
 
 
 
 
 

W
O

R
K

I
N

G
 

P
A

P
E

R
 

2
0

0
9

/
0

1
 

 
 

  
 

Intra-dai ly  Volume Model ing  

and Predict ion for  

A lgor i thmic Trading 

 

 

 
 
 
 
 
 
 
 
 
 

C. T.  Brownlees,  
F.  C ipol l in i ,  G.  M. Gal lo  

 
 
 
 
 
 
 

 
 

U n i v e r s i t à  d e g l i  S t u d i  
d i  F i r e n z e  

 
 
 
 
 
 
 
 
 
 

D
ip

a
rt

im
e

n
to

 d
i 

S
ta

ti
st

ic
a

 “
G

. 
P

a
re

n
ti

” 
–

 V
ia

le
 M

o
rg

a
g

n
i 

5
9

 –
 5

0
1

3
4

 F
ir

e
n

z
e

 -
 w

w
w

.d
s.

u
n

if
i.

it
 



Electronic copy available at: http://ssrn.com/abstract=1393993

Intra-daily Volume Modeling and Prediction for
Algorithmic Trading

Christian T. Brownlees∗ Fabrizio Cipollini† Giampiero M. Gallo‡

June 13, 2009

Abstract

The explosion of algorithmic trading has been one of the most prominent recent
trends in the financial industry. Algorithmic trading consists of automated trading
strategies that attempt to minimize transaction costs by optimally placing orders.
The key ingredient of many of these strategies are intra-daily volume proportions
forecasts. This work proposes a dynamic model for intra-daily volumes that captures
salient features of the series such as time series dependence, intra-daily periodicity
and volume asymmetry. Moreover, we introduce a loss functions for the evaluation
of proportions forecasts which retains both an operational and information theoretic
interpretation. An empirical application on a set of widely traded index ETFs shows
that the proposed methodology is able to significantly outperform common forecast-
ing methods and delivers significantly more precise predictions for VWAP trading.

∗Department of Finance, Stern School of Business, NYU and Dipartimento di Statistica “G. Parenti”,
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1 Introduction

Portfolio management and asset allocation require the acquisition or liquidation of po-
sitions. When the related volume is sizeable according to prevailing market conditions,
placing an order is potentially able to change the price of that asset. This is particularly
true for actions taken by institutional investors (e.g. pension funds or insurance com-
panies managing large capitals) and for illiquid assets. The interaction between market
participants may determine the creation of positions with the hope to profit from being on
the other side of the large order. By the same token, large orders may need so–called price
concessions in order to attract an adequate counterparty. The decision to buy or sell an
asset in large quantities, in other words, must be informed as of the potential price impact
which that particular trade may have (an effect known as slippage). This may result in
lower profits or higher losses if the order is executed (transaction risk) or in the order not
being executed at all.

In recent years, and increasingly so, services are being offered by specialized firms which
provide program trading to institutional investors under the premise that their expertise
will translate into a more efficient management of the transactions, minimizing slippage,
or even into the assumption of some transaction risk. To be clear, there is no easy solu-
tion to transaction risk: the uncertainty around the actual execution price relative to one’s
own expected price (or of the execution of the order itself) must be weighed against the
unavoidable uncertain market movements to face, should one decide to wait to place the
order (market risk). To this extent, the relevant strategy is to plan how to place the orders
relative to the characteristics of the financial market (rules and regulations, e.g. opening
price formation), of the particular asset (e.g. liquidity, volatility, etc.), and, at a more ad-
vanced level, of that asset relative to other assets in a portfolio (e.g. correlation, common
features, etc.).

Algorithmic trading (a.k.a. algo–trading) is widely used by investors who want to manage
the market impact of exchanging large amounts of assets. It is favored by the development
and diffusion of computer–based pattern recognition, so that information is processed in-
stantaneously and action is taken accordingly with limited (if any) human judgment and
intervention. The size of orders generated and executed by algo–trading is quite large and
is increasing. In October 2006, the NYSE has boosted a mixed system of electronic and
face–to–face auction which brings automated trades to about 50% of total trades, and sim-
ilar trends are valid for other financial markets (smaller proportions when assets are more
complex, e.g. options). It is generally recognized that algorithmic trading has reduced the
average trade size (smaller liquidity) in the markets and hence has pushed institutional
investors to split their orders in order to seek better price execution (cf. Chordia et al.
(2008)).

The daily Volume Weighted Average Price (VWAP) was introduced by Berkowitz et al.
(1988)) as a weighted average (calculated at the end of the day) of intra-daily transaction
prices with weights equal to the relative size of the corresponding traded volume to the
total volume traded during the day (defined as full VWAP in Madhavan (2002)). In the
original paper, the difference between the price of a trade and the recorded VWAP was
used to measure the market impact of that trade. The goal of institutional investors is

2



to minimize such impact. VWAP is a very transparent measure, easily calculated at the
end of the day with tick–by–tick data: it allows to evaluate how average traded prices
were favorable to the trader. A VWAP replicating strategy is thus defined as a procedure
for splitting a certain number of shares into smaller size orders during the day, which
will be executed at different prices with the net result of an average price that is close
to the VWAP. An interesting feature of this type of strategies is that accurate intra-daily
volume proportions forecasting leads to accurate VWAP replication. Whether the VWAP
benchmark is proposed on an agency base or on a guaranteed base (in exchange for a fee)
is a technical aspect which does not have any bearings in what we discuss.

