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Abstract

This paper presents a robust procedure for the detection of atypical obser-

vations and for the analysis of their effect on model inference in random

effects models. Given that the observations can be outlying at different lev-

els of the analysis, we focus on the evaluation of the effect of both first and

second level outliers and, in particular, on their effect on the higher level

variance which is statistically evaluated with the Likelihood-Ratio Test. A

cut-off point separating the outliers from the other observations is identified

through a graphical analysis of the information collected at each step of the

Forward Search procedure; the Robust Forward LRT is the value of the clas-

sical LRT statistic at the cut-off point. Through Montecarlo simulations we

are able to claim the clear superiority of our proposal since the probability

of the type I error computed with the proposed method is much lower than

the one computed with the classical approach when data are contaminated.
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1. Introduction

Outliers in a dataset are observations which appear to be inconsistent with

the rest of the data [5], [12], [3] and can influence the statistical analysis of

such a dataset leading to invalid conclusions. Outliers can be contaminants

(arising from other distributions) or can be atypical observations (extreme

values) generated from the assumed model [2]. They can often be masked

and should always be examined to see if they follow particular patterns,

come from recording errors, or could be explained adequately by alternative

models. Starting from the work of Bertaccini and Varriale [4], the purpose of

this work is to implement the Forward Search method proposed by Atkinson

and Riani [1] in the random effects models, in order to detect and investigate

the effect of outliers on model inference. Since random effects models belong

to the wider class of multilevel models we will refer interchangeably to the

random effects and multilevel models notations [11].

While there is an extensive literature on the detection and treatment of

single and multiple outliers for ordinary regression, these topics have been

little explored in the area of multilevel models. As an example, in a one-way

random effects model, Wellmann and Gather [13] distinguish three types of

outliers in terms of their position relative to the main part of the observa-

tions and suggest some simple rules for their identification; in particular, the

authors propose some robust procedure using median based statistics for the

estimation of the model parameters and the prediction of the random effects.

In the context of multilevel models, Langford and Lewis [6] propose sev-

eral techniques for data exploration for outliers at first level of the analysis,
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such as the use of deviance reduction, measures based on residuals, leverage

values and hierarchical cluster analysis and Shi and Chen [9] provide some

approximate formulas for outliers detection in estimating both fixed and ran-

dom parameters under the mean-shift outlier model and propose a test for

multiple outliers at all levels of the analysis.

In this work, we are able to detect, at the same time, both the outliers

at the first and at the second level, proposing a diagnostic method based

on the Forward Search approach. The basic idea of this approach is to fit

the hypothised model to an increasing subset of units, where the order of

entrance of observations into the subset is based on their closeness to the

previously fitted model. During the search, parameter estimates, residuals

and other informative statistics are collected and these information are anal-

ysed in order to identify a cut-off point separating the outliers from the other

observations. At the moment, there are no rules that allow the automatic

identification of this point, so we advocate the use of a graphical approach.

The robustness of the method does not derive from the choice of a particular

estimator with a high breakdown point, but from the progressive inclusion

of units into a subset which, in the first steps, is intended to be outlier free.

Our procedure can detect the presence of more than one outlier; of course,

the membership of almost all the outliers to the same group (factor level)

suggests the presence of an outlying unit at the higher level of the analysis.

After a brief review of the classical linear random effects model, in Section

2 we illustrate the problems of the classical Likelihood-Ratio (LR) Test in the

presence of atypical observations. In Section 3 we present the proposed for-

ward search algorithm, describing the advantages of the proposed approach
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in identifying outliers through the analysis of two case studies. In Section

4 we illustrate the results of a Montecarlo study that allows the evaluation

of the performance of the Robust Forward LR Test. Section 5 draws some

conclusions.

2. The random effects model

The simplest random effects model is a two level linear model without

covariates, also known as a random effects ANOVA. Forward search for fixed

effects ANOVA has been proposed by the authors Bertaccini and Varriale [4];

in the following, we will extend this work to the random effects framework.

