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Marginal Distributions of Maximum-likelihood estimator
when one or two components of the true parameter are on

the boundary of the parameter space

Marco Barnabani1

Dipartimento di Statistica “G. Parenti”
Universit̀a di Firenze
barnaban@ds.unifi.it

Abstract: When the true parameter lies on the boundary of the parameter space it is
difficult to investigate the asymptotic distribution of maximum likelihood estimator. In
some relatively simple cases it is a mixture of truncated normal distributions. In this
paper we shall be concerned with the the marginal distributions of maximum likelihood
estimator when one or two components of the true parameter are zero and can be on the
boundary of the parameter space. We found that these distributions are (mixtures of)
normal or truncated normal multiplied by ”skew functions” which distort the symmetry
of the normality. Some of these are skew-normal

Keywords: non-regular problem; marginal density function; truncated multivariate nor-
mal; skew function; skew-normal

1 Introduction

To obtain the asymptotic distribution of maximum likelihood estimator, a standard as-
sumption is that the true parameter is in the interior of the parameter space. This as-
sumption allows one to make use of the fact that the first order conditions hold, at least
asymptotically. When the true parameter lies on the boundary of the parameter space the
asymptotic properties of maximum likelihood estimator are no more valid. In some rel-
atively simple cases the asymptotic distribution is not normal but mixtures of truncated
normal distributions while in more complicate cases it is much more difficult to inves-
tigate. This type of ”non-regularity” has been considered by several authors, Chernoff
(1954), Moran (1971), Chant (1974), Shapiro (1985), Self and Liang (1987) whose paper
reviewed all the earlier contributions and provided a uniform framework for the large sam-
ple distribution of maximum likelihood estimator. Following Self and Liang’s approach,
recently Andrews (1999) established the asymptotic distribution of extremum estimators
when the true parameter may be on the boundary providing general high level assump-
tions under which the results hold. In this paper we follow Self and Liang (1987) and we
shall be concerned with the situation when one or two components of the true parameter

1Viale Morgagni, 59 - 50134 Firenze.

1



are zero and can be on the boundary of the parameter space. The asymptotic distribution
of maximum likelihood estimator in this two cases is given in Moran (1971) and Chant
(1974). In this paper we investigate the marginal distributions of the estimator. We found
that these distributions are (mixtures of) normal or truncated normal multiplied by ”skew
functions” which distort the symmetry of the normality. Some of these are skew-normal
as given by Azzalini and Dalla Valle (1996). We don’t investigate the weights of the
mixtures referring for this argument to the book of Sen and Silvapulle (2005).

2 Preliminaries

Let X1, · · ·Xn be iid observations from a population with densityf(x; θ). Let ln(θ) de-
note the log-likelihood withθ ∈ Θ ⊂ Rk whereΘ is not necessarily open andB the
Fisher information matrix in an observation. The true parameterθ0 will be assumed to be
a boundary point. Self and Liang (1987) assumed the classical Cramér conditions on the
family of distributions - distinct values ofθ corresponding to distinct probability distrib-
utions, existence and positive definiteness ofB, existence of the first three derivatives of
ln(θ) with respect toθ, uniform boundedness of the third-order derivatives of the loglike-
lihood by a function of finite expectation. Moreover they assumed the convexity of the
parameter space in a neighbourhood ofθ0.

Under the above conditions they showed

1. As sample sizen → ∞ there exists a sequence of points,θ̂n ∈ Θ, which locally
maximizeln(θ) and that converges toθ0 in probability.

2. n1/2(θ̂n − θ0) = Op(1).
3. The loglikelihood functionln(θ) can be approximated by

ln(θ) = ln(θ0) + (1/2)Z ′
nHn(θ0)Zn − (1/2)qn(n1/2(θ − θ0)) + Rn(θ)

where

Hn(θ0) := −n−1D2ln(θ0) Zn := H−1
n (θ0)n

−1/2Dln(θ0)

qn(λ) := (λ− Zn)′Hn(θ0)(λ− Zn) λ ∈ Rk

Rn(θ) = nOp(1)‖θ − θ0‖3

D = [∂/∂ θi] i = 1, ..., k is the column vector of a differential operator;D2 = [∂2/∂ θi∂ θj]
i, j = 1, ..., k is the matrix of second derivatives.

4. n1/2(θ̂n − θ̃n) = op(1) whereθ̃n = argminθ∈Θ qn(n1/2(θ − θ0)).

Therefore, the asymptotic distribution of̂θn can be derived from that of̃θn. With
respect to this, note that

min
θ∈Θ

qn(n1/2(θ − θ0)) = min
T∈n1/2(Θ−θ0)

qn(T )

2



where

n1/2(Θ− θ0) := {T ∈ Rk; T = n1/2(θ − θ0), for some θ ∈ Θ}

and if the shifted and rescaled parameter space,n1/2(Θ − θ0), can be approximated by a
convex cone,Λ, it can be shown that

min
T∈n1/2(Θ−θ0)

qn(T ) = min
T∈Λ

qn(T ) + op(1) and n1/2(θ̂n − θ0)
d→ T̂

with T̂ such that

q(T̂ ) = inf
T∈Λ

q(T ) where q(T ) := (T − Z)′B(T − Z) and Z ∼ Nk(0, B
−1)

In sum the asymptotic distribution of̂θn is given by the distribution of a random vector
T̂ that minimizes a stochastic quadratic function over a convex coneΛ where the coeffi-
cients of the quadratic function have a multivariate normal distribution.