This paper deals with volume forecasting for VWAP trading. The trade to be executed
is treated as exogenously determined (cf. Bertsimas and Lo (1998), Almgren and Chriss
(2000), Engle and Ferstenberg (2007)). In order to implement the replicating strategy,
we assume that we are price takers and no effort will be put in predicting prices while
we concentrate on modeling volumes and predicting intra-daily volume proportions. As
we will show in what follows, there are different components in the dynamics of traded
volumes recorded at intra-daily intervals (relative to outstanding shares). We concentrate
on single assets and we record intra-daily behavior at regular intervals. From an initial de-
scriptive analysis of the series we derive some indications as of what features the model
should reproduce. Beside the well documented U-shaped pattern of intra-daily trading
activity which translates into a periodic component, we find that there are two other com-
ponents which relate to a daily evolution of the volumes and to intra-daily non–periodic
dynamics, respectively. We use these findings as a guideline to specify an extension of
the Multiplicative Error Model (Engle (2002)) called a Component Multiplicative Error
Model (CMEM) where each element has its own dynamic specification. The model is
specified in a semiparametric fashion, thus avoiding the choice of a specific distribution
of the error term. We estimate all the parameters at once by Generalized Method of Mo-
ments. The estimated model can then be used to dynamically forecast intra-daily volumes
proportions. To our knowledge there is no well established methodology to evaluate pro-
portion forecasts. In this work we introduce a loss functions, the Slicing Loss function, for
the evaluation of proportions forecasts which retains both an operational and information
theoretic interpretation.

To be sure, our approach is just the first step into the implementation of an actual VWAP
based strategy. Microstructure considerations put institutional investors in a different po-
sition from those traders who exploit intra-daily volatility and are not constrained by
specific choices of assets. In the interaction between the two types, the latter will scan the
books to detect whether some peculiar activity may reveal the presence of a large order
placed by the former. At any rate, some orders may still be too large (relative to daily
volume) to be filled in one day, so that the market impact is possibly unavoidable.

Our model shares the same logic as the component GARCH model suggested by Engle
et al. (2006b), to model intra-daily volatility. The main difference lies in the evolution of
the daily and intra-daily components. Exploiting the scheme proposed here, all param-
eters of the model can be estimated simultaneously, instead of recurring to a multi-step
procedure. Engle et al. (2006a) propose econometric techniques for transaction cost anal-
ysis. Some connections can be found also with P-GARCH models introduced by Boller-
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slev and Ghysels (1996); relative to their suggestion, we achieve a simplification of the
specification by imposing the same periodic pattern to the model coefficients (but see also
Martens et al. (2002)). The literature on econometric models for intra-daily patterns of
financial time series is quite substantial: from the initial contributions on price volume
relationship (cf. the survey by Karpoff (1987)), the idea of relating intra-daily volatility
and trading volumes as a function of an underlying latent information flow is contained
in Andersen (1996). More recently, attention was specifically devoted to measuring the
amount of liquidity of an asset based on the relationship between volume traded and price
changes: Gouriéroux et al. (1999) concentrate on modeling weighted durations, that is
the time needed to trade a given level (in quantity or value) of an asset. Dufour and Engle
(2000) look at the time between trades and how that has an impact on price movements.
Białkowski et al. (2008) concentrate on volume dynamics and take a factor analysis ap-
proach in a multivariate framework in which there is a common volume component to
all stocks in an index and idiosyncratic components related to each stock which evolves
according to a SETAR model. At any rate, the approach proposed here is quite general,
given that some features of volumes are common to other non-negative intra-daily finan-
cial time series, such as realized volatilities, number of trades and average durations.

In this paper, we start from stylized facts (Section 2) to motivate the Component MEM
(Section 3). Section 3.3 contains the details on the estimation procedure. The empiri-
cal application is divided up between model estimation and diagnostics 3.4 and volume
forecasting and VWAP forecast comparisons 4. Concluding remarks follow (Section 5).

2 The Empirical Regularities of Intra-daily Volumes

We chose to analyze Exchange Traded Funds (ETFs), innovative financial products which
allow straightforward trading in market averages as if they were stocks, while avoiding
the possible idiosyncracies of single stocks. In the present framework, we count on a
dataset consisting of regularly spaced intra-daily turnover and transaction price data for
three popular equity index ETFs: DIA (Dow Jones ETF), QQQQ (Nasdaq ETF) and SPY
(S&P 500 ETF). The corresponding turnover series are defined as the ratio of intra-daily
transaction volume over the number of daily shares outstanding multiplied by 100. The
frequency of the intra-daily data is 30 minutes, leading to 13 intra-daily bins. Volumes
are computed as the sum of all transaction volumes exchanged within each intra-daily bin,
while we use the last recorded transaction price before the end of each bin. The sample
period used in the analysis spans from January 2002 to December 2006 and we only
consider days in which there are no empty bins, which corresponds to 1248 trading days
and 16224 observations. The ultra high–frequency data used in the analysis are extracted
from the TAQ while shares outstanding are taken from the CRSP. Details on the series
handling and management are documented in Brownlees and Gallo (2006).

We first focus on the empirical regularities of the SPY turnover series which later will be
used as a guideline for the suggested model. Similar evidence also holds for the other
tickers for which we report summary descriptive statistics only.
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Figure 1: SPY Turnover Data: Original Turnover Data (top); Daily Averages (center),
Intra–daily Component (bottom). January 2002 to December 2006.
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Figure 2: SPY Turnover Data: Intra–daily Component (top); Intra–daily Periodic Compo-
nent (center); Intra–daily Non-periodic Component (bottom). January 2002 to December
2006.
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Figure 3: SPY Turnover Data: Autocorrelation Function of the Overall Turnover and of
the Daily Averages.

Figure 4: SPY Turnover Data: Autocorrelation Function of the Intra-daily (Periodic and
Non–periodic) Components.