Let yij be the observed outcome variable of individual i (i = 1, 2, . . . , nj)

within group, or factor level, j (j = 1, 2, . . . , J) where J is the total number

of groups and N =
∑J

j=1 nj is the total number of individuals. The simplest

linear model in this framework is expressed by:

yij = µ+ uj + eij = µ+ ξij (1)

where µ is the grand mean outcome in the population, uj is the group effect

associated with unit j and eij is the residual error at the lower level of

the analysis. This model can be interpreted as a fixed or random effects

model, depending on the assumptions about the nature of uj. When uj are

interpreted as the effects attributable to a finite set of levels of a factor that

occur in the data, we have a fixed effect model. On the contrary, when uj

are the effects attributable to a infinite set of levels of a factor of which

only a random sample are deemed to occur in the data, we have a random

effects model [7]. In this approach, each observed response yij differs from
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the grand mean µ by a total residual ξij given by the sum of two random

error components, uj and eij, representing, respectively, the residual error at

the higher and lower level of the analysis.

Usual assumptions for the random effects model are:

eij ∼ N(0, σ2) ∀i, j

uj ∼ N(0, τ 2) ∀j

cov(eij, ei′j′) = 0 ∀i 6= i′ and j 6= j′

cov(uj, uj′) = 0 ∀j 6= j′

cov(eij, uj) = 0 ∀i, j

and, as a consequence:

var(yij) = var(uj) + var(eij) = τ 2 + σ2. (2)

Thus, τ 2 and σ2, expressing respectively the variability between and

within groups, are components of the total variance of yij; for this reason,

the model is also known as variance components or components of variance

model. Furthermore, τ 2 expresses also the intra-class covariance, namely the

covariance between every pair of observation in the same group expressed by:

cov(yij, yi′j) = τ 2 ∀i 6= i′. (3)

If model (1) holds, the expected values of the observed within-group vari-

ance, S2
within = 1

N−J
∑J

j=1

∑nj

i=1(yij − ȳ.j)2 with ȳ.j = 1
nj

∑nj

i=1 yij, is exactly

equal to the population within-group variance: E(S2
within) = σ2.

The expected value of the observed between-group variance, S2
between =

1
J−1

∑J
j=1 nj(ȳ.j− ȳ..)2 with ȳ.. = 1

N

∑J
j=1 nj ȳ.j, is a bit more complicated be-

cause the first-level residuals eij also contribute, although to a minor extent,

5



to S2
between. ANOVA estimators are obtained equating observed and expected

values; they have the advantage that they can be represented by explicit for-

mulae. For equal group sizes n = nj we have that E(S2
between) = nτ 2 + σ2; in

this case the ANOVA estimators are:

σ̂2 =
1

N − J

J∑
j=1

nj∑
i=1

(yij − ȳ.j)2

τ̂ 2 = (S2
between − σ̂2)/n.

For the general case formulation of the ANOVA estimators see Searle and

Casella and McCulloch [7] in section 3.6. Other much used estimators are

those produced by the maximum likelihood (ML) and residual maximum

likelihood (REML) methods. For balanced data, ANOVA estimators are

the same as the REML estimators; for unbalanced data ML and REML

estimators are slightly more efficient than the ANOVA ones.

In many applications of hierarchical analysis, one common research ques-

tion is whether the variability of the random effects at the group level uj is

significatively equal to 0, namely:

H0 : τ 2 = 0. (4)