The vectorT̂ is the projection ofZ onto the convex coneΛ with respect to the metric
B, and is denoted byΠ(Z, Λ); thus

T̂ := Π(Z, Λ) = arg min
T∈Λ

(T − Z)′B(T − Z)

therefore, the above results state thatn1/2(θ̂n − θ0)
d→ Π(Z, Λ) which is a (non linear)

function of a multivariate normal distribution defined onΛ.
Often in statistical applications we are interested on the asymptotic distribution of a

subvector ofθ that lies in a cone. With regard to this, partitionθ, T andZ as follows,
θ = [α′ β′]′, T = [T ′

α T ′
β]′ andZ = [Z ′

α Z ′
β]′ whereα ∈ Rp, β ∈ Rq, p + q = k and

assumeΛ is given by a product setΛα × Rq whereΛα ⊂ Rp is a cone. This assumption
on Λ requires that the true parameterβ0 is not on a boundary. Then it has been shown
(Andrews, 1999) that

n1/2(α̂n−α0)
d→ T̂α, n1/2(β̂n−β0)

d→ T̂β = B−1
22 Gβ−B−1

22 B21T̂α, T̂ =

[
T̂α

T̂β

]
(1)

where [
Gα

(p×1)
Gβ

(q×1)

]
=

[ B11
(p×p)

B12
(p×q)

B21
(q×p)

B22
(q×q)

] [
Zα

(p×1)
Zβ

(q×1)

]
, B−1 =

[
B11

(p×p)
B12

(p×q)
B21

(q×p)
B22

(q×q)

]
,

qα(T̂α) = inf
Tα∈Λα

qα(Tα) with qα(Tα) := (Tα − Zα)′(B11)−1(Tα − Zα)

and
Zα ∼ Np(0, B

11) with B11 = (B11 −B12B
−1
22 B21)

−1 (2)
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From (1) it emerges that the asymptotic distribution ofβ̂n depends on whetherα0 is
on a boundary if and only ifB21 6= 0.

If Λα = Rp which holds if α0 is not on a boundary, theninfTα∈Λα qα(Tα) = 0,
T̂α = Zα, T̂β = Zβ andT̂ = Z that corresponds to the standard case.

If Λα is a linear subspace ofRp, which holds in the case of linear or nonlinear equality
constraints then̂Tα = PαZα wherePα is a B11-orthogonal projector onΛα, a matrix
that does not depend onZ. For example, ifΛα = {Tα ∈ Rp; QTα = 0} whereQ is a
matrix of full row rank less or equal top, thenPα = Id − B11Q′(QB11Q′)−1Q where
Id is the identity matrix of appropriate order. The distribution ofT̂α is given by a linear
transformation of a multivariate normal distribution,T̂α ∼ Np(0, PαB11). By (1), T̂β =

Zβ + HZα with H = −B21Q′ (QB11 Q′)−1
Q andT̂β ∼ Nq(0, B

22 + HB12). Moreover,

Cov
(
T̂α, T̂β

)
= B12 +B11H ′ andCov

(
T̂β, T̂α

)
= B21 +HB11. This is the result given

by Aitchison and Silvey (1958).
For other definitions ofΛα the solution might be rather arduous. Later on we shall

confine to the (polyhedral) cone given by equality/inequality,

Λα = {Tα ∈ Rp; QTα = 0, RTα ≤ 0} (3)

with the matrix[Q′ R′]′ of full row rank less or equal top. This cone holds in many
practical situations.

When the cone is given by (3), the distribution of the projectionΠ(Zα, Λα) could
be investigated by simulatingZα and computinĝTα with a quadratic programming algo-
rithm. This approach can be relatively simple but can not be of great help to know the
analytic distribution ofT̂α.

Alternatively we could proceed by describing the cone, to compute the projection of
Zα onto the appropriate edge and to investigate the distribution of the projection.

3 An analytic form of the projection

Let the constraint matrixR of the cone (3) be of dimensionr×p. LetJ = {1, · · · ,m} be
a subset of{1, · · · , r}; J may be empty. LetI = {1, · · · , r}\J . LetRJ andRI denote the
matrices with their rows given by the rows ofR indexed byj ∈ J andi ∈ I respectively
and denote withFJ = {Tα ∈ Rp; VJTα = 0, RITα ≤ 0}, VJ = [Q′ R′

J ]′ a face ofΛα.
WhenJ = {∅}, FJ = Λα, whenJ = {1, · · · , r}, FJ is the vertex of the cone. LetJ be
the set of all subsetsJ which gives rise to a face.J has at most2r elements. We assume
thatFJ has no redundant columns. Letri(FJ) = {Tα ∈ Rp; VJTα = 0, RITα < 0} be
the relative interior ofFJ . Then, there exists a collection of faces ofΛα, say{FJ , J ∈ J}
such that the collection of their relative interiors,{ri(FJ), J ∈ J}, forms a partition ofΛα

(see Lemma 3.13.5 of Sen and Silvapulle (2005), p.128). Further,
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T̂α =
∑

J∈J
(PJZα) IEJ

(Zα) :=
∑

J∈J
Z(J)

α IEJ
(Zα), IEJ

(Zα) =

{
1 if Zα ∈ EJ ,
0 if Zα /∈ EJ .