Let us start with a graphic appraisal of the 30–minutes turnover (top panel of Figure 1): as
with most financial time series, it clearly exhibits clustering of trading activity, which is
retained taking daily averages (cf. second panel of Figure 1). Dividing each observation
by the corresponding daily average we obtain the intra-daily pattern (bottom panel of
Figure 1); supposing to have a periodic component and a non periodic component as with
other financial high–frequency data, we compute averages by time of day (13 bins – center
panel of Figure 2 where the top panel reports the intra–daily series for ease of reference)
which exhibit a U–shape as other intra-daily financial time series (e.g. average durations,
the trading activity is higher at the opening and closing of the markets and is lower around
mid-day). The ratio between these two series gives a non–periodic component which is
shown in the bottom panel of Figure 2.

The dynamic features of these three series (daily, intra-daily periodic, and intra-daily non
periodic) are shown in the correlograms of the original series (left panel of Figure 3) and
of the daily averages (right panel). The use of unconditional intra-daily periodicity to
adjust the original series results in a time series with a correlogram where periodicity is
removed but some short–lived dependence is retained (Figure 4).
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The autocorrelations of the components (Table 1) of the 30-minute series for the three
tickers confirms the graphical analysis of SPY. The overall time series display relatively
high levels of persistence which are also slowly decaying. The autocorrelations do not
decrease by daily averaging. By dividing the overall turnover by its daily average (intra-
daily component), a substantial part of dependence in the series is removed. Finally, once
the intra-daily periodic component is removed, the resulting series show significant low
order correlations only. Interestingly, the magnitudes of the various autocorrelations of
the series are remarkably similar across the assets.

overall daily intra-daily intra-daily
non-periodic

ρ̂1 ρ̂1 day ρ̂1 ρ̂1 week ρ̂1 ρ̂1 day ρ̂1 ρ̂1 day

DIA 0.65 0.46 0.72 0.59 0.35 0.27 0.13 0.01
QQQQ 0.70 0.52 0.77 0.66 0.48 0.40 0.20 0.00
SPY 0.77 0.60 0.84 0.75 0.44 0.34 0.18 0.00

Table 1: Autocorrelations at selected lags of the turnover time series components. The
table reports the lag 1 (ρ̂1) and lag 13 (ρ̂1 day) autocorrelations of the intra–daily frequency
components (overall, intra–daily and intra–daily non–periodic) and lag 1 (ρ̂1) and lag 5
(ρ̂1 week) autocorrelations of the daily frequency component (daily).

3 A Multiplicative Error Model for Intra-daily Volumes

Based on the empirical regularities discussed in Section 2 we will specify the dynamics
of intra-daily volumes decomposed in three components: one daily and two intra-daily
(one periodic and one dynamic). Let us first establish the notation used throughout the
paper. Days are denoted with t ∈ {1, . . . , T}; each day is divided into I equally spaced
intervals (referred to as bins) indexed by i ∈ {1, . . . , I}. In what follows, in order to
simplify the notation we may label observations indexed by the double subscript t i with
a single progressive subscript τ = I × (t − 1) + i. Correspondingly, we denote the total
number of observations by N (equal to T × I if all I bins of data are available for all T
days).

The non-negative quantity under analysis relative to bin i of day t is denoted as xt i or,
alternatively, as xτ . Ft i−1 indicates the information about xt i available before forecasting
it. Usually, we will assume Ft 0 = Ft−1 I but, if needed, it is possible to include additional
pieces of information into Ft 0, specifically related to market opening structure.

In what follows we will adopt the following convention: if x1, . . . ,xK are (m,n) matri-
ces then (x1; . . . ; xK) represents the (mK,n) matrix obtained stacking the xt matrices
columnwise.
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3.1 Model Definition

Being the xt i’s non-negative, a model for their daily-intra-daily dynamic can be specified
by extending the logic of Multiplicative Error Models (MEM) proposed by Engle (2002).
Moreover, by relying on the stylized facts showed in Section 2, we structure the model
by combining different components, each one able to capture a different feature of the
dynamic of the time series. We will provide further remarks about the link of the model
with the empirical regularities in Section 3.2.

We then assume a Component MEM (CMEM)

xt i = ηt φi µt i εt i.

The multiplicative innovation term εt i is assumed i.i.d., non-negative, with mean 1 and
constant variance σ2:

εt i|Ft i−1 ∼ (1, σ2). (1)

The conditional expectation of xt i is the product of three multiplicative elements:

• ηt, a daily component;

• φi, an intra-daily periodic component aimed to reproduce the time–of–day pattern;

• µt i, an intra-daily dynamic (non-periodic) component.

In order to simplify the exposition, we assume a relatively simple specification for the
components. If needed, the formulation proposed can be trivially generalized, for instance
by including other predetermined variables and/or more lags (see the empirical application
in Section 3.4).

The daily component is modeled as

ηt = α
(η)
0 + β

(η)
1 ηt−1 + α

(η)
1 x

(η)
t−1 + γ

(η)
1 x

− (η)
t−1 (2)

where x(η) is what we name the deflated daily volume and x− (η) is its ‘asymmetric’ coun-
terpart to account for possible differences in the dynamics related to the sign of daily
returns. The deflated daily volume x(η) is defined as

x
(η)
t =

1

I

I∑
i=1

xt i
φi µt i

, (3)

that is the daily average of the intra-daily volumes deflated by the intra–daily components
φi and µt i; and x− (η) is defined as

x
− (η)
t = x

(η)
t I(rt . < 0)

with rt . denotes the daily return at day t.
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The intra-daily dynamic component is specified as

µt i = α
(µ)
0 + β

(µ)
1 µt i−1 + α

(µ)
1 x

(µ)
t i−1 + γ

(µ)
1 x

− (µ)
t i−1 (4)

where, again, x(µ) is the deflated intra-daily volume (and x− (µ) is its ‘asymmetric’ version
built on the basis of the sign of lagged bin returns). More precisely:

x
(µ)
t i =

xt i
ηt φi

, (5)

x
− (µ)
t i = x

(µ)
t i I(rt i < 0)

where rt i indicates the return at bin i of day t.