The most used procedure to test this hypothesis is the Likelihood-Ratio

Test. In random effects models, when there is only one variance being set to

zero in the reduced model, the asymptotic distribution of the LRT statistic

is a 50 : 50 mixture of a χ2
k and χ2

k+1 distributions, where k is the number of

the other restricted parameters in the reduced model that are unaffected by

boundary conditions [8]. A rule of thumb in the applied research is to divide

by two the asymptotic p-value of the Chi-squared LRT statistic distribution
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[10]. Due to the presence of outliers in the data, the value of the LRT

statistic can erroneously suggest to reject the null hypothesis H0 even when

there is no second level residual variability. As an example, consider the two

balanced datasets represented in Fig. 1, with nij = 10 first level units in

each group j and the total number of groups, J , equal to 25. While the bulk

of the data has been generated by the same model in both cases:

yij = µ+ eij (5)

with µ = 0 and eij ∼ N(0, 1), the outliers have very different features: in the

first case there are more than one first level outliers, while in the second case

there is only one outlier at the second level of the analysis. In particular,

the 8 outliers in the first case have been generated from a Uniform U(10, 11)

distribution, while in the second case, the first level units belonging to the

outlier group have been generated by the N(0 + γ, 1) distribution where γ is

an observation from the U(4, 5) distribution. In both cases, the LRT statistic

for testing H0 has 1 degree of freedom and its value - respectively 4.8132 and

94.4937 with halved p-value of 0.0141 and < 0.0001 falls in the rejection

region due to the contamination. Obviously, in these datasets outliers are so

different from the bulk of the data that they are easily identifiable by any

approach; these were done only to introduce the problem more clearly.

The LR Test can often lead to erroneous conclusions also in the presence

of “lighter” contamination. Let us consider some datasets with an increasing

number of balanced groups (J = 15, 20, 25, 30) and an increasing number of

observations for each group (nij = 10, 15, 20). While (1 − ε)N observations

are generated by a Standard Normal distribution and are randomly assigned

to all groups, the (1 − ε)N outliers are generated by a Normal N(2, 1) dis-
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Figure 1: Boxplot showing the compositions of the described datasets.

tribution and are randomly assigned to the first half of the total number of

groups. Table 1 shows the relative frequencies rf(J,nij ,ε) over 10000 simula-

tions in which the LRT statistic falls in the rejection area at the nominal

significance level of α = 0.05.

For example, for J = 20, nij = 15 and ε = 0.08 the classical LRT rejects

the null hypothesis (4) 1889 times giving a “real” α value of 0.1889. Obvi-

ously, the larger the ε is and the stronger the effect of the contamination on

the LRT is.

3. Forward Search

The Forward Search is a statistical methodology proposed by Atkinson

and Riani [1] useful both to detect and investigate observations that differ

from the bulk of the data and to analyse their effect on the estimation of

parameters and on model inference. The basic idea of this “forward” proce-

dure is to fit the hypothised model to an increasing subset of units until all
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Table 1: Classical LR Test: approximation of the true type I error probability with con-

taminated data

ε

J nij 0.05 0.06 0.07 0.08 0.09 0.1

15 10 0.0578 0.0655 0.0747 0.0960 0.1153 0.1513

15 0.0607 0.0767 0.1088 0.1385 0.1754 0.2183

20 0.0781 0.1053 0.1436 0.1931 0.2546 0.3355

20 10 0.0662 0.0814 0.1005 0.1287 0.1680 0.2104

15 0.0795 0.1108 0.1441 0.1889 0.2601 0.3381

20 0.1038 0.1477 0.2067 0.2837 0.3816 0.4809

25 10 0.0678 0.0938 0.1334 0.1668 0.2077 0.2772

15 0.0959 0.1261 0.1895 0.2620 0.3523 0.4627

20 0.1277 0.1872 0.2657 0.3708 0.4896 0.6119

30 10 0.0781 0.1019 0.1313 0.1767 0.2265 0.2902

15 0.0966 0.1433 0.2051 0.2704 0.3557 0.4656

20 0.1278 0.1947 0.2815 0.3823 0.5098 0.6380
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data are fitted. In particular, the entrance order of the observations into the

subset is based on their closeness to the fitted model that is expressed by the

residuals.

