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Abstract: When the true parameter lies on the boundary of the parameter space it is
difficult to investigate the asymptotic distribution of maximum likelihood estimator. In
some relatively simple cases it is a mixture of truncated normal distributions. In this
paper we shall be concerned with the the marginal distributions of maximum likelihood
estimator when one or two components of the true parameter are zero and can be on the
boundary of the parameter space. We found that these distributions are (mixtures of)
normal or truncated normal multiplied by "skew functions” which distort the symmetry

of the normality. Some of these are skew-normal
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1 Introduction

To obtain the asymptotic distribution of maximum likelihood estimator, a standard as-
sumption is that the true parameter is in the interior of the parameter space. This as-
sumption allows one to make use of the fact that the first order conditions hold, at least
asymptotically. When the true parameter lies on the boundary of the parameter space the
asymptotic properties of maximum likelihood estimator are no more valid. In some rel-
atively simple cases the asymptotic distribution is not normal but mixtures of truncated
normal distributions while in more complicate cases it is much more difficult to inves-
tigate. This type of "non-regularity” has been considered by several authors, Chernoff
(1954), Moran (1971), Chant (1974), Shapiro (1985), Self and Liang (1987) whose paper
reviewed all the earlier contributions and provided a uniform framework for the large sam-
ple distribution of maximum likelihood estimator. Following Self and Liang’s approach,
recently Andrews (1999) established the asymptotic distribution of extremum estimators
when the true parameter may be on the boundary providing general high level assump-
tions under which the results hold. In this paper we follow Self and Liang (1987) and we
shall be concerned with the situation when one or two components of the true parameter
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are zero and can be on the boundary of the parameter space. The asymptotic distribution
of maximum likelihood estimator in this two cases is given in Moran (1971) and Chant
(1974). In this paper we investigate the marginal distributions of the estimator. We found
that these distributions are (mixtures of) normal or truncated normal multiplied by "skew
functions” which distort the symmetry of the normality. Some of these are skew-normal
as given by Azzalini and Dalla Valle (1996). We don't investigate the weights of the
mixtures referring for this argument to the book of Sen and Silvapulle (2005).

2 Preliminaries

Let X, --- X, beiid observations from a population with densjtyr; ¢). Letl,(6) de-
note the log-likelihood withh ¢ © c R* where® is not necessarily open and the
Fisher information matrix in an observation. The true parangteiill be assumed to be
a boundary point. Self and Liang (1987) assumed the classical&m@onditions on the
family of distributions - distinct values df corresponding to distinct probability distrib-
utions, existence and positive definitenes$okxistence of the first three derivatives of
1,(0) with respect t@, uniform boundedness of the third-order derivatives of the loglike-
lihood by a function of finite expectation. Moreover they assumed the convexity of the
parameter space in a neighbourhoodpf

Under the above conditions they showed

1. As sample sizes — oo there exists a sequence of poirﬁs,,e O, which locally
maximizel,, (¢) and that converges # in probability.

2. n'/2(6, — 6) = O,(1).
3. The loglikelihood functiori,, (#) can be approximated by
where

H,(00) == —n'D?1,(680)  Zn:= H; ' (60)n"Y2Dl,(6,)
(A = (A= Z,)H,(00)A— Z,)  NeRF
R (0) = nO,(1)]|0 — 6oI*
D =1[0/06;]i = 1,..., kis the column vector of a differential operatd¥! = [9?/0 6,0 0,]
Lj=1..k is the matrix of second derivatives.
4. nt2(0,, — 0,) = 0,(1) whered,, = argminy_g g,(n'/2(0 — 6y)).

Therefore, the asymptotic distribution 3; can be derived from that of,. With
respect to this, note that

. 1/2 . .
min q,(n'"“(0 —6y)) = min (1
min g, (n/"(60 — 6)) a4 (T)



where
n'2(0 — ) = {T e R*; T =n'?(0 — 6,), for somef € O}

and if the shifted and rescaled parameter spaté(© — 6,), can be approximated by a
convex conej, it can be shown that

. . . 1/2 ~ _ d 45
renlB gy 00 = BR(D) 4 0p(1) and G, —00) 5T

with 7 such that

q(T) = inf ¢(T) where ¢(T):= (T~ Z)B(T =Z) and Z~ Ni(0,B7")
S
In sum the asymptotic distribution éi Is given by the distribution of a random vector
T that minimizes a stochastic quadratic function over a convex dowbere the coeffi-
cients of the quadratic function have a multivariate normal distribution.

