10 7 23 
Q3 (75%) 176 10 60 40 112 
95% 560 60 416 320 1200 
99% 2000 154.5 2400 1452 5429 
Max 15700 1500 26477 10000 49000 

 

Table 2 shows the correlation coefficients between the study variables and the ranking 

variables. The table exhibits a modest correlation between the arable crop cultivation 

and the other two cultivations. The use of the RSS strategies that use only one variable 

for ranking and consider it as concomitant for the others may be improper as a 

consequence of this modest correlation in case all the cultivations are considered 

equally relevant. From Table 2 we can also note that the correlation coefficients 

between the UDE and each study variable are in between the correlation coefficients of 

each study variable and the surface allocated to the same crop at year 2000, and the 

correlation coefficients between each study variable and the surface allocated to a 
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different crop. Therefore, the use of UDE as ranking variable may be a useful 

compromise in the case that all the study variables are assumed equally relevant. 

 

Table 2: Correlation among variables 
 

Pearson 
Correlation 
Coefficient 

olives 
surface 

2003 

olives 
production 

2003 

grapevines 
surface 

2003 

grapevines 
production 

2003 

arable crops
surface 

2003 
UDE 2000 0.642 0.407 0.758 0.708 0.537 
olives 
surface 2000 0.849 0.483 0.529 0.479 0.218 
grapevines 
surface 2000 0.541 0.368 0.882 0.789 0.229 
arable crops 
surface 2000 0.244 0.149 0.362 0.379 0.895 

 

 

4. THE EMPIRICAL STUDY 

 

The use of a RSS sampling design needs choosing how to rank the units, how many 

ranks to consider and how to allocate the units in the ranks. 

In our study we examine several RSS scenarios. In all the scenarios the size of the 

sample is 300 (roughly equal to the number of units sampled in the 2003 FSS) and the 

ranking is based on census variables known for all the population units. The rules that 

we consider are: a) equal allocation, b) Neyman allocation, c) unequal allocation models 

for skew variables proposed by Kaur et al. (1997), d) bivariate allocation model of Al-

Saleh and Zheng (2002), e) the allocation rule of Ridout (2003). For each allocation rule 

different settings are explored. 

For the equal allocation scheme we assume each study variable as the most relevant one 

at the time. When the variable of interest is a surface allocated to a crop we use as 

ranking variable the same variable at census time and when it is a production of a crop 

we use the corresponding surface area allocated to the crop at census time. We also 

investigate what happens using as a ranking variable census UDE that is correlated with 
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all the study variables (see Table 2). 

For the Neyman allocation, we approximate the SD of the study variables with the SD 

of the same variable at census time. Assuming in turn each of the three surface area 

allocated as more relevant we use the corresponding census variable both as ranking 

variable and to estimate the SD which is then used to establish the number of units in 

each rank. 

Concerning the allocation models suggested for skewed variables by Kaur et al. (1997), 

in our study we adopt the idea that for a positively skewed variable the variance of the 

mean estimator may be reduced observing more units at the right tail that is in 

correspondence of the last or two last order statistics. Unlike Kaur et al. however, we 

assume not to know anything else on the distribution of the study variable besides its 

not quantified skeweness so we are unable to calculate neither the optimal t or  

parameters or their approximate values. Therefore, we simply test more allocation 

scenarios in which a different constant number of unit k is allocated in each rank and the 

remaining units are assigned one-third to the second last rank and two-thirds to the last 

rank. The scenarios varies also in the number of ranks and in the ranking variable. 

),( ts

For the bivariate allocation model of Al-Saleh and Zheng (2002) four possible scenarios 

are considered: the simultaneous use for ranking of census olives surface and census 

grapevines surface with m (the number of rank for each variable) equal to 3 and to 10 

and the simultaneous use for ranking of census olives surface and census arable crops 

surface with m equal to 3 and to 10. The mean estimation is extended to all the study 

variables even if we use a bivariate allocation model that supposes to deal only with 2 

study variables, assuming these as concomitant for all the others. We are aware that the 

bivariate model can be theoretically generalized to the case of multiple variables but its 

practical extension may be unfeasible in real situations as the number of units to use for 

the ranking will be intractable. 