The forward search algorithm consists of three steps: the first concerns

the choice of an initial subset, the second refers to the way in which the

forward search progresses and the third relates to the monitoring of the

statistics during the search. In this work, the methodology is adapted to

the peculiarity of the random effects model taking into account the presence

of groups in the data structure. In particular, focusing on the inferential

issue expressed in equation (4), we propose a procedure to obtain a Robust

Forward LR Test (LRTF ), individuating a cut-off point of all the classical

LRT values computed during the search, cut-off point that divides the group

of outliers from the other observations. Programming codes for R and S-Plus,

developed by the authors, are available on demand.

3.1. Step 1: choice of the initial subset

The first step of the forward pocedure consists in the choice of an initial

subset of observations supposed to be outliers free, S∗. Many robust methods

were proposed to sort the data into a clean and a potentially contaminated

part and the forward search is not sensitive to the method used to select

the initial subset, provided unmasked outliers are not included at the start

[1]. In the random effects framework, our proposal is to include in the initial

subset of observations the yij which satisfy:

min|yij −medj| ∀j = 1, 2, . . . , J (6)
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where medj is the group j sample median. We impose that every group

has to be represented by at least two observations; in this way, every group

contributes to the estimation of the within random effects and the initial

subset dimension, m =
∑J

k mk, is at least 2 ∗ J .

3.2. Step 2: adding observations during the search

At each step, the forward search algorithm adds to the subset the obser-

vations closer to the previously fitted model. Formally, given the subset S(m)

of dimension m =
∑J

t mt, where the mts are the number of observations in

group j at step m, the forward search moves to S(m+1) in the following way:

after the random effects model is fitted to the S(m) subset, all the nij observa-

tions are ordered inside each group according to their squared total residuals

ξ̂2
ij = (yij − ŷij,S(m))2. Since ŷij,S(m) = µ̂S(m) , the total residuals express the

closeness of each unit to the grand mean estimate, making possible the de-

tection of both first and second level outliers. For each group j we choose

the first mj ordered observations and add the one with the smallest squared

residual among the remaining. The random effects model is now fitted to

S(m+1) and the procedure ends when all the N observations are entered into

the model. In moving from S(m) to S(m+1), while most of the time just one

new unit joins the previous subset, it may also happen that two or more new

units enter S(m+1) as one or more leave, given that all the groups have to be

always represented in the subset with at least 2 observations.

The procedure allows the choice between different parameters’ estimators;

available estimators are ANOVA, ML and REML (default is ML).
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3.3. Step 3: monitoring the search

At each stage of the search, it is possible to collect information on param-

eter estimates, residuals and other relevant statistics, to guide the researcher

in the outliers detection.

In order to illustrate the application and the advantages of the forward

search approach we show the methodology using the two datasets described

in Fig. 1. In both cases, even if they represent very different situations

characterised by the presence of, respectively, some first level outliers and

just one second level outlier, the LRT computed with the classical approach

“erroneously” falls in the rejection area of the null hypothesis expressed in

equation (4). In the following, we separately describe the analysis of these

two datasets carried out with the forward search approach. Figures 1 to 5

refer to the first dataset, while the others refer to the second one; all figures

represent the steps of the forward search on the x-axis.

Fig. 2 shows how the observations join the subset S(m) during the search.

The last observations joining S(m) belong to different second level units (right

panel of Fig. 2), precisely to the groups 3, 6, 10, 11 and 12, and are rep-

resented by the bold lines that lie under the other lines at the end of the

search; this suggests the possible presence of outliers in these groups.

Fig. 3 shows the N absolute total residuals ξ̂ij computed at each step of

the forward search. Throughout the search, all the residuals are very small

except those related to the last 8 entered observations. These units can be

considered outliers in any fitted subset and even when they are included in the

algorithm in the last steps of the search their residuals decrease only slightly.

Furthermore, Fig. 3 clearly highlights the sensitivity of the forward search
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Figure 2: Forward plots of the groups dimensions: during the search (a) and zoom of the

last 50 steps (b).

that also recognises the presence of an additional anomalous observation

generated randomly from the Standard Normal distribution; this observation

belongs to the group 23 and join the search at step 242 just before the other

eight outlier observations.