The vectorT is the projection ofZ onto the convex con& with respect to the metric
B, and is denoted b¥i(Z, A); thus

o2 . _ : _ / _
T:=1I(Z,A) = argrjglel/rxl(T Z)B(T - Z)

therefore, the above results state thHF(@n — o) <, II(Z, A) which is a (non linear)
function of a multivariate normal distribution defined an

Often in statistical applications we are interested on the asymptotic distribution of a
subvector off that lies in a cone. With regard to this, partitién7 and Z as follows,
0= B, T=II, T]'andZ = [Z], Z;]' wherea € R?, 3 € R?, p+ ¢ = k and
assume\ is given by a product set, x R? whereA, C R? is a cone. This assumption
on A requires that the true paramet&y is not on a boundary. Then it has been shown
(Andrews, 1999) that

~ d = ~ d = _ _ ~ ~ fa
n1/2(an_040) - Tom nl/Q(ﬁn—ﬁo) - Tﬂ = BQQIGB_B221B21TOM T = [ ,1”: } (l)
B
where
Gal B11 Bi2 Zal Bt B12
(pGXB) _ [(%Xzzf) (%ng)] (pZXﬂ) : Bl — [(%ézlo) (%ng)] 7
(gx1) (gxp)  (gx@)d | (gx1) (gxp) (gxq)
ao(Ta) = if qo(T) with ga(T2) = (Ta = Zo) (BY) ™ (Ta — Za)
and
Zo ~ Ny(0, B'") with BY™ = (B — B1aByy Ba1) ™" (2)
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From (1) it emerges that the asymptotic distributiorﬁgfdepends on whethex is
on a boundary if and only iBy; # 0.

If A, = RP which holds if ag is not on a boundary, themf; ca, ¢.(7) = 0,

T, = Za, Ts = Zz andT = Z that corresponds to the standard case.

If A, isalinear subspace &, which holds in the case of linear or nonlinear equality
constraints therﬂ = P,Z, whereP, is a B''-orthogonal projector o\, a matrix
that does not depend of. For example, ifA, = {T, € R; QT, = 0} where( is a
matrix of full row rank less or equal tp, thenP, = Id — B"Q'(QB"Q’)~'Q where
Id is the identity matrix of appropriate order. The distributioriZafis given by a linear
transformation of a multivariate normal distributich, ~ N,(0, P,B). By (1), fﬁ =
Zs+ HZ, with H = —B2Q' (QB™ Q') Q andfg ~ N, (0, B> + HB'?). Moreover,
Cov (fa,ﬁ;) = B2+ B"H’ andCov (fﬁ, fa> = B*'+ HB". Thisis the result given
by Aitchison and Silvey (1958).

For other definitions of\,, the solution might be rather arduous. Later on we shall
confine to the (polyhedral) cone given by equality/inequality,

Ay = {T, €eR?; QT, =0, RT, <0} (3)

with the matrix[@Q" R']’ of full row rank less or equal tp. This cone holds in many
practical situations.

When the cone is given by (3), the distribution of the projectigi¥,,, A,) could
be investigated by simulating,, and computingfa with a quadratic programming algo-
rithm. This approach can be relatively simple but can not be of great help to know the
analytic distribution off},.

Alternatively we could proceed by describing the cone, to compute the projection of
Z,, onto the appropriate edge and to investigate the distribution of the projection.