Both ηt and µt i are assumed to be mean-stationary. Furthermore, µt i is constrained to
have unconditional expectation equal to 1 in order to make the model identifiable. This
allows us to interpret it as a pure intra-daily component and implies α(µ)

0 = 1 − β(µ)
1 −

α
(µ)
1 − γ

(µ)
1 /2. From these assumptions we obtain also that reasonable starting conditions

for the system can be η0 = x
(η)
0 = x, x− (η)

0 = x/2, µ1 0 = x
(µ)
1,0 = 1 and x− (µ)

1 0 = 1/2,
where x indicates the sample average of the modeled variable x (assuming symmetry of
the returns distribution).

The intra-daily non-periodic component can be initialized with the latest quantities avail-
able, namely those computed on the previous day, i.e.

µt 0 = µt−1 I x
(µ)
t 0 = x

(µ)
t−1 I x

− (µ)
t 0 = x

− (µ)
t−1 I .

In synthesis, the system nests the daily and the intra-daily dynamic components by al-
ternating the update of the former (from ηt−1 to ηt) and of the latter (from µt 0 = µt−1 I

to µt I). Time-varying ηt adjusts the mean level of the series, whereas the intra-daily
components φi µt i capture bin–specific departures from such an average level.

Note that defining x
(µ)
t i as in (5) implies x(µ)

t i = µt iεt i. Combining this with (1) one
obtains

E(x
(µ)
t i |Ft i−1) = µt i V (x

(µ)
t i |Ft i−1) = µ2

t iσ
2 (6)

that coincide with the properties of the corresponding quantity in the usual MEM (Engle
(2002)). A similar consideration can be made for x(η)

t . In fact, definition (3) implies
x

(η)
t = ηtεt, where εt = I−1

∑I
j=1 εt i, and thus

E(x
(η)
t |Ft−1 I) = ηt V (x

(η)
t |Ft−1 I) = η2

t σ
2/I. (7)

On this base, x(η)
t and x(µ)

t i are adjusted versions of the observed xt i’s that can be inter-
preted as carrying on an innovation contribution in the respective equations, whereas the
corresponding ‘asymmetric’ versions x− (η) and x− (µ) are inserted to account for possible
differences in the dynamics related to the sign of daily or bin returns.

The intra-daily periodic component φi can be specified in various ways but here we retain
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a parsimonious parameterization of φi via a Fourier (sine/cosine) representation:

φi = exp

{
K∑
k=1

[δ1 k cos (fik) + δ2 k sin (fik)]

}
(8)

where f = 2π/I , K =
[
I+1
2

]
, δ1K = 0 if I is odd, δ2K = 0. Moreover, the number of

terms into (8) may be considerably reduced if the periodic intra-daily pattern is sufficiently
smooth, since few low frequencies harmonics may be enough. Alternatively, the use of
shrinkage type estimation may allow to achieve flexibility and parsimony of the estimated
diurnal component (cf. Brownlees and Gallo (2008)).

3.2 Discussion

3.2.1 Respondence of the CMEM to the Descriptive Analysis

The daily average xt . = I−1
∑I

i=1 xt i represents a proxy of the daily component ηt. In
fact, by taking its expectation conditionally on the previous day, we have

E(xt .|Ft−1 I) = ηt
1

I

I∑
i=1

φiE(µt i|Ft−1 I) ' ηt
1

I

I∑
i=1

φi = ηtφ, (9)

where the approximate equality can be justified by noting that the non-periodic intra-daily
component µt i has unit unconditional expectation, so that we can reasonably guess that it
moves around this value.1

Once the daily average is computed, the ratio x(I)
t i = xt i/xt . can be used as a proxy of the

whole intra-daily component φiµt i, since

x
(I)
t i =

xt i
xt .
' ηtφiµt jεt i

ηtφ
=
φiµt jεt i

φ
. (10)

The bin average of the quantities into (10), namely x(I)
. i = T−1

∑T
t=1 x

(I)
t i , represents a

proxy of the intra-daily periodic component φi. In fact,

x
(I)
. i =

1

T

T∑
t=1

x
(I)
t j '

φi

φ

1

T

T∑
t=1

µt jεt j. (11)

By taking its expectation conditionally on the starting information, we have

E(x
(I)
. i |F0 I) '

φi

φ

1

T

T∑
t=1

E(µt i|F0 I) '
φi

φ
. (12)

1We remark as the log formulation of the intra-daily periodic component guarantees
∏I

i=1 φi = 1 but
not φ = 1. However, for the applications considered φ is quite close to one.
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The last approximation can be motivated by considering that the average of the µt i’s for
bin j converges, in some sense, to the unconditional average 1.

Finally, the residual quantity x(I)
t i /x

(I)
. i = xt i/x. i can be justified as proxy of the intradaily

non-periodic component, since

x
(I)
t i

x
(I)
. i

' φiµt jεt j/φ

φi/φ
= µt iεt i. (13)

3.2.2 CMEM and Component GARCH

The CMEM of Section 3.1 has some relationships with the component GARCH model
suggested by Engle et al. (2006b), for modeling intra-daily volatility. Our proposal differs
however in many points. In particular, the main difference lies in the evolution of the daily
and intra-daily components. Exploiting the scheme proposed, all parameters of the model
can be estimated jointly, instead to recurring to a multi-step procedure.