Other two plots useful for detecting the presence of outliers are shown in

Fig. 4, representing the values of the within (σ̂2) and between (τ̂ 2) variance

estimated during the search. In the graphs, broken lines represent, at each

step of the search, the 5% and 95% quantiles of the empirical variance dis-

tribution, obtained from a Montecarlo simulation of 10000 samples free from

contamination. Initially, τ̂ 2 is quite high due to the effect of the instability

in the composition of the fitting subsets S(m). Subsequently, both estimates

become closer to their real values: the inclusion of each further unit causes

a light increase in the value of the estimate of σ2, which tends to 1 as the

number of units included in the subset tends to N , while the estimated value

13



Figure 3: Forward plot of the estimated absolute residuals.

of τ 2 is always quite near to 0. At the end of the search, both estimates

increase sharply due to the effect of the outliers. Finally, Fig. 5 represents

the halved p-value obtained, at each step of the search, from the LRT for

the null hypothesis: H0 : τ 2 = 0. During almost all the search the p-value is

very high, but in the last steps it moves, erroneously, to the rejection area;

at the last step, halved p− value = 0.0141, as indicated in Section 2.

The second example is characterized by the presence of one second level

outlier. In this case, as shown in Figure 6, the observations joining S(m)

during the last steps of the search belong to the same second level unit, 25,

suggesting the presence of an anomalous group of observations.

Fig. 7 shows the total residuals computed during the search, representing,

as mentioned above, the distance between the observed responses and the

estimated grand mean µ̂. In particular, the plot is characterized by the

14



Figure 4: Forward plots of the Within (a) and Between (b) components of the error

variance. The dotted lines represent the 5% and 95% quantile of the empirical distributions

obtained from a simulation study with clean data.

Figure 5: Forward plot of the Likelihood-Ratio Test. The horizontal line represents the

chosen halved α value.
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Figure 6: Forward plots of the groups dimensions: during the search (a) and zoom of the

last 50 steps (b).

presence of two opposite patterns of lines: while the values of the residuals

of the bulk of the data increase sharply at the beginning of the search, then

they decrease smoothly and they start again to increase at the end of the

search, the values of the residuals of the outlier observations follow a specular

pattern (first decrease, then increase and, at the end, decrease again). This

feature is due to the fact that at least two observations belonging to the

outlier group are in the initial subset S∗. For this reason, the estimated

grand mean is relatively high in the first steps of the search; then it starts

to decrease as the number of clean observations joining S(m) increases and it

increases again at the end of the search when all the other outliers join S(m).

Fig. 8 represents the values σ̂2 and τ̂ 2 estimated during the search. Ob-

viously, also the shape of these graphs is strongly influenced by the search

rules. As said before, the two outliers of group 25 present in the initial subset

will increase the grand mean value and, since the ordering of the entrance
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Figure 7: Forward plot of the estimated absolute residuals.

of observations in S(m) is decided according to their closeness to the grand

mean estimate, the first few observations entering the search are those posi-

tioned in the highest part of each group and far away from their group mean;

therefore, the whithin variance is overestimated and falls outside the 95%

confidence interval computed with clean data. After all the observation of

the non outling groups are included in S(m), the Within variance estimate

decreases slightly entering the bands.

The behaviour of τ̂ 2 is less regular: indeed, after being very high for the

first half of the search, it moves toward its real value as more non outlying

observations join S(m) contributing to move µ̂ toward its real value. Anyway,

at the end of the search, it obviously increases due to the effect of the outliers.

Finally, Fig. 9 represents a very interesting behaviour of the the halved
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Figure 8: Forward plots of the Within (a) and Between (b) components of the error

variance. The dotted lines represent the 5% and 95% quantile of the empirical distributions

obtained from a simulation study with clean data.

p-value obtained with the LRT . Contrary to the first example, during the

search the p-value is always very low since the units belonging to the outlier

group that are in S(m) lead to the wrong conclusion of the presence of second

level variability. Then, the LRT correctly increases as the number of non

outlying units entering the subset S(m) increases, and it obviously sharply

decreases when the units of the outlier group finally enter the search.