3 An analytic form of the projection

Let the constraint matri® of the cone (3) be of dimensionx p. LetJ = {1,--- ,m} be
asubsetofl,--- ,r}; Jmaybeempty. Lef = {1,--- ,r}\J. Let R; andR; denote the
matrices with their rows given by the rows Bfindexed by; € J and: € I respectively
and denote with¥); = {T,, e R?; V,T,, =0, R/T, <0}, V; = [Q R/] aface ofA,.
WhenJ = {0}, F; = A,, whenJ = {1,--- ,r}, Fj is the vertex of the cone. Létbe
the set of all subset$ which gives rise to a facel has at mos®” elements. We assume
that F; has no redundant columns. LetF;) = {7, € R?; V,T, =0, R;/T, <0} be
the relative interior of’;. Then, there exists a collection of faces/'of, say{F;, J € J}
such that the collection of their relative interiofs;i(F), J € J}, forms a partition of\,,
(see Lemma 3.13.5 of Sen and Silvapulle (2005), p.128). Further,



- Z (P1Za) Ip,(Za) = ZZQJ)[EJ(Za)a Ip,(Za) =

Jel JeJ

whereE; = {Z, € R?; P;Z, € ri(F;) (Id—P;)Z, € F+NA%}, AY is the polar cone,
P; = Id — B"'V}(V;B"'V})~'V; is the projection matrix onto the linear space spanned
by F;, Id is the identity matrix of appropriate order .

By (1), T = Zs— By, By (fa - Za>. Because- By, By = B2 (BY) ™, Zo = Y ,.; Zals,
andZz =) . Zslg,, by substitutionfg can be written as

f@ - Z |:Zﬁ - B21 (Bll)il (Za - PJZ } IEJ ZZ(J IEJ (5)
JEJ JejJ

{1 if 7, € Ej, @

0 if Z, & Ej.

Of course (4) and (5) are a pAossibIe representation of the estimator. Andrews (1999)

proposed a similar formula fdf,, defining a different indicator function but we found
some problems with his results in some specmc cases.

Stacking inT the above two componentﬁ andTg, we get

. o | 2
{ } > 2V1g,(Z,) with ZY) = 0 (6)
Jel 8

which is the form of the estimator we referto. R R
As to the probability distributions of the everits < ¢, T,, < t, andT < tg we
observe that (Self and Liang, 1987)

T<t=J(zV<tnZ, € Ey) (7)

Jel
To<te=|J(2Y) <tanZ, € Ey) (8)

Jel
fﬁgtﬂ:U<ZéJ)§tﬁﬂZa€Ej> (9)

Jel

therefore,

(f < ) N Pr(2Y) <t/Z, € Ej)wy (10)

Jel
Pr(Tu<ta) =3 Pr(Z) < to/Za € Ey)uy (11)

JeJ
Pr(Ty<ts) =Y Pr (28 <to)Za € By) (12)

JeJ



where
wy = Pr(Z, € E;) = Pr (PJZQ € ri(Fy)(Id — P))Za € FF 1 Ag)

Formulas (4)-(6) and (10)-(12) allow to investigate (at least in simple case) the probability
distributions and the marginal distributions of the projector when the cone is given by (3).

4 Application I: A = A, x R?with A, = R" x RP~!

4.1 Analytic form of the estimator

Because\, involves only an inequality constraint on the first component of the vector
a, we can assumg, = RT and A = RT x R*~! consideringy as a scalar and lumping

in with 3 the other components ef. Then, the cone can be written as = {T,, €

R; —T,, < 0} and the polar cone a8} = {y € R;y < 0}. There are two faces indexed
by J = {0}, Fioy = Ao andJ = {1} whereF7,; is the vertex. Moreover;, N Ag =

{y € Ry = 0} andF{il} N A2 = {y € R;y < 0}. The projectors aré’y, = 1 and
Ppy = 0with By = {Z,; Z, > 0} and By = {Za; Z, < 0}. Therefore, by (4) we get

To=20WIp, (Za) + Z8WIg,, (Za) (13)

wherez{™ = 7, ~ N (0,b), Z{Wis a degenerate random variable with unit mass
bll B12

B21 BZQ }

The componer{fg. By (5) we have

distribution at zero an® ! := {

7 0
Tﬁ = Zﬁ(-i{ })IE{@}<Za) + Z[(i{l})]Em(Za) (14)

pil
Stacking the above two components (formula (6)) we get

with 2§ = 75, 2 = (2, - 53 2,).

T =7 Ipy (Za) + 20V Ip,, (Za) (15)
which is the result of Andrews (1999), Self and Liang (1987).