The allocation model of Ridout (2003) during the selection process explicitly counts the 

number of units assigned to each rank for each study variables so does not agree with 

mean estimation of variables not considered in the selection process. 
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In our study, we firstly apply the Ridout allocation rule considering as study variables 

only that concerning olives and grapevines and then adding also the surface allocated to 

arable crops which mean in the first case is not estimable. 

To evaluate the relative performance of mean estimator associated to each RSS 

scenarios 10.000 samples are selected for each of them as well as for the SRS procedure 

and for each sample the mean estimate is computed. For each scenario the variance of 

the mean estimator is empirically estimated using the corresponding set of 10.000 

samples and the relative precision respect to the SRS is evaluated on the basis of the 

relative precision index ( ) ( )srsrss VarVar μμ ˆˆRP = . All sampling procedures are with 

replacement and use the same sequence of random values. 

 

 

5. RESULTS 

 

The simulation clearly indicates that a proper application of a RSS procedure based on 

the use of auxiliary variables can lead to substantial efficiency gains with respect to 

SRS. 

For the equal allocation we use the values m=3, 10, 15, 30 as the number of ranks. In 

Table 3 we omit the results for m=15, as they follow a pattern similar to the others and 

lie, as expected, between m=10 and m=30. Its known in literature that the relative 

variance reduction increases when the number of ranks increases, however in many real 

situation it is too expensive or not feasible to use a number of ranks even greater than 3. 

In our case, being the ranking based on variables available from list, choose a “big” 

value for the number of ranks is not a problem. 

As the number of ranks increases, also the ranking errors may increase. This could 

reduce the efficiency gain attainable by the use of a larger number of ranks. However, 

the correlation between the study variables and the ranking variables could mitigate this 

second effect.
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Analyzing Table 3 we note that when the ranking variable is UDE we obtain a relative 

variance reduction for each study variable that is intermediate between the reduction 

obtained when census variable referred to the same crop is used for ranking and the 

reduction obtained ranking with a variable referred to another crop. This result confirms 

that the gain in precision depends on the correlation between the study and ranking 

variables. This fact is further corroborated by the other results reported in the table. 

 

Table 3: Relative precision for the equal allocation. 
 

Equal Allocation 

Ranking 
Variable 

olives 
surface 

2003 

Olives 
production 

2003 

grapevines
surface 

2003 

grapevines
production 

2003 

arable crops 
surface 

2003 

Average 
Relative 

Precision 
UDE 2000 

m=3 0.9611 0.9564 0.9142 0.9445 0.9358 0.9424 
m=10 0.8705 0.9181 0.8241 0.8538 0.8755 0.8684 
m=30 0.7780 0.8912 0.7094 0.7345 0.7662 0.7759 

olives surface 2000 
m=3 0.9614 0.9411 0.9270 0.9540 0.9517 0.9470 
m=10 0.8419 0.9029 0.8717 0.9078 1.0097 0.9068 
m=30 0.7074 0.8798 0.8231 0.8564 0.9387 0.8411 

grapevines surface 2000 
m=3 0.9902 0.9691 0.9229 0.9477 0.9621 0.9584 
m=10 0.9266 0.9207 0.8228 0.8434 0.9706 0.8968 
m=30 0.8595 0.9175 0.7037 0.7277 0.9324 0.8282 

arable crops surface 2000 
m=3 1.0000 0.9601 0.9441 0.9682 0.9198 0.9592 
m=10 0.9665 0.9432 0.8970 0.9170 0.8333 0.9114 
m=30 0.9343 0.9330 0.8620 0.8695 0.6552 0.8508 

 

The simulation results of the Neyman allocation show that when wrong values of the 

