
 
 
 
 
 

W
O

R
K

I
N

G
 

P
A

P
E

R
 

2
0

0
9

/
0

2
 

 
 

  
 
 Automated Var iable Select ion 

in Vector Mult ip l icat ive 

Error Models 

 

 

 
 
 
 
 
 
 
 
 
 

Fabr iz io Cipol l in i ,  
Giampiero M. Gal lo  

 
 
 
 
 
 
 

 
 

U n i v e r s i t à  d e g l i  S t u d i  
d i  F i r e n z e  

 
 
 
 
 
 
 
 
 
 

D
ip

a
rt

im
e

n
to

 d
i 

S
ta

ti
st

ic
a

 “
G

. 
P

a
re

n
ti

” 
–

 V
ia

le
 M

o
rg

a
g

n
i 

5
9

 –
 5

0
1

3
4

 F
ir

e
n

z
e

 -
 w

w
w

.d
s.

u
n

if
i.

it
 



Automated Variable Selection in
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Abstract

Multiplicative Error Models (MEM) can be used to trace the dynamics of non–

negative valued processes. Interactions between several such processes are ac-

commodated by the vector MEM and estimated by maximum likelihood (Gamma

marginals with copula functions) or by Generalized Method of Moments. In

choosing the relevant variables one can follow an automated procedure where

the full specification is successively pruned in a general–to–specific approach. An

efficient and fast algorithm is presented in this paper and evaluated by means of a

simulation and a real world example of volatility spillovers in European markets.
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1. Introduction

Multiplicative Error Models (MEM) for non-negative processes have experienced

a series of recent developments. From the seminal paper by Engle [12], several

authors have explored the potential of this class of models in a number of appli-

cations (Manganelli [20], Chou [7], Engle and Gallo [13], Ahoniemi and Lanne

[1]). The applications in financial econometrics are far reaching and include the

modelling and forecasting of a variety of high-frequency phenomena (durations,

realized volatilities, ranges, trading intensities, volumes, and so on).

More recently, Cipollini et al. [8] and Cipollini et al. [9] have extended this class

of models to a joint specification which tackles the issues of the possible contem-

poraneous correlation among the innovations and of possible dynamic interdepen-

dencies among the conditional expectations (as will be clarified later). In Cipollini

et al. [8], a parametric approach is pursued where the unknown joint probability

density function is specified through Gamma marginal probability density func-

tions and a copula function (Normal or Student-T); Cipollini et al. [9] suggest a

semiparametric specification which avoids the choice of a density function for the

innovations altogether and exploits an estimation strategy based on the General-

ized Method of Moments.

Irrespective of the estimation procedure chosen (in some cases they deliver ap-

proximately the same results), one of the aspects of interest in specifying a vector

MEM is to trace the dynamic interdependencies among variables. Model selec-

tion techniques (Brownlees and Gallo [5] in the univariate case) allow to detect

the importance of predetermined variables which may enrich the dynamic speci-
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fication. Examples are the interactions among various measures of volatility for

the same asset, or among volatility measured on different markets. Some coeffi-

cients in the model matrices may be zero and thus correspond to the absence of

a dynamic link from the corresponding lagged variable to the current one. The

approach we explore is to check which coefficients are not statistically significant

starting from a full specification of the vMEM. Since the computational burden is

potentially high, it is paramount to adopt the necessary steps for a fast and reliable

estimation. Model selection issues can be considered within the framework of an

automated procedure to identify relevant predetermined variables without a user’s

intervention, in a general to specific approach. In this paper we analyze some of

the computational aspects connected with the existing procedures with the goal of

highlighting certain choices which turn out to be crucial for these nonlinear mod-

els especially when they are estimated on large sets of data. Analytical derivatives

and moment conditions are derived in order to speed up calculations. The overall

goal is to illustrate such a procedure and what allows a fast and accurate calcula-

tion of the results.