(4)

whereEJ = {Zα ∈ Rp; PJZα ∈ ri(FJ)
⋂

(Id−PJ)Zα ∈ F⊥
J ∩Λ0

α}, Λ0
α is the polar cone,

PJ = Id − B11V ′
J(VJB11V ′

J)−1VJ is the projection matrix onto the linear space spanned
by FJ , Id is the identity matrix of appropriate order .

By (1), T̂β = Zβ−B−1
22 B21

(
T̂α − Zα

)
. Because−B−1

22 B21 = B21 (B11)
−1, Zα =

∑
J∈J ZαIEJ

andZβ =
∑

J∈J ZβIEJ
, by substitution,̂Tβ can be written as

T̂β =
∑

J∈J

[
Zβ −B21

(
B11

)−1
(Zα − PjZα)

]
IEJ

(Zα) :=
∑

J∈J
Z

(J)
β IEJ

(Zα) (5)

Of course (4) and (5) are a possible representation of the estimator. Andrews (1999)
proposed a similar formula for̂Tα defining a different indicator function but we found
some problems with his results in some specific cases.

Stacking inT̂ the above two components,T̂α andT̂β, we get

T̂ =

[
T̂α

T̂β

]
=

∑

J∈J
Z(J)IEJ

(Zα) with Z(J) =

[
Z

(J)
α

Z
(J)
β

]
(6)

which is the form of the estimator we refer to.
As to the probability distributions of the eventŝT ≤ t, T̂α ≤ tα and T̂β ≤ tβ we

observe that (Self and Liang, 1987)

T̂ ≤ t =
⋃

J∈J

(
Z(J) ≤ t ∩ Zα ∈ EJ

)
(7)

T̂α ≤ tα =
⋃

J∈J

(
Z(J)

α ≤ tα ∩ Zα ∈ EJ

)
(8)

T̂β ≤ tβ =
⋃

J∈J

(
Z

(J)
β ≤ tβ ∩ Zα ∈ EJ

)
(9)

therefore,

Pr
(
T̂ ≤ t

)
=

∑

J∈J
Pr

(
Z(J) ≤ t/Zα ∈ EJ

)
wJ (10)

Pr
(
T̂α ≤ tα

)
=

∑

J∈J
Pr

(
Z(J)

α ≤ tα/Zα ∈ EJ

)
wJ (11)

Pr
(
T̂β ≤ tβ

)
=

∑

J∈J
Pr

(
Z

(J)
β ≤ tα/Zα ∈ EJ

)
wJ (12)

5



where

wJ = Pr (Zα ∈ EJ) = Pr
(
PJZα ∈ ri(FJ)

⋂
(Id− PJ)Zα ∈ F⊥

J ∩ Λ0
α

)

Formulas (4)-(6) and (10)-(12) allow to investigate (at least in simple case) the probability
distributions and the marginal distributions of the projector when the cone is given by (3).

4 Application I: Λ = Λα × Rq with Λα = R+ × Rp−1

4.1 Analytic form of the estimator

BecauseΛα involves only an inequality constraint on the first component of the vector
α, we can assumeΛα = R+ and Λ = R+ × Rk−1 consideringα as a scalar and lumping
in with β the other components ofα. Then, the cone can be written asΛα = {Tα ∈
R;−Tα ≤ 0} and the polar cone asΛ0

α = {y ∈ R; y ≤ 0}. There are two faces indexed
by J = {∅}, F{∅} = Λα andJ = {1} whereF{1} is the vertex. Moreover,F⊥

{∅} ∩ Λ0
α =

{y ∈ R; y = 0} andF⊥
{1} ∩ Λ0

α = {y ∈ R; y ≤ 0}. The projectors areP{∅} = 1 and
P{1} = 0 with E{∅} = {Zα; Zα > 0} andE{1} = {Zα; Zα ≤ 0}. Therefore, by (4) we get

T̂α = Z({∅})
α IE{∅}(Zα) + Z({1})

α IE{1}(Zα) (13)

whereZ
({∅})
α = Zα ∼ N (0, b11), Z

({1})
α is a degenerate random variable with unit mass

distribution at zero andB−1 :=

[
b11 B12

B21 B22

]

The component̂Tβ. By (5) we have

T̂β = Z
({∅})
β IE{∅}(Zα) + Z

({1})
β IE{1}(Zα) (14)

with Z
({∅})
β = Zβ, Z

({1})
β =

(
Zβ − B21

b11
Zα

)
.

Stacking the above two components (formula (6)) we get

T̂ = Z IE{∅}(Zα) + Z({1})IE{1}(Zα) (15)

which is the result of Andrews (1999), Self and Liang (1987).