3.2.3 CMEM and Periodic GARCH

The structure of the CMEM shares some features with the P-GARCH model (Bollerslev
and Ghysels (1996)) as well. By grouping intra-daily components φi and µt i and referring
to Equation (4) for the latter, the combined component can be written as

φi µt i = α
(µ)
0 i + β

(µ)
1 i µt i−1 + α

(µ)
1 i x

(µ)
t i−1 + γ

(µ)
1 i x

− (µ)
t i−1 , (14)

where

α
(µ)
0 i = α

(µ)
0 φi α

(µ)
1 i = α

(µ)
1 φi β

(µ)
1 i = β

(µ)
1 φi γ

(µ)
1 i = γ

(µ)
1 φi. (15)

In practice, those defined in (15) are periodic coefficients: their pattern is ruled by φi
but each of them is rescaled by a (possibly) different value. The main difference relative
to the P-GARCH formulation lies in the considerable simplification obtained by impos-
ing the same periodic pattern to all coefficients. In this respect, we are inspired by the
results in Martens et al. (2002) that a relatively parsimonious formulation, based on an
intra-daily periodic component scaling the dynamical (GARCH-like) component of the
variance, provides forecasts of the intra-daily volatility that are only marginally worse of
a more computationally expensive P-GARCH. Martens et al. (2002) provide also empiri-
cal evidence in favor of the exponential formulation of the periodic intra-daily component
and support its representation in a Fourier form (even if they consider only to the first
4 harmonics in their application). This notwithstanding, we depart from their approach
in at least two substantial points: we include an explicit dynamic structure for the daily
component, interpreting the intra-daily component as a corresponding scale factor; all
parameters of the CMEM are estimated jointly.
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3.3 Inference

Let us now illustrate how to obtain inferences on the model specified in Section 3.1. We
group the main parameters of interest into the p-dimensional vector θ = (θ(η);θ(s);θ(µ)),
where the three subvectors refer to the corresponding components of the model. Relative
to these, the variance of the error term, σ2, represents a nuisance parameter.

Since the model is specified in a semiparametric way (see (1)), we focus our attention
on the Generalized Method of Moments (GMM – Newey and McFadden (1994) and
Wooldridge (1994)) as an estimation strategy not needing the specification of a density
function for the innovation term.

Rather than by GMM, MEMs are often estimated by QMLE by maximizing the log-
likelihood of the specification based on a Gamma distribution assumption for the inno-
vation term (see Engle and Gallo (2006)). The first order conditions for the conditional
mean parameters are in fact the same for the two estimators. However, the portion of
the Gamma log-likelihood due to the Gamma dispersion parameter is not defined or over-
flows numerically when, respectively, zeros or inliers2are present in the data. On the other
hand, our GMM approach is robust to such features which are common in these datasets,
especially when dealing with a higher number of intra-daily bins or illiquid assets.

3.3.1 Efficient GMM inference

Let
uτ =

xτ
ηt φi µτ

− 1, (16)

where we simplified the notation by suppressing the reference to the dependency of uτ
on the parameters θ, on the information Fτ−1 and on the current value of the dependent
variable xτ . uτ is a conditionally homoskedastic martingale difference, given that its
conditional expectation is zero and its conditional variance is σ2. As a consequence, let
us consider any (M, 1) vector Gτ depending deterministically on the information Fτ−1

and write Gτuτ ≡ gτ . We have

E(gτ |Fτ−1) = 0, ∀ τ, ⇒ E(gτ ) = 0, (17)

by the law of iterated expectations; gτ is also a martingale difference.

Assuming that the absolute values of uτ and Gτuτ have finite expectations, the uncor-
relatedness of Gτ and uτ gives the former the role of instrument. Gτ may depend on
nuisance parameters, there including θ also. We collect them into the vector ψ and, in
order for us to concentrate on estimating θ, we assume for the moment that ψ is a known
constant, postponing any further discussion about its role and how to inference it to the
end of this section and to Section 3.3.2.

If M = p, we have as many equations as the dimension of θ, thus leading to the moment

2Inliers are observations that are anomalous by being too small (in this context, too close to zero).

13



criterion

g =
1

N

N∑
τ=1

gτ = 0. (18)

Under correct specification of the ηt, φi, and µt i equations and some regularity conditions,
the GMM estimator θ̂N , obtained solving (18) for θ, is consistent (Wooldridge (1994,
th. 7.1)). Furthermore, under some additional regularity conditions, we have asymptotic
normality of θ̂N , with asymptotic covariance matrix (Wooldridge (1994, th. 7.2))

Avar(θ̂N) =
1

N
(S′V−1S)−1, (19)

where

S = lim
N→∞

1

N

N∑
τ=1

E (∇θ′gτ ) (20)

V = lim
N→∞

1

N
V

(
N∑
τ=1

gτ

)
= lim

N→∞

[
1

N

N∑
τ=1

E (gτg
′
τ )

]
. (21)

The last expression for V comes from the fact that gτ is a martingale difference, since
this is a sufficient condition for making these terms to be serially uncorrelated; moreover,
the same condition leads to simplifications in the assumptions needed for the asymptotic
normality, by virtue of the martingale CLT.

The martingale difference structure of uτ gives also a simple formulation for the efficient
choice of the instrument Gτ , where efficient is meant producing the ’smallest’ asymptotic
variance among the GMM estimators arisen by g functions structured as in (18), with
gτ = Gτuτ a and Gτ being an instrument. Such efficient choice is

G∗τ = −E(∇θuτ |Fτ−1)V (uτ |Fτ−1)
−1. (22)

Computing E (gτg
′
τ ) into (21) and E (∇θ′gτ ) into (20) we obtain

E (gτg
′
τ ) = −E (∇θ′gτ ) = σ2E (G∗τG

∗′
τ ) ,

so that

V = −S = σ2 lim
N→∞

1

N

N∑
τ=1

E (G∗τG
∗′
τ )

and (19) specializes as

Avar(θ̂N) =
1

N
(S′V−1S)−1 = − 1

N
S−1 =

1

N
V−1. (23)

Considering the analytical structure of uτ in the model (equation (16)), we have

∇θuτ = −aτ (uτ + 1),

14



where
aτ = η−1

t ∇θηt + µ−1
τ ∇θµτ + φ−1

i ∇θφi (24)

so that (22) becomes
G∗τ = aτσ

−2.