The paper is organized as follows. Section 2 introduces the model and the nota-

tion adopted throughout the paper. Section 3 describes the inferential procedures,

with a special emphasis on computational details. Section 4 discusses the issue

of the automated selection of variables within the model specification. A simple

simulation exercise investigates the capability of the algorithm to detect the cor-

rect model. We adopt realistic parameter values and we show that the size of the

coefficients is crucial in managing to tell them apart from zero. Section 5 contains
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an empirical application with four volatility measures from European markets be-

tween 2000 and 2008 in order to estimate the spillover effects from one market

to another. Section 6 concludes. In the Appendix we discuss the software imple-

mentation in R.

2. The vector Multiplicative Error Model

The Multiplicative Error Model (MEM) extends the GARCH approach to pro-

cesses xt with non-negative support (Engle [12], Engle and Gallo [13]). The

vector Multiplicative Error Model (vMEM) generalizes the univariate MEM to

situations in which the process under analysis is a vector xt whose components

are non-negative (Cipollini et al. [8], Cipollini et al. [9]).

Let us assume the following: xt is a K–dimensional process with non–negative

components and follows a vMEM if

xt = µt � εt = diag(µt)εt, (1)

where� indicates the Hadamard (element–by–element) product, diag(.) arranges

the elements of a vector as an argument into a diagonal matrix, Ft−1 represents

the information available for forecasting xt.3

µt is a K-dimensional scale factor assumed to evolve in a deterministic fashion

3In what follows we will adopt the following conventions: if x is a vector or a matrix and a is a
scalar, then the expressions x ≥ 0 and xa are meant element by element; if x1, . . . ,xK are (m, n)
matrices then (x1; . . . ;xK) denotes the (mK, n) matrix obtained stacking the xi’s columnwise
and (x1, . . . ,xK) indicates the (m, nK) matrix obtained linking together the xi’s rowwise.
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conditional upon Ft−1: using a general but rather informal notation we can denote

this as

µt = µ(Ft−1;θ), (2)

where θ is a vector of unknown parameters ruling the dynamics of µt.

εt is a K–dimensional random innovation term, defined over a [0,+∞)K support,

following a multivariate distribution D with unit vector 1 as expectation and a

general variance matrix Σ,

εt|Ft−1 ∼ D(1,Σ). (3)

Assumptions (1), (2) and (3) imply that

E(xt|Ft−1) = µt (4)

V (xt|Ft−1) = µtµ
′
t �Σ = diag(µt)Σ diag(µt), (5)

where the latter is a positive definite matrix by construction.

Empirical applications will require to complete the specification of the model with

a number of choices detailed in what follows.

2.1. The Scale Factor

A sufficiently general specification for the scale factor can be the following

µt = ω +
L∑
l=1

[
αlxt−l + γlx

(−)
t−l + βlµt−l

]
. (6)
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Among the parameters (whose nonzero elements are arranged in the vector θ) ω

has dimension (K, 1), whereas αl, γl and βl have dimension (K,K). Some of

the elements of this second set of coefficients can be constrained to zero if the

corresponding component does not influence the evolution of µt. In this sense, L

denotes the maximal lag that corresponds to non-zero elements in at least one of

these coefficient matrices. The terms γlx
(−)
t−l aim at capturing possible asymmetric

effects associated with the sign of an observed variable: the vector x
(−)
t contain

xt,i’s multiplied by a function related to a signed variable, be it, for example, a

return (0, 1 values) or a signed trade (buy or sell 1,−1 values) (see Cipollini et al.

[9] for details).

2.2. The Error Term

The conditional distribution of the error term εt can be introduced directly, through

a full parametric formulation; alternatively, one can adopt a semiparametric spec-

ification based on the first two moments.