4.2 Distributions

4.2.1 The distribution of T̂

By (10)

Pr
(
T̂ ≤ t

)
= Pr (Z ≤ t/Zα > 0) Pr (Zα > 0) + Pr

(
Z({1}) ≤ t/Zα ≤ 0

)
Pr (Zα ≤ 0)

6



with Pr (Zα > 0) = Pr (Zα ≤ 0) = 1/2.
The eventZ ≤ t/Zα > 0 has ak-variate truncated normal probability density func-

tion, denoted asTNk (0, B−1, zα > 0). In the mathematical appendix we show that the
denominator of the truncated density,D =

∫ +∞
0

∫
Ik−1

exp
(−1

2
z′Bz

)
d z where

∫
Ik−1

is a
(k−1)-dimensional Riemann integral onIk−1 = {zβ;−∞ < zβ[i] < +∞; i = 1, · · · , k − 1}
can be written asD = (1/2) (2π)k/2 |B|−1/2. We denote withzβ[i] the ith component of
the vectorzβ.

Therefore,TNk (0, B−1, zα > 0) is 2 Nk (0, B−1) IE{∅}(Zα) which is the result given
by Moran (1971).

Consider the eventZ({1}) ≤ t/Zα ≤ 0. Because of the normality of the vectorZ and

the fact thatCov
[(

Zβ − B21

b11
Zα

)
, Zα

]
= 0 the variablesZ({1})

β andZα are independent.

Then, Pr
(
Z({1}) ≤ t/Zα ≤ 0

)
= Pr

(
Z({1}) ≤ t

)
. After simple algebra we can show

that the variance-covariance matrix of the random vectorZβ− B21

b11
Zα is equal toB−1

22 then(
Zβ − B21

b11
Zα

)
∼ Nk−1

(
0, B−1

22

)
. Therefore,Z({1}) ∼ Nk(0, B

∗) with B∗ =

[
0 0
0 B−1

22

]

(see Chant (1974), Moran (1971)).

4.2.2 The distribution of T̂α

The distribution ofT̂α has a continuous part and a discrete part. By (13) or by applying
directly (11) we have

Pr
(
T̂α ≤ tα

)
= Pr (Zα ≤ tα/Zα > 0) Pr (Zα > 0) + Φ(0)Pr (Zα ≤ 0)

where the eventZα ≤ tα/Zα > 0 has an half-normal probability density function,
TN (0, b11, zα > 0) andΦ(0) is a degenerate distribution at0 (Gourieroux and Monfort,
1989). For notational convenience we defineN(0, 0) the normal density with mean and
variance equal to zero to be the density that takes the value zero with probability one.

4.2.3 The distribution of T̂β

We have,

Pr
(
T̂β ≤ tβ

)
= Pr (Zβ ≤ tβ/Zα > 0) Pr (Zα > 0)

+ Pr

[(
Zβ − B21

b11
Zα

)
≤ tβ/Zα ≤ 0

]
Pr (Zα ≤ 0)

The variableZβ ≤ tβ/Zα > 0 has a(k−1)-dimensional skew-normal density function
as given by Azzalini (1985), with location parameter zero, scale matrixB22 and shape
parameterδ = (B22)

−1
B21/

√
(b11 −B12 (B22)

−1
B21). Following the notation used by

7



Azzalini (1985),Zβ/Zα > 0 ∼ SNk−1(0, B
22, δ) and the marginal densities are skew-

normal as well because of proposition2 of Azzalini and Capitanio (1999).

As to the second component ofPr
(
T̂β ≤ tβ

)
, in section 4.2.1 we showed that(

Zβ − B21

b11
Zα

)
∼ Nk−1

(
0, B−1

22

)
.

Summarizing the results of this section we can say that the probability distributions of
the projectorT̂ and of its componentŝTα andT̂β, are mixtures of two distributions with
weights1/2 and densities given in the following table.

Pr(Zα > 0) = 1/2 Pr(Zα ≤ 0) = 1/2

Conditioning Variable Conditioning Variable

Estimators Zα > 0 Zα ≤ 0

T̂ TNk (0, B−1, zα > 0) Nk (0, B∗)

T̂α TN (0, b11, zα > 0) N (0, 0)

T̂β SNk−1(0, B
22, δ) Nk−1

(
0, B−1

22

)

Table 1: Table of probability densities

5 Application II: Λ = Λα × Rq with Λα = (R+)2 × Rp−2

5.1 Analytic form of the estimator

As in the previous case, we setΛα = (R+)
2 lumping in withβ the other components ofα.

Then,Λα = {Tα ∈ R2;−Tα ≤ 0} and the polar cone is given byΛ0
α = {y ∈ R2; By ≤

0}. There are four faces,J = {{∅}, {1}, {2}, {1, 2}}. We introduce the notationZα[ i ],
i = 1, 2 to denote theith element of the vectorZα. In this Section we refer to the matrix
B−1 partitioned as follows,

B−1 =

[
B11

2×2
B12

2×(k−2)
B21

(k−2)×2
B22

(k−2)×(k−2)

]
=




b11 b12 B13

b21 b22 B23

B31 B32 B33




8



We have the following regions

E{∅} =
{
Zα ∈ R2; Zα[ 1 ] > 0 , Zα[ 2 ] > 0

}

E{1} =

{
Zα ∈ R2; Zα[ 1 ] ≤ 0 , Zα[ 2 ]− b21

b11
Zα[ 1 ] > 0

}

E{2} =

{
Zα ∈ R2; Zα[ 1 ]− b12

b22
Zα[ 2 ] > 0 , Zα[ 2 ] ≤ 0

}

E{1,2} =
{
Zα ∈ R2; CZα ≤ 0

}
with C =

[
1 − b12

b22

− b21

b11
1

]