4. Forward Likelihood-Ratio Test and its evaluation

The Forward Likelihood-Ratio Test can be defined as a collection of the

values of the classical LR Test statistic computed at each step of the search

(see Figs. 5 and 9); to obtain a Robust Forward LR Test we need to identify

a cut-off point of the progress procedure that best divides the group of ob-

servations that differ to the bulk of the data from the others. As showed, the

18



Figure 9: Forward plot of the Likelihood-Ratio test. The horizontal line represents the

chosen halved α value.
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search of the cut-off point cannot be “automatic” but is completely based

on graphical analysis and ad hoc considerations, and is strictly connected to

the context of the observed phenomenon. Since is clearly impossible to carry

out a simulation to evaluate the goodness of the test without an “automatic”

cut-off point, we refer to the same simulations illustrated in the Section 2 to

show how the proposed robust test behaves. In particular, because of the

complexity of the model and the computational burden of the simulations,

we evaluate only some cases presented in Table 1.

The datasets used for the analysis are composed by J balanced groups

of nij observations coming from a Standard Normal distribution, with J =

20, 25, 30 and nij = 10, 15, 20. The cut-off point is located at ε · N steps

before the end of the search, with ε = 0.05, 0.08, 0.10. Table 2 shows fre-

quencies over 10000 simulations in which Robust Forward LR Test falls in

the rejection area at the nominal significance level of α = 0.05; these values

can be compared with the results obtained with the classical approach (Table

1). For example, for J = 20, nij = 15 and ε = 0.08 the Robust Forward LR

Test produces an evidence versus the alternative hypothesis in 519 samples

while with the classical test the frequency is of 1889 over 10000 replicates.

With the proposed method, the probability of accepting H1 when H0 is true

is always lower than the same probability showed in Table 1. However, since

we did not analyse every sample with a graphical approach as the forward

search suggests and we choice the cut-off point with an automatic procedure,

there are small variations from the nominal significance level α = 0.05.
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Table 2: Approximation of the true type I error probability of the Robust Forward LR

Test with contamination in the data

J nij 0.05 0.08 0.1

20 10 0.0394 0.0451 0.0535

20 15 0.0363 0.0519 0.0635

20 20 0.0426 0.0637 0.0757

25 10 0.0409 0.0503 0.0645

25 15 0.0411 0.0636 0.0774

25 20 0.0445 0.0694 0.0910

30 10 0.0405 0.0528 0.0625

30 15 0.0454 0.0619 0.0744

30 20 0.0491 0.0681 0.0935

5. Concluding remarks

In a dataset, outliers can affect the inferetial results on a statistical model

and can lead to erroneous conclusions. For this reason, researchers should

always be aware of the presence of outliers in the analysed dataset. Our work

concerns the effect of outliers in the random effects modeling framework. In

particular, we implemented the Forward Search method for random effects

models, in order to individuate the outliers and to analyse their effect on the

estimation of parameters and on model inference. The proposed method-

ology takes into account the presence of groups in the data structure and

can identify the presence of both first and second level outliers. The basic

idea of the Forward Search approach is to fit the hypothised model to an

increasing subset of units, where the order of entrance of observations into
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the subset is based on their closeness to the fitted model. At every step

of the forward search we compute parameters estimates, residuals and some

other informative statistics in order to identify, with a graphical approach, a

cut-off point separating the outliers from the other observations. In particu-

lar, the value of the classical Likelihood-Ratio Test evaluated at the cut-off

point is the Robust Forward Likelihood-Ratio Test value. The results of a

Montecarlo simulation study show the clear superiority of our proposal since

the probability of the type I error computed with the proposed method is

much lower than the one computed with the classical approach when data

are contaminated.
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