SD are used its performance - in terms of relative variance reduction - may become 

worse than that of the SRS. Table 4 reports that, for m=30, the Neyman allocation based 

on an approximate SD works better then the equal allocation for the primary interest 

variable. For the other variables the performance is often worse than the SRS despite the 

fact that the correlation coefficient between the variables is more than 0.5 (see Table 2). 
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Neyman allocation is also affected by ranking errors due to the use of an approximate 

SD. Keeping the correlation between variables constant, the relative efficiency is lower 

if the study variables and/or ranking variables have higher variability (see Table 4, 

ranking with olives surface vs. ranking with grapevines surface). As for the ranking 

errors, allocation errors tend to increase with the increase of the number of ranks. The 

total effect of the two types of error tends to dump the efficiency gains due to the use of 

a greater number of ranks, which could even lead to an overall efficiency loss. 

Specifically, as documented in Table 4, in our experiment as the number of ranks 

increases efficiency gets worse and it begins to increase when the number of ranks is 

greater than 10. 

 

Table 4: Relative precision for the Neyman allocation. 
 

Neyman Allocation 

Ranking 
Variable 

olives 
surface 

2003 

Olives 
production 

2003 

grapevines
surface 

2003 

grapevines
production 

2003 

arable crops 
surface 

2003 

Average 
Relative 

Precision 
olives surface 2000 

m=3 0.6254 1.0856 0.9389 1.1745 3.2974 1.4244 
m=10 0.8418 1.9133 1.9282 2.532 8.0762 3.0583 
m=30 0.4208 1.1550 0.8824 1.2304 4.1720 1.5721 

grapevines surface 2000 
m=3 2.8946 4.1282 1.0691 1.5008 7.0176 3.3221 
m=10 4.1621 5.5708 1.2975 1.8727 9.4925 4.4791 
m=30 2.2118 2.5428 0.6321 0.9382 4.5172 2.1684 

arable crops surface 2000 
m=3 3.6207 4.3395 2.0937 2.2007 0.5579 2.5625 
m=10 6.9305 7.9763 3.7103 4.0344 0.5156 4.6334 
m=30 2.9656 3.4823 1.5914 1.7393 0.2339 2.0025 

 

In order to get some further insights on the performance of this allocation rule, a Monte 

Carlo experiment on the Neyman allocation based on exact SD, is also performed. The 

result, not included in the tables, is obviously optimal for the estimate of the variable 

used for ranking (for example, the relative precision of olives surface is 0.06). For the 
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other variables the previous argument applies. 

The largest variance reduction on average for all study variables is obtained with our 

multivariate and approximate interpretation of allocation rule suggested for skewed 

variables by Kaur et al. (1997). Therefore, the skewness of the study variable 

distribution could significantly influence the performance of RSS even if it is not 

exactly quantified and the design parameters - specifically the pair  - are 

approximated. In particular, from Table 5 we note that using census UDE as ranking 

variable, for m=30 as well as m=15 and m=10, it works better on average for each 

study variables than all the other allocation models. The only exceptions are for m=10 

and k=3 and for m=15 and k=3. From the table we also note that when m increases the 

best repartition of units occurs when the number of units selected in each rank and the 

portion of the units that remains to be assigned both decreasing. This probably because 

when the number of ranks increases the variability within the ranks that are not on the 

right tail decreases so we observe less units in each one of them but the total number of 

units assigned to this ranks does not decreases with the same rapidity. We verify that for 

each value of m the better performance corresponds to the repartition of the units nearer 

to the optimal  parameters of Kaur et al. (1997) for all the study variables, 

replacing the variances of order statistics with the variances of the “approximate” order 

statistics obtained using UDE at year 2000 as ranking variable. It is obvious that in real 

situations is very difficult or impossible to calculate the  values according to this 

observation. However, the robustness of this kind of allocation rule with respect to other 

parameter choices makes it a very appealing solution. Moreover, as can be noted 

especially from the last four rows of Table 5, this allocation rule provides a significant 

gain in precision also when the correlation coefficient between the ranking variable and 

the study variable is not so high (about 0.5) and fails when the correlation is lower (see 

arable crops vs. olive surface). In the table we show the results for census olives surface 

as ranking variable only with m=30 as the simulations with m=3, 10, 15 follow the 

same pattern. 