Replacing it into gτ = Gτuτ and this, in turn, into (18), we obtain that the GMM estimator
of θ in the CMEM solves the MM equation

1

N

N∑
τ=1

aτuτ = 0, (25)

which does not depend on the nuisance parameter σ2 and, therefore, inference relative to
the main parameter θ does not depend on the estimation of σ2.

The asymptotic variance matrix of θ̂N is

Avar(θ̂N) =
σ2

N

[
lim
N→∞

1

N

N∑
τ=1

E(aτa
′
τ )

]−1

(26)

that can be consistently estimated by

Âvar(θ̂N) = σ̂2
N

[
N∑
τ=1

aτa
′
τ

]−1

(27)

where σ̂2
N is a consistent estimator of σ2 (Section 3.3.2) and aτ is here evaluated at θ̂N .

3.3.2 Inference on σ2

The second moment of uτ into (16) suggests that a natural estimator for the nuisance
parameter σ2 can be

σ̂2
N =

1

N

N∑
τ=1

u2
τ (28)

where uτ denotes here the working residual (16) computed by using current values of θ̂N .
An interesting characteristic of such estimator, is that it is not compromised by zeros in
the data.

3.4 Empirical Application: In Sample Volume Analysis

The empirical application focuses on the analysis of the tickers DIA, QQQQ and SPY in
2002–2006. We consider four variants of the CMEM introduced in Section 3.1 (Equations
(2) and (4)):
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base: CMEM with lag-1 dependence and no asymmetric effects;

asym: base CMEM with lag-1 asymmetric effects (daily and the intra-daily);

intra2: base CMEM with intra-daily autoregressive components of order 2;

asym-intra2: intra2 CMEM with lag-1 asymmetric effects (daily and intra-daily).

The parameter estimates of the daily and intra-daily components are reported in Table 2,
together with residual diagnostics. The periodic component, omitted from the table, is
expressed in Fourier form (Equation (8)). Also, α(µ)

0 lacks a t-statistic because estimated
via expectation targeting by imposing E(µτ ) = 1.

Some comments are in order. The parameter estimates of each model are similar across
assets, suggesting common behavior in the volume dynamics. We have a high (close
to 1) level of daily persistence (measured as α(η) + β(η) in the symmetric, respectively,
α(η) +γ(η)/2 +β(η) asymmetric specifications). Contrary to customary values in a typical
GARCH(1,1) estimates on daily returns, in the present context α(η) is much larger. Intra-
daily asymmetric effects are always strongly significant, while daily asymmetric effects
are significant for the DIA and SPY tickers only. Their signs are always positive, coher-
ently with the notion that negative past returns have a greater impact on the level of market
activity in comparison to the positive ones. The second order intra-daily lag is negative
and with a relatively large magnitude, but it is such that the Nelson and Cao (1992) non-
negativity condition for the corresponding component is satisfied in all cases, and has the
effect of increasing the level of the intra-daily persistence, as can be observed from the
column labeled pers(µ) in table 2. Correspondingly, the less–than–satisfactory perfor-
mance of serial correlation residual diagnostics (reported in the last columns of table 2) –
even with asymmetric effects – is improved when the second order term is included in the
dynamic intra-daily component.

4 Intra-daily Volume Forecasting for VWAP Trading

VWAP trading has become one of the most well established automated trading models
other recent years. A discussion on these type of trading procedures can be found, for
instance, in Madhavan (2002).

A VWAP trading strategy is defined as a procedure for splitting a certain number of shares
into smaller size orders during the day in the attempt to obtain an average execution price
that is close to the daily VWAP. Let the VWAP for day t be defined as

VWAPt =

∑Jt

j=1 vt(j) pt(j)∑Jt

j=1 vt(j)
.

where pt(j) and vt(j) denote respectively the price and volume of the j-th transaction of
day t and Jt is the total number of trades of day t. For a given partition of the trading day
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into I bins, it is possible to express the numerator of the VWAP as

Jt∑
j=1

vt(j)pt(j) =
I∑
i=1

(∑
j∈Ji

vt(j)

)
p̄t i

=
I∑
i=1

xt i p̄t i,

where p̄t i is the VWAP of the i-th bin and Ji denotes the set of indices of the trades
belonging to the i-th bin. Hence,

VWAPt =

∑I
i=1 xt i p̄t i∑I
i=1 xt i

=
I∑
i=1

wt i p̄t i = w′tp̄t

where wt i is the intra-daily proportion of volumes traded in bin j on day t, that is wt i =
xt i/

∑I
i=1 xt i. Let y = (y1, . . . , yI), an order slicing strategy over day t with the same

bin intervals. We can define the Average Execution Price as the quantity

AEPt =
I∑
i=1

yip̄t i = y′p̄t,

where the assumption is made that the traders are price takers and execute at or close to
the average price (more on this later). The choice variable being the vector y, we can
solve the problem of minimizing the distance between the two outcomes in a mean square
error sense, namely

min
y
δt = (w′tp̄t − y′p̄t)

2,

where, solving the minimization problem leads to the first order conditions

dδt
dy

= 0⇒ −2p̄t(wt − y)′p̄t = 0, (29)

which has a meaningful solution for y = wt, that is when the order slicing sequence
for each sub period in the day reproduces exactly the overall relative volume for that sub
period.