The projectors are

P{∅} = Id, P{1} =

[
0 0

− b21

b11
1

]
, P{2} =

[
1 − b12

b22

0 0

]
, P{1,2} = 0

Then, by (4),T̂α may be written as

T̂α = Zα IE{∅}(Zα) + Z({1})
α IE{1}(Zα) + Z({2})

α IE{2}(Zα) + Z({1,2})
α IE{1,2}(Zα) (16)

whereZ
({1,2})
α is a degenerate random vector at zero,

Z({1})
α =

[
0

Zα[ 2 ]− b21

b11
Zα[ 1 ]

]
and Z({2})

α =

[
Zα[ 1 ]− b12

b22
Zα[ 2 ]

0

]

By (5),

T̂β = Zβ IE{∅}(Zα) + Z
({1})
β IE{1}(Zα) + Z

({2})
β IE{2}(Zα) + Z

({1,2})
β IE{1,2}(Zα) (17)

where

Z
({1})
β =

(
Zβ − B31

b11
Zα[1]

)
, Z

({2})
β =

(
Zβ − B32

b22
Zα[2]

)
,

Z
({1,2})
β =

[
Zβ −B21

(
B11

)−1
Zα

]

Then, stacking the above two components we getT̂ .

5.2 Distributions

5.2.1 The distribution of T̂

The probability distribution of the event̂T ≤ t is given by (10) withwJ = Pr (Zα ∈ EJ).
We analyze the four components of the estimator.

9



WhenJ = {∅} the event to be analyzed isZ ≤ t/Z1 > 0 ∩ Z2 > 0. It has ak-variate
truncated normal probability density function,TNk (0, B−1, zα > 0) whose denomina-
tor is D =

∫
02

∫
Iq

exp
(− 1

2
z′Bz

)
d z where02 = {zα; 0 < zα[i] < +∞; i = 1, 2},

Iq = {zβ;−∞ < zβ[i] < +∞; i = 1, · · · , q}, q + 2 = k. In the mathematical appendix
we show thatD = (2π)(k/2) |B|−1/2 1

2

(
1− arccos r12

π

)
wherer12 is the correlation between

Zα[1] andZα[2]. Therefore,

TNk

(
0, B−1, zα > 0

)
=

2Nk (0, B−1)

1− arccos r12

π

IE{∅}(Zα)

The density ofZ({1})/Zα[ 1 ] ≤ 0 ∩ Z
({1})
α [ 2 ] > 0. We first observe that




Zα[1]

Z
({1})
α [2]

Z
({1})
β


 =




1 0 0
−b21/b11 1 0
−B31/b11 0 1







Zα[1]
Zα[2]
Zβ


 with




Zα[1]
Zα[2]
Zβ


 := Z ∼ Nk

(
0 , B−1

)

(18)
By a theorem on linear transformations of multivariate normal distributions, we have




Zα[1]

Z
({1})
α [2]

Z
({1})
β


 ∼ Nk


 0 ,




b11 0 0
0 σ2 γ′

0 γ Ω





 (19)

whereσ2 = b22−b21(b11)−1b12, γ = B32−B31(b11)−1b12 andΩ = B33−B31(b11)−1B13.
Given above results, it is immediate to observe that

Pr
(
Z({1}) ≤ t / Zα[1] ≤ 0 ∩ Z({1})

α [2] > 0
)

= Pr
(
Z({1}) ≤ t / Z({1})

α [2] > 0
)

therefore, the density ofZ({1})/Z
({1})
α [2] > 0 is ak − 1 truncated normal density,

TNk−1

(
0, Σ, z({1})

α [2] > 0
)

= ξ exp

(
−1

2
z({1})′Σ−1z({1})

)
, Z({1})

α [2] > 0

with

Σ =

[
σ2 γ′

γ Ω

]
and ξ−1 =

1

2
(2π)(k−1)/2 (det Σ)1/2

Putting the results together, the density ofZ({1})/Z
({1})
α [2] > 0 is2Nk−1 (0, Σ) ; Z

({1})
α [2] > 0.

The density of the eventZ({2}) ≤ t/Zα[ 2 ] ≤ 0 ∩ Z
({2})
α [ 1 ] > 0. As in the previous

case we first observe that



Z
({2})
α [1]
Zα[2]

Z
({2})
β


 =




1 −b12/b22 0
0 1 0
0 −B32/b22 1







Zα[1]
Zα[2]
Zβ




10



therefore




Z
({2})
α [1]
Zα[2]

Z
({2})
β


 ∼ Nk


 0 ,




ψ11 0 ψ13

0 b22 0
ψ31 0 ψ33





 and (20)

[
Z

({2})
α [1]

Z
({2})
β

]
∼ Nk−1

(
0 , Ψ :=

[
ψ11 ψ13

ψ31 ψ33

])
(21)

with ψ11 = b11−b12 (b22)
−1

b21, ψ13 = B13−B23 (b22)
−1

b12, ψ31 = B31−B32 (b22)
−1

b21

andψ33 = B33 −B32 (b22)
−1

B23. Above result implies that

Pr
(
Z({2}) ≤ t/Zα[ 2 ] ≤ 0 ∩ Z({2})