4.2 Distributions
4.2.1 The distribution of T
By (10)

Pr (f < t> = Pr(Z <t/Z, > 0) Pr(Z, > 0) + Pr (21 < t/2, < 0) Pr(Z, < 0)
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with Pr(Z, > 0) = Pr(Z, <0) =1/2.

The eventZ < t/Z, > 0 has ak-variate truncated normal probability density func-
tion, denoted ag' N, (0, B7, 2, > 0). In the mathematical appendix we show that the
denominator of the truncated density,= [ [, exp (—}2'Bz)dz Wherefl is a
(k—1)-dimensional Riemann integral dp; = {z3; —00 < 2gi] < +o00;i =1, - -1}
can be written a®) = (1/2) (27)"/* | B|~'/2. We denote with;[i] the ith component of
the vectorzs.

Therefore TN, (0, B~', z, > 0) is 2 Ny (0, B™") I g, (Za) Which is the result given
by Moran (1971).

Consider the everit ('} < ¢/Z, < 0. Because of the normality of the vectdrand
the fact thatCov [(Zﬁ — %Za> ,Za] = 0the variablesZg{l}) andZ, are independent.

Then, Pr (ZzWW) < t/Z, <0) = Pr (ZW) <t). After simple algebra we can show
that the variance-covariance matrix of the random veZtor fTQfZa is equal toB,," then
(Zﬁ - %ZQ) ~ Ni_1 (0, By,)). ThereforeZ{1) ~ Ny(0, B*) with B* = [8 Bo_ll

22
(see Chant (1974), Moran (1971)).
4.2.2 The distribution of T,

The distribution offa has a continuous part and a discrete part. By (13) or by applying
directly (11) we have

Pr (fa < ta> = Pr(Zy < to)Zy > 0) Pr(Za > 0) + ®(0)Pr (Z, < 0)
where the event/, < t,/Z, > 0 has an half-normal probability density function,
TN (0,b™, 2z, > 0) and®(0) is a degenerate distribution @{Gourieroux and Monfort,

1989). For notational convenience we defiki€0, 0) the normal density with mean and
variance equal to zero to be the density that takes the value zero with probability one.

4.2.3 The distribution of T}

We have,
Pr (fg < tﬁ) = Pr(Zs < tg/Zs > 0) Pr(Zy > 0)
321
+ Pr |:(Zg — WZQ) < tﬁ/Za < O:| Pr (Za < O)
The variableZ; < t3/Z, > 0 has & k—1)-dimensional skew-normal density function
as given by Azzalini (1985) with location parameter zero, scale matftxand shape

parametep = (B?)"' B2!/,/(b"' — B'2 (B?)"' B?!). Following the notation used by
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Azzalini (1985),75/Z, > 0 ~ SN;_1(0, B?2,§) and the marginal densities are skew-
normal as well because of propositidiof Azzalini and Capitanio (1999).

As to the second component &fr <fg < t6>, in section 4.2.1 we showed that
(Zﬁ - fg’TQfZa> ~ Ni_y (0, B3b).
Summarizing the results of this section we can say that the probability distributions of

the projector]’ and of its components, and7};, are mixtures of two distributions with
weights1/2 and densities given in the following table.

Pr(Z,>0)=1/2 | Pr(Z,<0)=1/2

Conditioning Variable Conditioning Variable

Estimators Zy >0 Zy <0
T TN, (0, B!, z4 > 0) Ny (0, B¥)
T TN (0,b", z, > 0) N (0,0)
Ty SN,_1(0, B2,95) N1 (0, B3,)

Table 1: Table of probability densities

5 Application Il: A = A, x R?with A, = (R*)* x RP~2

5.1 Analytic form of the estimator

As in the previous case, we s&t = (R*)2 lumping in with 3 the other components of
Then,A, = {T,, € R* —T, < 0} and the polar cone is given by, = {y € R?* By <
0}. There are four faced, = {{0}, {1}, {2}, {1,2}}. We introduce the notatiof,[i],
i = 1, 2 to denote theth element of the vectar,,. In this Section we refer to the matrix