2.2.1. The Parametric Formulation Based on Copulas

An approach for specifying the distribution of εt|Ft−1 is to employ copula func-

tions.4 This approach can be seen as modular, since we can decompose the prob-

lem of specifying the distribution of a multivariate random variable into:

• the choice of the univariate marginal functions;

4The main characteristics of copulas are summarized, among others, in Joe [17] and Nelsen
[22]. See also Embrechts et al. [11], Cherubini et al. [6], McNeil et al. [21] and the review of
Patton [23] for financial applications.
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• the choice of the copula function linking them,

and therefore express the conditional distribution of the error component of the

vector MEM as

εt|Ft−1 ∼ C(ξ)×
K∏
i=1

Mi(φi), (7)

where: C(ξ) denotes a copula parameterized by a vector ξ and with density

c(u; ξ); Mi(φi) indicates the distribution of the i-th marginal (again assumed

absolutely continuous, with non-negative support and unit expectation), having

probability density function fi(x;φi) and cumulative density function Fi(x;φi).

The conditional probability density function of εt can then be written as

fε(εt|Ft−1) = c(ut; ξ)
K∏
i=1

fi(εt,i;φi),

where ut = (ut,1; . . . ;ut,K) and ut,i = Fi(εt,i;φi). Specific choices of the uni-

variate marginals and of the copula function are needed in empirical applications.

We can consider as natural candidates for the marginal distributions all probability

density functions with the characteristics mentioned above: examples are Gamma,

Inverse-Gamma, Weibull, Lognormal, mixtures of them. For practical reasons, in

the following we will make some references to the Gamma case (cf. the discussion

on the flexibility of this choice in Engle and Gallo [13]), but the approach can be

adapted to other choices. Restrictions on the parameters have to be imposed in

order to satisfy the unit mean constraint in (3). For instance, if a gamma distri-

bution is assumed for the i-th marginal then εt,i|Ft−1 ∼ Gamma(φi, φi) and its
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probability density function is given by

fi(εt,i;φi) =
φφi

i

Γ(φi)
εφi−1
t,i exp(−φiεt,i). (8)

A convenient choice for copulas can be represented by some member within the

families of Archimedean or Elliptical copulas. Archimedean copulas (a family in-

cluding, among others, Frank, Gumbel and Clayton copulas) can model very dif-

ferent dependence profiles and represent a flexible solution for two-dimensional

rv’s. However, they appear less useful when the dimension K tends to increase

(McNeil et al. [21]) On the contrary, Elliptical copulas (a family including, among

others, Normal and Student-T copulas) can be employed also for moderately large

K and can accommodate tail dependency. However they have an elliptically sym-

metric behavior that can represent a limitation in some contexts. For practical

reasons, we discuss some possible specifications of C(ξ) related to the family of

Elliptical copulas, but the approach can be easily extended to different choices.

Let us consider a copula generated by an Elliptical distribution whose univariate

‘standardized’ marginals (intended here with location parameter 0 and dispersion

parameter 1) have an absolutely continuous symmetric distribution, centered at

zero, with probability density function g(.;ν) and cumulative density function

G(.;ν) (ν represents a vector of shape parameters). The density of the copula can

be written as

cE(u; R,ν) = K∗(ν, K)|R|−1/2 g1(q
′R−1q;ν, K)∏K
i=1 g2(qi;ν)

(9)
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for suitable choices of K∗(., .), g1(.; ., .) and g2(.; .), where q = (q1; . . . ; qK),

qi = G−1(ui;ν). Let us discuss two important particular cases in more detail.5

The Normal copula, perhaps the most popular member of such family and a fre-

quent choice in applications (see McNeil et al. [21], Cherubini et al. [6], Bouyé

et al. [3]), is obtained from (9) by choosing K∗(K) = 1, g1(x;K) = g2(x) =

exp(−x/2), so that its probability density function is given by

cN(u; R) = |R|−1/2 exp

[
−1

2

(
q′R−1q− q′q

)]
, (10)

where q = (q1; . . . ; qK), qi = Φ−1(ui) and Φ(x) denotes the cumulated density

function of the standard Normal distribution computed at x. When combined

with Gamma marginals, the resulting multivariate distribution is a special case of

dispersion distribution generated from a Gaussian copula, as discussed in Song

[27]. The Normal copula has a number of attractive features: the capability of

capturing a broad range of dependencies (the bivariate Normal copula, according

to the value of the correlation parameter, is capable of attaining the lower Fréchet

bound, the product copula and the upper Fréchet bound), the analytical tractability,

the ease of simulation. However, one of its major drawbacks lies in the asymptotic

independence of its tails. Empirically, tail dependence is a behavior frequently

observed in financial time series (see McNeil et al. [21], among others): extreme

events in different assets tend to be combined.