α [ 1 ] > 0
)

= Pr
(
Z({2}) ≤ t / Z({2})

α [1] > 0
)

therefore, the density ofZ({2})/Z
({2})
α [1] > 0 is ak − 1 truncated normal density with

variance-covariance matrix equal toΨ. As in the previous case, the denominator is equal
to 1

2
(2π)(k−1)/2 (det Ψ)1/2 and

TNk−1

(
0, Ψ, z({2})

α [1] > 0
)

= 2Nk−1 (0, Ψ) ; Z({2})
α [1] > 0

Finally, we analyze the density of the eventZ({1,2}) ≤ t/CZα ≤ 0 which occurs when
the regionEJ is indexed byJ = {1, 2}. We recall that

Z({1,2}) =

[
Z

({1,2})
α

Z
({1,2})
β

]
and CZα =

[
Z

({2})
α [1]

Z
({1})
α [2]

]

with Z
({1,2})
β ∼ Nk−2

(
0, B−1

22

)
, B−1

22 = B22 − B21 (B11)
−1

B12. Simple algebra allows
one to show that

[
C 0
0 I

] [
Zα

Z
({1,2})
β

]
∼ Nk

(
0 ,

[
CB11C ′ 0

0 B−1
22

])

Then,Pr
(
Z({1,2}) ≤ t/CZα ≤ 0

)
= Pr

(
Z({1,2}) ≤ t

)
andZ({1,2}) ∼ Nk (0, B∗) with

B∗ =

[
0 0
0 B−1

22

]
.

11



5.2.2 The distribution of T̂α

From (11) we have

Pr
(
T̂α ≤ tα

)
=Pr

(
Zα ≤ tα/Zα ∈ E{∅}

)
Pr

(
Zα ∈ E{∅}

)
+

Pr
(
Z({1})

α ≤ tα/Zα ∈ E{1}
)
Pr

(
Zα ∈ E{1}

)
+

Pr
(
Z({2})

α ≤ tα/Zα ∈ E{2}
)
Pr

(
Zα ∈ E{2}

)
+

Pr
(
Z({1,2})

α ≤ tα/Zα ∈ E{1,2}
)
Pr

(
Zα ∈ E{1,2}

)

Then, the bivariate density ofZα ≤ tα/Zα ∈ E{∅} is TN2 (0, B11, zα > 0). The marginal
densities of the truncated normal,Zα, are not truncated normal. In the mathematical
appendix we show that

fZα[1] =
2N (0, u−1) (1− F (a))

1− arccos r12

π

= N
(
0, u−1

)
g1 (zα[1]) ; zα[1] > 0

and

fZα[2] =
2N (0, v−1) (1− F (b))

1− arccos r12

π

= N
(
0, v−1

)
g2 (zα[2]) ; zα[2] > 0

whereu = a11 − a12(a22)
−1a21, v = a22 − a21(a11)

−1a12, a = (a22)
−1/2a21zα[1],

b = (a11)
−1/2a12zα[2], r12 is the correlation betweenZα[1] and Zα[2], F (.) is the dis-

tribution function of aN(0, 1) and(B11)
−1

:= A =

[
a11 a12

a21 a22

]
.

The functionsg1 (zα[1]) andg2 (zα[2]) can be thought of as ”skew functions”. They
distort the symmetry of the truncated normal density functions.

The eventZ({1})
α ≤ tα/Zα ∈ E{1}. We first observe that

[
Zα[1]

Z
({1})
α [2]

]
∼ N2

(
b11 0
0 b−1

22

)

whereb−1
22 = b22 − (b21)

2
/b11 andZ

({1})
α [2] = Zα[ 2 ]− b21

b11
Zα[ 1 ]. Therefore,

Pr
(
Z({1})

α [2] ≤ tα / Zα[1] ≤ 0 ∩ Z({1})
α [2] > 0

)
=

Pr
(
0 < Z

({1})
α [2] ≤ tα

)

Pr
(
Z

({1})
α [2] > 0

)

and the density ofZα[ 2 ]− b21

b11
Zα[ 1 ] is TN

(
0, b−1

22 , z
({1})
α [2] > 0

)
.

We can apply the same line of reasoning to the eventZ
({2})
α ≤ tα/Zα ∈ E{2} finding

thatZα[ 2 ] andZ
({2})
α [1] = Zα[ 1 ]− b12

b22
Zα[ 2 ] are independent and the density ofZ

({2})
α [1]

is TN
(
0, b−1

11 , z
({2})
α [1] > 0

)
.

12



5.2.3 The distribution of T̂β

By (12) the probability of the event̂Tβ ≤ tβ is given by,

Pr
(
T̂β ≤ tβ

)
=Pr

(
Zβ ≤ tβ/Zα ∈ E{∅}

)
Pr

(
Zα ∈ E{∅}

)
+

Pr
(
Z

({1})
β ≤ tβ/Zα ∈ E{1}

)
Pr

(
Zα ∈ E{1}

)
+

Pr
(
Z

({2})
β ≤ tβ/Zα ∈ E{2}

)
Pr

(
Zα ∈ E{2}

)
+

Pr
(
Z

({1,2})
β ≤ tβ/Zα ∈ E{1,2}

)
Pr

(
Zα ∈ E{1,2}

)

Then, the density ofZβ ≤ tβ/Zα ∈ E{∅} is given by

fZβ
=

∫
02

exp
(−1

2
z′Bz

)
dzα

D
; zβ ∈ Rq (22)

in the mathematical appendix we show that it can be written as

fZβ
=

2 Nq(0,W
−1) F2(c)

1− arccos r12

π

= Nq(0,W
−1) h2(zβ); zβ ∈ Rq (23)

wherec = −B−1
11 B12zβ = [ c1 c2 ]′, W = B22−B21B

−1
11 B12 andF2 (c) =

∫ +∞
−c1

∫ +∞
−c2

N2

(
y, 0, B−1

11

)
d y.