B! partitioned as follows,

B 12 pil o pl2 | gi3
B! — 2B>;% 2><(k2;2) ] _ p2l o p22 | g23
(k—2)x2 ‘ (k—2)x(k—2) B3 B32 ‘ B33



We have the following regions

Ewy ={Z, e R* Z,[1] >0, Z,[2] > 0}

b21
Bu = {2 e B 201 <0, 2.(2) - {5 01] > 0
12

Epy = {Za cR? Z,[1]— =

Za[2]>0,Za[2]§O}

e
E{1,2} = {Za € ]Rz; cz, < O} with O = |: 1b21 22 :|

— T

The projectors are

0 0 1 b2
P{@}:[d, P{l}:|:_b21 1:|, P{Q}:|:O 822:|, P{LQ}:O

pIT
Then, by (4)fa may be written as
To=Zolp, (Za) + Z8WVp, (Za) + 28V 1, (Za) + Z8V I, L, (Za)  (16)

whereZ{"* is a degenerate random vector at zero,

b12

0 Zo|1] = 3 Za[2]
(1) — 2} — a p22 Lo
Z, {Za[Q]—Z?—iZa[l]} and Z, { 0

By (5),
=~ 1 2 1,2
Ty = ZsIpy, (Za) + 251, (Za) + 28 1p,, (Z0) + 28 1, (Z2) A7)

where

(@) B* ((2) B*
2 = (2a-Trzi)). 2 = (- Zai),

({1.2h) _ 21 (p11)—1
Zgt) = [Zﬁ—B (B") Za}
Then, stacking the above two components WefZAget

5.2 Distributions

5.2.1 The distribution of T

The probability distribution of the evedt < ¢ is given by (10) withw; = Pr (Zo € Ey).
We analyze the four components of the estimator.
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WhenJ = {(} the event to be analyzed < t/Z; > 0N Z, > 0. It has ak-variate
truncated normal probability density functiof N, (0, B~!, z, > 0) whose denomina-
torisD = [ fIq exp (—22'Bz) dz where0; = {z,;0 < z,[i] < +o0ji = 1,2},
I, ={z3;—00 < 2g[i] < +o0;i=1,---,q}, ¢ + 2 = k. In the mathematical appendix
we show thatD = (2r)*/2) | B|~1/2 1 (1 — arxesnz) wherery, is the correlation between
Z,[1] and Z,[2]. Therefore,

—1
TN (0.8 2 > 0) = 2 OB g (2

™

The density o2V /Z,[1] < 0n z{"P[2] > 0. We first observe that

Z[1] 1 007 [z Z.[1]
280 | = | =2t 10 || Z[2) | with | Zu[2] | == Z ~ Ny (0, B™)
Zé{l}) —Bgl/bu 01 Zg Zﬁ
(18)
By a theorem on linear transformations of multivariate normal distributions, we have
Za|1] o't 0 0
Z82  ~ Nl o, ] 0 o (19)
74 0 ~ 0

Wher60'2 — 622 —b21(bu)_1b12, v= BS2 _BSI(bll)—1b12 andQ — 333 _BSI(bll)—lBli’)_
Given above results, it is immediate to observe that

Pr(zW <t/ Z,1] <0 n zZ{IW2] > 0) =pPr (20 <t/ Z{D]2] > 0)

therefore, the density ot (1) / Z{'[2] > 0is ak — 1 truncated normal density,
1 :
TNy 1 (0,5, 2{D[2] > 0) = ¢ exp <—§ 2 2—1z<{1}>) , 202 > 0

with
2 /

I IR N 1/2
2_{7 Q] and & —2(27T) (det X2)
Putting the results together, the densityf'}) / Zz{"[2] > 0is2N,_; (0,%); Z8[2] > o.