),( ts

),( ts

),( ts
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Table 5: Relative precision for the rules based on Kaur et al. (1997). 
 

Rule based on Kaur et al. 

Ranking 
Variable 

olives 
surface 

2003 

olives 
production 

2003 

grapevines
surface 

2003 

grapevines
production 

2003 

arable crops 
surface 

2003 

Average 
Relative 

Precision 
UDE 2000 – m=3 

k=3 0.8522 2.1515 0.5704 0.7556 0.6873 1.0034 
k=5 0.7028 1.4934 0.5395 0.6557 0.6289 0.8041 
k=7 0.6481 1.2314 0.5297 0.6173 0.5988 0.7251 
k=9 0.6164 1.0755 0.5255 0.5976 0.5884 0.6807 
k=12 0.5920 0.9454 0.5221 0.5800 0.5728 0.6425 
k=15 0.5846 0.8734 0.5241 0.5755 0.5711 0.6257 
k=20 0.5783 0.7996 0.5328 0.5759 0.5716 0.6116 
k=25 0.5863 0.7571 0.5427 0.5815 0.5776 0.6090 
k=50 0.6542 0.7334 0.6237 0.6506 0.6509 0.6626 

UDE 2000 – m=10 
k=3 0.6891 1.6058 0.3391 0.5091 0.6841 0.7654 
k=5 0.4768 1.0676 0.2778 0.3806 0.4785 0.5363 
k=7 0.4003 0.7984 0.2428 0.3190 0.3873 0.4296 
k=9 0.3541 0.6777 0.2364 0.2919 0.3526 0.3825 
k=12 0.3417 0.5790 0.2428 0.2843 0.3369 0.3569 
k=15 0.3365 0.5288 0.2674 0.3036 0.3480 0.3569 
k=20 0.3734 0.5103 0.3280 0.3557 0.3799 0.3895 
k=25 0.5100 0.6143 0.4676 0.4810 0.4992 0.5144 

UDE 2000 – m=15 
k=3 0.5889 1.3397 0.3083 0.4512 0.6624 0.6701 
k=5 0.4150 0.8623 0.2286 0.3184 0.4314 0.4511 
k=7 0.3415 0.6686 0.2046 0.2693 0.3617 0.3691 
k=9 0.3020 0.5389 0.2022 0.2556 0.3388 0.3275 
k=12 0.3045 0.4794 0.2269 0.2618 0.3318 0.3209 
k=15 0.3485 0.4877 0.2914 0.3202 0.3676 0.3631 

UDE 2000 – m=30 
k=3 0.4747 0.9363 0.2687 0.3729 0.5719 0.5249 
k=5 0.3247 0.6170 0.1951 0.2561 0.4007 0.3587 
k=7 0.2893 0.4832 0.1921 0.2371 0.3392 0.3082 
k=9 0.3822 0.5279 0.3110 0.3430 0.4263 0.3981 

olives surface 2000 – m=30 
k=3 0.3990 1.0005 0.8624 1.1196 2.1199 1.1003 
k=5 0.2759 0.6169 0.5428 0.6821 1.2518 0.6739 
k=7 0.2483 0.5178 0.4443 0.5450 0.9129 0.5337 
k=9 0.3276 0.5371 0.5067 0.5713 0.8271 0.5540 
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In the cases in which all the study variables are equally relevant but moderately 

correlated, the Ridout method (Table 6) and the bivariate method (Table 7) could be 

valid alternatives to our modification of the rule of Kaur et al. (1997) and the Ridout 

method should be preferred. Another reason for which they could be preferable may be 

in case in which not all the study variables are skewed. To investigate this possibility 

we create a symmetric variable correlated with all the ranking variables (its correlation 

coefficient varies from 0.4 with arable crops surface to 0.6 with UDE). The simulations 

implemented adding this study variable confirm that the protocols that generate an equal 

or nearly equal allocation are the best for this variable. However the gain in precision 

respect to SRS obtained with our multivariate and approximated Kaur et al. model 

appears to be relevant. For example with m=30 and using UDE as ranking variable, the 

RP index varies from 0.7963 when k=3 and 0.2797 when k=9. 