Again,h2(zβ) can be thought of as a ”skew function” that serves to distort the symmetry
of the normal density.

The marginal density of a component of the vectorZβ ≤ tβ/Zα ∈ E{∅}. Without loss
of generality let us derive the marginal density of the last component ofZβ, denotedZk,
subject to the conditionZα ∈ E{∅}. Assume the following partitions ofZ andB.

Z =

[
Zα

Zβ

]
:=




Zα

Z∗
β

Zk


 :=

[
Z1

(k−1)×1
Zk
1×1

]

lumping in withZ1 any component different fromZk, and

B =

[ B11
(k−1)×(k−1)

b12
(k−1)×1

b21
1×(k−1)

b22
1×1

]
with B11 =

[
C11
2×2

C12
2×(k−3)

C21
(k−3)×2

C22
(k−3)×(k−3)

]

To derive the marginal density ofZk, fZk
, we must integrate out the remaining variables

of the numerator offZβ
, that is

fZk
=

∫
02

∫ +∞
−∞ · · · ∫ +∞

−∞ exp
(−1

2
z′Bz

)
dz1

D
; zk ∈ R (24)

13



In mathematical appendix we show thatfZk
is the same as (23) withq = 1. That is,

fZk
=

2 N(0, W−1) F2(c)

1− arccos r12

π

:= N(0, W−1) h2(zk); zk ∈ R (25)

wherec = −B−1
11 b12zk = [ c1 c2 ]′, W = b22−b21B

−1
11 b12 andF2 (c) =

∫ +∞
−c1

∫ +∞
−c2

N2 (y, 0, V −1) d y,
V = C11 − C12C

−1
22 C21.

The marginal density of theith component ofZβ ≤ tβ/Zα ∈ E{∅} is again given by
(25) once the matrixB has been modified changing theith row with thekth row and the
ith column with thekth column.

The density of the eventZ({1})
β ≤ tβ/Zα ∈ E{1}. By (18) and (19) it is immediate to

observe that

Pr
(
Z

({1})
β ≤ tβ / Zα[1] ≤ 0 ∩ Z({1})

α [2] > 0
)

= Pr
(
Z

({1})
β ≤ tβ / Z({1})

α [2] > 0
)

therefore, the density ofZ({1})
β is skew-normal (Azzalini and Dalla Valle, 1996),

Z
({1})
β /Z({1})

α [2] > 0 ∼ SNk−2 (0, Ω, α)

with α = Ω−1γ (σ2 − γ′Ω−1γ)
−1/2.

The marginal densities ofZ({1})
β ≤ tβ/Zα ∈ E{1} are skew-normal too.

The density of the eventZ({2})
β ≤ tβ/Zα ∈ E{2}. As in the previous case, by (20) we

observe that

Pr
(
Z

({2})
β ≤ tβ / Zα[2] ≤ 0 ∩ Z({2})

α [1] > 0
)

= Pr
(
Z

({2})
β ≤ tβ / Z({2})

α [1] > 0
)

and the density ofZ({2})
β is skew-normal (Azzalini and Dalla Valle, 1996),

Z
({2})
β /Z({2})

α [1] > 0 ∼ SNk−2 (0, ψ33, α)

with α = ψ−1
33 ψ13

(
ψ11 − ψ13ψ

−1
33 ψ31

)−1/2
.

As in the previous case, the marginal densities ofZ
({2})
β are skew-normal.

Finally we investigate the density of the eventZ
({1,2})
β ≤ tβ/Zα ∈ E{1,2}. By the

results of section 5.2.1 it is immediate to observe thatZ
({1,2})
β ∼ Nk−2

(
0, B−1

22

)
with

marginal normal densities.

Conclusions

In this paper we investigated the asymptotic distributions and marginal distributions of
maximum likelihood estimator when the parameter space isΘ = R+ × Rk−1 or Θ =
(R+)

2 × Rk−2 and the true parameter may be on the boundary. We found that these
distributions are (mixtures of) normal or truncated normal multiplied by ”skew functions”
which distort the symmetry of the normality. Some of these distributions are skew-normal.
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Mathematical Appendix

To compute the marginal densities we use repeatedly the Sheppard’s result

P (X1 > 0, X2 > 0) =
1

2

(
1− arccos r12

π

)

wherer12 is the correlation betweenX1 andX2, and the solution of the multiple integral
∫

Ik

exp [− (x′Bx + x′b + b0)] d x1 · · · d xk

15



whereB is a positive definite matrix,b ann×1 vector of constant,b0 a scalar constant and
Ik = {x;−∞ < xi < +∞; i = 1, · · · , k}. The solution of the above multiple integral
can be found in Graybill (1983) and is given by (Theorem 10.5.1, p. 342)

exp

(
1

4
b′B−1b− b0

) ∫

Ik

exp

[
−1

2
(x− c)′R(x− c)

]
d x1 · · · d xk

whereR = 2B, c = −(1/2)B−1b.