The density of the ever#2) < ¢/7,[2] < 0N z{"P[1] > 0. As in the previous
case we first observe that

Z{ ] 1 =202 07 [ ZJ]1]
Zo[2] =10 1 0 Z412]
Zé{2}) 0 _B32/b22 1 Zﬁ

10



therefore

Zé{%)[l] ] Yin 0 i
Z412] ~N.| O, 0 »* 0 and (20)
Zé{m | P31 0 g3

z{y | T
“ ~ N1 0, V:= 21
ZE{Q}) h ( 7 [ VY31 33 ]) (1)

with 17, = b — 12 (b22)—1 b21,4py3 = B3 — B23 (b22)—1 b12, 4p5; = B3 — B3 (b22)—1 p21
andys; = B — B2 (b22)~' B2, Above result implies that

Pr(ZW) <t/Z,[2] <0nZ{EP[1] > 0) = Pr (23 <t/ Z{V[1] > 0)

therefore, the density af {2/ z{*)[1] > 0is ak — 1 truncated normal density with
variance-covariance matrix equal¥o As in the previous case, the denominator is equal
to 1 (27)* 2 (det w)"/* and

TNt (0,9, 2{[1] > 0) = 2N, (0,7); Z{*V[1] >0

Finally, we analyze the density of the evefit!2}) < ¢/CZ, < 0 which occurs when
the regionZ; is indexed byJ = {1,2}. We recall that

ay _ | 2o
VAL = Z({LQ}) and OZa =
B

Z({l}) [2]

Z({2}) 1] ]

with Z{"* ~ N, 5 (0, B3!), By, = B — B (BY)™! B'2. Simple algebra allows
one to show that

C 0] Z OB“C’ 0
0 1|z |~
<

Then, Pr (22D < ¢/CZ, < 0) = Pr(Z{2)

. o o0
B _{0 Bg;]'

t) and Zz{2) ~ N, (0, B*) with
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5.2.2 The distribution of Zfa

From (11) we have

W <t,/Z, € Bpy) Pr(Z, € Eqy) +
Pr

4 < 1017 € Ben) P (2, € Ern)
Pr Z({1 2}) <to/Zy € E{Lz}) Pr (Za € E{L?})

«

Pr(To < ta) =Pr (Za < ta/Za € By) Pr (Za € Eggy) +
Pr(Z
(
(

Then, the bivariate density &f, < t./Z, € Ey is TN, (0, B'!, z, > 0). The marginal
densities of the truncated normd&,, are not truncated normal. In the mathematical
appendix we show that

2N (0,u™!) (1 — F(a))

f2al) = = arecoersz = N(0,u™") g1 (2a1]); za[1] >0
e N (0,07) (1= F(3)
2N (0,v7 ") (1 — _
fZa[2] = 1 __arccosri2 = N (07U 1) g2 (’204[2]>7 ZQ[Q] > 0
whereu = ay; — &12(@2)71&21, V= G — azl(au)*lam, a = (@2)71/2&21204[1],

b= (a11)"?a1924[2], r12 IS the correlation betweef,[1] and Z,[2], F(.) is the dis-
tribution function of aV (0, 1) and(B!) ™" := 4 = Z” 312
21 22
The functionsg; (z,[1]) andgs (z,[2]) can be thought of as "skew functions”. They
distort the symmetry of the truncated normal density functions.

The evemZé{l}) < to/Zs € Eg1y. We first observe that

| |0 (0 )

b21

whereby, = b2 — (2*')* /b and 2P [2) = Z.[2] — fn

Z4| 1]. Therefore,

Pr (o < Z{Wp < ¢ )

Pr(Z{W2] <t, | Z1] <0 n Z{W2] >0) = -
Pr (Zé{ }) )

and the density of,[2] — % Z,[1]is TN (0 by, 28 [2] > O).

bll
We can apply the same line of reasoning to the eVt < ta/Za € Eyg finding
b12

that Z,[2] and Z{*V[1] = Zo| 1] — = Z4[ 2] are independent and the densityt*[1]
is TN (o bl 2] > 0).
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5.2.3 The distribution of Zfﬂ
By (12) the probability of the everffﬁ < tsis given by,
Pr(Ty < ts) =Pr (Zs < 13/Za € Eq) Pr (Za € Eqy) +
Pr (2 < 15/2q € Ey) Pr(Za € Bry) +
Pr (2 < 15)2q € ) Pr(Za € By) +

Pr <Zé{1’2} S tg/Za < E{LQ}) Pr (Za € E{LQ})
Then, the density of3 < t3/Z, € E{y, is given by

exp (—12'Bz) dz,
f02 (=3

Jzs = o) ;