 

Table 6: Relative precision for the Ridout method. 
 

Ridout Method 

Ranking 
Variable 

olives 
surface 

2003 

olives 
production 

2003 

grapevines
surface 

2003 

grapevines
production 

2003 

arable crops 
surface 

2003 

Average 
Relative 

Precision 
olives and grapevines surface 2000 

m=3 0.8200 0.6611 0.6173 0.6216 - 0.6800 
m=10 0.6005 0.5969 0.5723 0.5660 - 0.5839 
m=30 0.6098 0.6304 0.5445 0.5464 - 0.5828 

olives, grapevines and arable crops surface 2000 
m=3 1.1878 0.8358 0.8586 0.8517 0.6480 0.8764 
m=10 0.6495 0.5996 0.6009 0.6044 0.5592 0.6027 
m=30 0.6584 0.6601 0.6800 0.6822 0.5378 0.6437 

 

Comparing Table 3 and Table 7, we note that the bivariate equal allocation model 

performs better than the univariate one based on the same m-value. This confirms the 

statement of Al-Saleh and Zheng (2002) that when the study variables are unrelated the 

bivariate RSS is equivalent - in terms of efficiency of the mean estimation of each 
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variable - to the univariate unbalanced RSS; otherwise, if the variables are correlated, it 

works better. 

 

Table 7: Relative precision for the bivariate method. 
 

Bivariate Method 

Ranking 
Variable 

olives 
surface 

2003 

olives 
production 

2003 

grapevines
surface 

2003 

grapevines
production 

2003 

arable crops 
surface 

2003 

Average 
Relative 

Precision 
olives and grapevines surface 2000 

m=3 0.9218 0.9656 0.8958 0.9099 0.9804 0.9347 
m=10 0.7151 0.8613 0.6357 0.6750 0.9314 0.7637 

olives and arable crops surface 2000 
m=3 0.9348 0.9720 0.9441 0.9595 0.9382 0.9497 
m=10 0.7959 0.9219 0.8226 0.8292 0.7451 0.8229 

 

 

6. FINAL REMARKS 

 

The results of this study clearly indicate that the use of ranking information that may be 

readily available allows to improve the efficiency of the mean estimator. The efficiency 

gain depend both on the correlation between the study and ranking variables and on the 

allocation rule. For the unequal allocation the efficiency improvements also depend 

upon the knowledge of the distribution parameters used for the allocation itself and the 

robustness of the model respect to the use of approximate parameter values. 

Taking into account the skewness in the allocation model may lead to benefits in the 

case of a positively skewed study variable; even if the degree of skewness is unknown. 

The number of study variables, the correlation between them, and the relevance 

assigned to each one of them are relevant in the choice between different allocation 

rules when more variables are of interest. The novel method proposed in this work as an 

extension of the rule of Kaur et al. (1997) obtains the best performance in terms of 

average reduction of the relative precision when most variables of interest are skewed. 
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If we compare the relative precision coefficients of each variable, the examined specific 

RSS protocols for multivariate cases may be sometimes a valid alternative. 

Moreover, our proposal based on that suggested by Kaur et al. (1997) is robust respect 

to the use of not optimal values for its parameters. We are not aware of any theoretical 

justification for this property. Perhaps the allocation of some units in all the ranks 

protects from possible ranking errors which could increase the variability within each 

rank. At the same time preserving a portion of units for the two last ranks agree with the 

increasing of the variances of order statistics with the rank orders for positively skewed 

variables. 

We believe that this robustness property makes the procedure useful when we are not 

able to allocate the units precisely and is therefore an appealing alternative to other 

methods that require exact knowledge of the study variable distribution. 
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