The implication of Equation (29) is that the VWAP replication problem can be cast as
an intra-daily volume proportion forecasting problem: the better we can predict the intra-
daily volumes proportions, the better we can track VWAP.

4.1 VWAP Replication Strategies

Following Białkowski et al. (2008), we consider two types of VWAP replication strate-
gies: Static and Dynamic. The Static VWAP replication strategy assumes that the order
slicing is set before the market opening and it is not revised during the trading day. In the
Dynamic VWAP replication strategy scenario on the other hand, order slicing is revised
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at each new sub period as new intra-daily volumes are observed.

Let x̂t i|t−1 be shorthand notation for the prediction of xt i conditionally on the previous
day full information set Ft−1 I . The Static VWAP replication strategy is implemented
using slices with weights given by

ŵt i|t−1 =
x̂t i|t−1∑I
i=1 x̂t i|t−1

i = 1, .., I ,

that is the proportion of volumes for bin i is given by predicted volume in bin i divided
by the sum of the volume predictions.

Let x̂t i|i−1 be shorthand notation to denote the prediction of xt i conditionally on Ft i−1.
The Dynamic VWAP replication strategy is implemented using slices with weights given
by

ŵt i|i−1 =


bxt i|i−1PI

j=1 bxt j|i−1

(
1−

∑i−1
j=1 ŵt j|j−1

)
i = 1, ..., I − 1(

1−
∑I−1

i=1 ŵt i|i−1

)
i = I

that is, for each intra-daily bin from 1 to I − 1 the predicted proportion is given by the
proportion of 1–step ahead volumes with respect to the sum of the remaining predicted
volumes multiplied by the slice proportion left to be traded. On the last period of the
day I , the predicted proportion is equal to the remaining part of the slice that needs to be
traded.

4.2 Forecast Evaluation

We evaluate out–of–sample performance from different perspectives: intra–daily vol-
umes, intra–daily volume proportions and daily VWAP prediction.

A natural way to assess volume predictive ability is to consider the mean square prediction
error of the volume forecasts, defined as

MSEvol =
T∑
t=1

I∑
i=1

(xt i − x̂t i|·)2,

where x̂t i|· denotes the volume from some VWAP replication and volume forecasting
strategy. Although such a metric provides insights as to which model provides a more re-
alistic description of volume dynamics, it does not necessarily provide useful information
as to the performance of the models for VWAP trading.

Successful VWAP replication lies in predicting intra–daily volume proportions accurately.
Proportions have quite different properties in comparison to a continuous variable and,
to our knowledge, there are no well established loss functions in the literature for the
evaluation of proportion forecasts. The “Slicing” loss function we propose to measure
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Figure 5: Slicing Loss function for I = 3 and (w1, w2, w3) = (0.3, 0.3, 0.4).

intra–daily volume proportion predictions ability is

Lslicing = −
T∑
t=1

I∑
i=1

wt i log ŵt i, (30)

which we motivate from both an “operational” as well as an information theoretic per-
spectives. In the spirit of Christoffersen (1998) in the context of Value at Risk, we ask
ourselves which properties proportion forecast ought to have under correct specification.
Assume that a broker is interested in trading n shares of the asset3 each day. If the intra–
daily volume proportions predictions are correct, then the observed intra–daily volumes
nwt i, i = 1, ..., I behave like a sample from a multinomial distribution with parameters
ŵt i, i = 1, ..., I , and n; that is

(nwt 1, ..., nwt I) ∼ Mult(ŵt 1, ..., ŵt I , n).

This suggest that an appropriate loss function for the evaluation of such forecasts is the
negative of the multinomial predictive log-likelihood

LMult = −
T∑
t=1

(
log

n!

(nwt 1)! . . . (nwt I)!
+

I∑
i=1

nwt i log ŵt i

)
.

An alternative evaluation strategy consists of computing the discrepancy between the ac-

3We are implicitly assuming for simplicity’s sakes, that the actual intra-daily proportions nwt i are all
integer.
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tual and predicted intra–daily volume proportions as the discrepancy between two discrete
distributions. Using Kullback–Leibler discrepancy we get

LKL =
T∑
t=1

(
I∑
i=1

wt i logwt i − wt i log ŵt i

)
.

Interestingly, both the Multinomial and Kullback–Leibler losses provide equivalent rank-
ings among competing forecasting methods in that the comparison is driven by the com-
mon term −wt i log ŵt i. Figure 5 shows a picture of the slice loss function in the case
of 3 intra–daily bins when the actual proportions wt are (0.3, 0.3, 0.4). The slicing loss
function is defined over the I − 1 dimensional simplex described by

∑I
i=1 ŵt i = 1, has

a minimum in correspondence to the true values, the value of the loss function goes to
infinity on the boundaries of the simplex (when the actual proportions are in the interior
of the simplex) and is evidently asymmetric.

Finally, we also consider VWAP tracking errors MSE as in Białkowski et al. (2008) de-
fined as

MSEVWAP =
T∑
t=1

(
VWAPt − V̂WAPt

VWAPt
100

)2

,

where VWAPt is the VWAP of day t and V̂WAPt is the realized average execution price
obtained using some VWAP replication strategy and volume forecasting method. Both
VWAPt and V̂WAPt are computed using the last recorded price of the i–th bin as a proxy
of the average price of the same interval. The VWAP tracking error for day t can be seen
as an average of slicing errors within each bin weighted by the relative deviation of the
price associated to that bin with respect to the VWAP:

MSEVWAP =
T∑
t=1

(
I∑
i=1

(wt i − ŵt i)
p̄t i

VWAPt

)2

1002

Note that the deviations of the prices from the daily VWAP add an extra source of noise
which can spoil the correct ranking of slice forecasts. In light of this, we recommend
evaluating the precision of the forecasts by means of the Slicing loss function.