23 € RY (22)

in the mathematical appendix we show that it can be written as

2N,(0,W) Fy(e)

fZB - 1— arccos 712
T

= N0, ) ho(z5); 25 € R (23)

Whel‘ec = —BﬂlBlg,Zg = {Cl CQ] W BQQ—BnglllBlg andF2 f f+oo N2 (y, O Bll ) dy
Again, hy(z3) can be thought of as a "skew function” that serves to dlstort the symmetry
of the normal density.
The marginal density of a component of the vedigr< ts/Z, € Ey . Without loss
of generality let us derive the marginal density of the last compone#} ofienoted?;,
subject to the conditio,, € E{y;. Assume the following partitions of and 5.

Z z
Z, y A
7 [ 2 ] I [(knxl}
Zs Zi 2
lumping in with Z; any component different fror#,, and

k:lBchl kb?l 2x2 2% (k—3)
e[l W e[ o

Cll Cl2 :|
1x(k—1) 1x1 (=3)x2  (k—3)% (k—3)

To derive the marginal density &f;, fz,, we must integrate out the remaining variables
of the numerator ofzﬁ, that is

Joo S5 S oS e (=5 2'B2) da
D Y

fz, = z €R (24)
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In mathematical appendix we show thfgt is the same as (23) with= 1. That s,
2N, W Fy(c)

fZIc - 1 _ Aarccos rig
T

wherec = —Bﬂlblgzk = [Cl CQ]/, W = b22_b21811 blg andF2 f f—l—oo N2 y, O V- )dy,
V = Chy — C1aCh' Coy.
The marginal density of théh component ofZ; < t3/Z, € Eyy is again given by
(25) once the matri3 has been modified changing tfte row with thekth row and the
ith column with thekth column.

The density of the everﬂé{l}) < t3/Z, € Egy. By (18) and (19) it is immediate to
observe that

Pr (zgm <t/ ZJ1] <0 N Z{D[2 > o) — Pr (zgm <ty ) Z{D[] > o)

=NO,W Y hy(z); 2z €R (25)

therefore, the density cﬂé{l}) is skew-normal (Azzalini and Dalla Valle, 1996),
Z{W ) Z8W[2] > 0 ~ SN2 (0,0, )
with o = Q71 (02 — 7/9717)71/2_
The marginal densities dfé{l}) < tg/Z, € Eg1y are skew-normal too.

The density of the everﬂé{Q}) <g/Z, € Efs. Asinthe previous case, by (20) we
observe that

Pr (Z P <4,/ Za2] <0 N ZW[] > 0) Pr (Z ) <4, ) 2800 > o)
and the density OZB{Q} is skew-normal (Azzalini and Dalla Valle, 1996),
Z{ ) 28] > 0 ~ SNy (0,33, )
with o = g5 ihyg (Y11 — ?/1131/19},121131)71/2-

As in the previous case, the marginal densitiegﬁf}) are skew-normal.
Finally we investigate the density of the everf*) < t5/Z, € E{1,. By the

results of section 5.2.1 it is immediate to observe mgfﬂ}) ~ Ni_5 (0, By;") with
marginal normal densities.

Conclusions

In this paper we investigated the asymptotic distributions and marginal distributions of
maximum likelihood estimator when the parameter spade is Rt x R*' or© =

(R*)* x R*2 and the true parameter may be on the boundary. We found that these
distributions are (mixtures of) normal or truncated normal multiplied by "skew functions”
which distort the symmetry of the normality. Some of these distributions are skew-normal.
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Mathematical Appendix

To compute the marginal densities we use repeatedly the Sheppard’s result

1
P(X1>0,X2>0):§(1—w)

™

wherer, is the correlation betweeli; and X5, and the solution of the multiple integral

/ exp [— (¢'Bx + 2'b+ by)|dxy - - - dxy,

I,

15



whereB is a positive definite matrid ann x 1 vector of constanty, a scalar constant and
I, = {z;—00 < z; < +o0;i = 1,--- , k}. The solution of the above multiple integral
can be found in Graybill (1983) and is given by (Theorem 10.5.1, p. 342)

1 1
exp (Z YB1p — bo> / exp {—5(3: —¢)R(z — c)] day---dxy
I,

whereR = 2B, ¢ = —(1/2)B~'b.

e Consider the denominator of the truncated normal distributibncan be written

as,
/ BQZ /
/ /exp {—(zﬂ—zﬁ+zﬁb+bo)} dzg | dz,
02 Iq 2

whereb = Bz, by = %Z;BHZ'O{, 0y = {ZQ;O < Za[i] < 400t = 1,2} and

I, ={z3,—00 < 23[i] < +o00;i=1,--- ,q}.