• Consider the denominator of the truncated normal distribution.D can be written
as, ∫

02

(∫

Iq

exp

[
−

(
z′β

B22

2
zβ + z′β b + b0

)]
d zβ

)
d zα

whereb = B21zα, b0 = 1
2
z′αB11zα, 02 = {zα; 0 < zα[i] < +∞; i = 1, 2} and

Iq = {zβ;−∞ < zβ[i] < +∞; i = 1, · · · , q}.
We first apply Graybill’s theorem to the multiple integral in round parentheses. We
have the following result,

(2π)(k−2)/2 |B22|−1/2 exp

(
−1

2
z′αU zα

)
d zα

with U = B11 − B12 (B22)
−1 B21. Then, we apply Sheppard’s result getting the

following expression for the denominator,

D = (2π)k/2 |B|−1/2 1

2

(
1− arccos r12

π

)

If the double integral from0 to+∞were a simple integral thenD = (1/2) (2π)k/2 |B|−1/2.
• The marginal densityfZα[2]. Because the density ofZα ≤ tα/Zα ∈ E{∅} is truncated

normal, the marginal ofZα[2] is given by,

fZα[2] =

∫ +∞
0

exp (−1
2
z′αAzα) dzα[1]∫

02
exp (−1

2
z′αAzα) dzα

; zα[2] > 0

where(B11)
−1

:= A =

[
a11 a12

a21 a22

]
. By Sheppard’s result we get the denomina-

tor, ∫

02

exp (−1

2
z′αAzα) dzα = 2π |A|−1/2 1

2

(
1− arccos r12

π

)
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The numerator is an application of Graybill’s theorem,

∫ +∞

0

exp (−1

2
z′αAzα) dzα[1] =

=

∫ +∞

0

exp

[
−

(
zα[1]2a11

2
+ zα[1]a12zα[2] +

zα[2]2a22

2

)]
dzα[1] =

= a
−1/2
11 (2π)1/2 [1− F (b)] exp

(
−1

2
z2

α[2] v

)

wherev = a22−a21(a11)
−1a12, b = (a11)

−1/2a12zα[2], r12 is the correlation between
Zα[1] andZα[2] andF (.) is the distribution function of aN(0, 1).
The ratio between the numerator and the denominator gives the marginal density.
The same approach is used to obtain the marginal densityfZα[1].

• The densityfZβ
. Consider, first, the numerator of (22). By Graybill’s theorem we

have,
∫

02

exp

[
−

(
z′α

B11

2
zα + z′α b + b0

)]
dzα

= exp

(
1

4
b′

(
B11

2

)−1

b− b0

)∫

02

exp

[
−1

2
( zα − c)′B11(zα − c)

]
dzα

with b = B12zβ, b0 = 1
2
z′βB22zβ, c = −B−1

11 B12zβ = [ c1 c2 ]′. Then, the numerator
is given by

N = exp

(
−1

2
z′β W zβ

)
F2

(
B−1

11 B12zβ

)

whereW = B22 −B21B
−1
11 B12 andF2 (c) =

∫ +∞
−c1

∫ +∞
−c2

N2

(
y, 0, B−1

11

)
d y.

• The densityfZk
. The main burden is to compute the numerator of (24). We have

∫

02

∫

Iq−1

exp

(
−1

2
z′Bz

)
d z1

=

∫

02

∫

Iq−1

exp

[
−

(
z′1

B11

2
z1 + z′1b12zk + b22z

2
k

)]
dz1

= exp

[
−1

2

(
b22 − b21B

−1
11 b12

)
z2

k

] ∫

Ic

∫

Iq−1

exp

(
−1

2
y′B11y

)
dy

with c = −B−1
11 b12zk =

[
cα

c∗β

]
, y = z1 − c =

[
yα

y∗β

]
according to the partition of

Z1 andIc = {yα;−cα[i] < yα[i] < +∞; i = 1, 2}, cα[i] andyα[i] are theith com-
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ponents of the vectorscα andyα respectively. Moreover,
∫

Ic

∫

Iq−1

exp

(
−1

2
y′B11y

)
d y

=

∫

Ic

∫

Iq−1

exp

[
−

(
y∗
′

β

C22

2
yβ + y∗

′
β C21yα + y′α

C11

2
yα

)]
d y∗β d yα

Graybill’s theorem applied to the integral with respect toy∗β produces the following
result

exp

(
−1

2
y′αV yα

)
(2π)

k−3
2 |C22|− 1

2 ; V = C11 − C12C
−1
22 C21

that must be integrated inIc. Therefore, the numerator offZk
is given by

exp

[
−1

2

(
b22 − b21B

−1
11 b12

)
z2

k

]
(2π)

k−3
2 |C22|− 1

2

∫

Ic

exp

(
−1

2
y′αV yα

)
d yα

Some algebra applied to the ratio between this result andD gives the marginal
densityfZk

.
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