4.3 Empirical Application: Out-of-Sample VWAP Prediction

Our empirical application consists of VWAP tracking exercise of the tickers DIA, QQQQ
and SPY between January 2005 and December 2006 (502 days, 6526 observations). We
track VWAP using turnover predictions from our CMEM specifications using both Static
and Dynamic VWAP replication strategies based on parameter estimates over the 2002–
2004 data. In order to assess the usefulness of the proposed approach with respect of
a simple benchmark we also track VWAP using (periodic) Rolling Means (RM), that is
the predicted volume for the i–th bin is obtained as the mean over the last 40 days at the
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same bin. The Rolling Means are used to track VWAP using the Static VWAP replication
approach.

Table 3 reports the volume MSE, slicing loss and VWAP tracking MSE together with
asterisks denoting the significance of a Diebold-Mariano test of equal predictive ability
with respect to RM using the corresponding loss functions. In term of volume and vol-
ume proportions predictions, the CMEM Dynamic VWAP Tracking performs best and
significantly outperforms the benchmark, followed by the CMEM Static VWAP which
generally outperforms the benchmark as well. The ranking of the CMEM specifications
reflects the in–sample estimation results with models with richer intra–daily dynamics
and asymmetric terms performing better. The VWAP tracking MSE delivers mixed evi-
dence. While it is true that the CMEM Dynamic VWAP replication strategy achieves the
best out–of–sample performance, statistical significance is less clear cut. It is strong for
DIA (and extends to the Static model), but it is less so for QQQQ and SPY. However, as
mentioned in the previous section, the VWAP tracking MSE does not necessarily provide
a good assesment of volume proportion forecasts which should be based on the slicing
loss function.

5 Conclusions

In this paper we suggested a dynamic model with different components which captures
the behavior of traded volumes (relative to outstanding shares) viewed from daily and
(periodic and non–periodic) intra–daily time perspectives. The ensuing Component Mul-
tiplicative Error Model is well suited to be simultaneously estimated by Generalized
Method of Moments. The application to three major ETFs shows that both the static
and the dynamic VWAP replication strategies generally outperform a naı̈ve method of
rolling means for intra-daily volumes.

We would need to extend the analysis to a wider group of tickers to check whether the
stylized facts are shared by other classes of assets (e.g. single stocks) and to investi-
gate whether overall market capitalization or the percentage of holdings by institutional
investors have a bearing on the characteristics of the estimated dynamics.

The CMEM can be used in other contexts in which intra–daily bins are informative of
some periodic features (e.g. volatility, number of trades, average durations) together with
an overall dynamic which has components at different frequencies. The periodic com-
ponent can be more parsimoniously specified by recurring to some shrinkage estimation
as in Brownlees and Gallo (2008). Multivariate extensions are also possible (follow-
ing Cipollini et al. (2008) by retrieving the price-volume dynamics mentioned earlier in
order to establish a relationship that can be related to the flow of information at different
frequencies, separating it from (possibly common) periodic components.
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DIA QQQQ SPY
volume slicing vwap volume slicing vwap volume slicing vwap

RM 56.68 2.5163 1.373 64.83 2.4988 1.796 52.28 2.5139 1.129
Static

base 53.00
∗∗∗

2.5121
∗∗∗

1.354
∗∗

63.73
∗∗∗

2.4987
∗∗∗

1.822 50.45
∗∗∗

2.5131
∗∗∗

1.110

asym 53.04
∗∗∗

2.5121
∗∗∗

1.352
∗∗

63.71
∗∗∗

2.4987
∗∗∗

1.823 50.45
∗∗∗

2.5132
∗∗∗

1.110

intra2 53.00
∗∗∗

2.5108
∗∗∗

1.335
∗∗∗

63.73
∗∗∗

2.4973
∗∗∗

1.803 50.45
∗∗∗

2.5127
∗∗∗

1.124

asym-intra2 53.04
∗∗∗

2.5099
∗∗∗

1.319
∗∗∗

63.71
∗∗∗

2.4968
∗∗∗

1.771 50.45
∗∗∗

2.5123
∗∗∗

1.120

Dynamic
base 49.17

∗∗∗
2.5091
∗∗∗

1.240
∗∗∗

58.41
∗∗∗

2.4962
∗∗∗

1.753 45.39
∗∗∗

2.5102
∗∗∗

1.079
∗∗

asym 49.11
∗∗∗

2.5090
∗∗∗

1.238
∗∗∗

58.37
∗∗∗

2.4962
∗∗∗

1.755 45.31
∗∗∗

2.5101
∗∗∗

1.082
∗∗

intra2 49.07
∗∗∗

2.5067
∗∗∗

1.241
∗∗∗

57.89
∗∗∗

2.4941
∗∗∗

1.744 45.16
∗∗∗

2.5089
∗∗∗

1.095
∗∗

asym-intra2 48.91
∗∗∗

2.5062
∗∗∗

1.233
∗∗∗

58.03
∗∗∗

2.4935
∗∗∗

1.687
∗

44.98
∗∗∗

2.5086
∗∗∗

1.093
∗∗

Table 3: Out–of–Sample Volume, Slicing and VWAP tracking forecasting results. For
each ticker, specification and VWAP replication strategy the table reports the values of
the Volume, Slicing and VWAP tracking error loss functions. Asterisks denote the signif-
icance (∗ 1%, ∗∗ 5% and ∗ ∗ ∗ 10%) of a Diebold-Mariano test of equal predictive ability
with respect to RM using the corresponding loss functions.
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