We first apply Grayhbill's theorem to the multiple integral in round parentheses. We
have the following result,

1
(27)*=2/2 | Byo| 12 exp (—Qz;U za) d g

with U = B;; — Bis (BQQ)_l Bs1. Then, we apply Sheppard’s result getting the
following expression for the denominator,

1
D = (2m)2 e (1 - R

If the double integral frond to +oo were a simple integral thed = (1/2) (27)*/2 | B|~1/2.
e The marginal density,, 5. Because the density af, < ¢,/Z, € Eyp is truncated
normal, the marginal of, [2] is given by,

f0+oo exp (—3 20 Az,) dza[1] 2l2] > 0
o, exp (=320 Az)dze W

[z.02 =

where(B) ™ .= A = { Z“ ;“2 } By Sheppard’s result we get the denomina-
21 22
tor,

1 |
/ oxp (=5 24 Aza) dza = 21 [A|7? 5 (1 _ w>
02 2 5

™
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The numerator is an application of Graybill's theorem,

/0+Ooexp (—% o Azg) dzall] =
— /0 e {— (%2‘“1 + za[l]a19za[2] + %2@22)] )

a2 @n)Y2 L - F(B)] exp (—% 20 )

wherev = agy—ag (a1;) ‘a12, b = (a11)?a1924[2], r12 is the correlation between
Zy[1] andZ,[2] and F(.) is the distribution function of & (0, 1).
The ratio between the numerator and the denominator gives the marginal density.

The same approach is used to obtain the marginal defisity
e The densityf,,. Consider, first, the numerator of (22). By Graybill's theorem we

have,
B
/ exp [— <z&jza —I—z’ab+bo)} dz,,
02 2

B 1
= exp b' -4 b — b / exp [—=(zq — €)' B11(24 — ¢)| dzq
1"\ 2 0, 2

With b = Biyzg, by = $23Baazs, ¢ = —Bjy' Biazg = 1 2]’ Then, the numerator
Is given by

1
N = exXp <—§Zlﬁ W,Zﬁ) F2 (Bl_llB12zﬁ)

wherelV = By — BQlBll Bio andF2 f eroo Ny (y, 0, Bll ) dy
e The densityf, . The main burden is to compute the numerator of (24). We have

/ / exp (——z Bz) d z
02
By

= / / exp [ (zl 21 + 21b1azy + bggzk)] dz,

02 2

1
= €eXp {_5 (b22 - b2lBﬂ1512) ZZ} / / exp <—§ ?/Bny) dy
1.1,

with ¢ = —B'b1az, = {Z‘:] y=2 —c= B‘i] according to the partition of
3 3
Zy and I, = {ya; —cali] < yali] < +o0;i = 1,2}, c,li] andy,|i] are theith com-

17



ponents of the vectors, andy,, respectively. Moreover,

/ exp (—— Yy Buy> dy
Ic JI,4
>k/CY */ C *
exp |— | Y -2 Ys + Ys Conya + y&ﬁ Yo | | dYs dYa
2 2
I JI,4

Graybill's theorem applied to the integral with respecytgroduces the following
result

1, k=3 _1 -1
Xp\—3 YaVVa | (2m) 2 |C72; V= Cii — C12055 Cn
that must be integrated if. Therefore, the numerator ¢f, is given by
1 1 9 k—3 _1 1 /
exp —5 (bgg — b21B11 612) Zk (2’/T) 2 ’022’ 2 exXp _5 yavya dya
I

Some algebra applied to the ratio between this result Angives the marginal
densityfz, .
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