5A deeper discussion of Elliptical copulas is beyond the scope of the paper: see, among others,
McNeil et al. [21], Frahm et al. [16], Schmidt [26].
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The Student-T copula, obtained from (9) by choosing

K∗(ν;K) =
Γ((ν +K)/2)Γ(ν/2)K−1

Γ((ν + 1)/2)K
,

g1(x; ν,K) = (1 + x/ν)−(ν+K)/2,

g2(x; ν) = (1 + x/ν)−(ν+1)/2,

has a probability density function

cT (u; R, ν) =
Γ((ν +K)/2)Γ(ν/2)K−1

Γ((ν + 1)/2)K
|R|−1/2 (1 + q′R−1q/ν)−(ν+K)/2∏K

i=1(1 + q2
i /ν)−(ν+1)/2

,

(11)

where q = (q1; . . . ; qK), qi = T−1(ui; ν) and T (x; ν) denotes the cumulated den-

sity function of the Student-T distribution computed at x. The Student-T copula

shares many of the characteristics of the Normal copula with the main differences

in the tails, that are asymptotically dependent. As a further difference relative to

the Normal, for R = I we do not obtain the independence copula, since uncorre-

lated multivariate T rv’s are not independent (details in McNeil et al. [21]). For a

deeper handling of the Student-T copula see Demarta and McNeil [10].

2.2.2. The Semiparametric Formulation

An alternative specification of the error term is obtained by assuming only the

first two moments in (3), without an explicit assumption about the shape of the

distribution. This approach can be motivated by different arguments (see Cipollini

et al. [9]): in particular, a full specification of the distribution of εt may be not

crucial if the main focus of the analysis is on the dynamics of the µt component.
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3. Inference

The two alternative specifications of the error term lead to different inferential

approaches: the parametric assumption of section 2.2.1 gives a fully parametric

vMEM that can be estimated via Maximum Likelihood (ML); the semiparametric

assumption of section 2.2.2 provides a semiparametric vMEM that can be esti-

mated via Generalized Method of Moments (GMM) or other methods leading, for

this model, to identical inferences (see Cipollini et al. [9] about this point).

3.1. ML Inference within the Copula Based vMEM

We assume here a vMEM defined by (1), (6) and (7). Such a model is driven by

the following set of parameters: θ (into the µt equations); φ (into the marginals);

ξ (into the copula). It is useful to recall the relationships and the sequence in

which some quantities are computed (i = 1, . . . , K): from µt,i(θi)’s, the esti-

mated innovations εt,i = xt,i/µt,i are derived; innovations are then mapped into

the corresponding cdf’s via ut,i = Fi(εt,i;φi); finally, ut,i’s provides an input for

the copula probability density function c(ut; ξ). The sequence can be summarized

as follows:

µt,i(θi)→ xt,i/µt,i = εt,i → Fi(εt,i;φi) = ut,i → c(ut; ξ). (12)

For each of these quantities, the bolded version without the index i denotes the

whole vector of the corresponding quantities at time t.
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The conditional probability density function of xt is then given by

fx(xt|Ft−1) = c(ut; ξ)
K∏
i=1

fi(εt,i;φi)

µt,i
,

so that the log-likelihood of the model can be written as

l =
T∑
t=1

ln c(ut; ξ) +
T∑
t=1

K∑
i=1

[ln (εt,ifi(εt,i;φi))− lnxt,i] (13)

=[copula contribution(θ,φ, ξ)] + [marginals contribution(θ,φ)].

In general, the above log-likelihood function can be optimized directly by full

ML estimation of the three sets of parameters, namely θ, ξ and φ. However, for

some choices of the copula, simple estimators of ξ (usually moment estimators)

are available and can be computed from current values of residuals εt or of ut’s.

Examples are parameters of Archimedean copulas or of Elliptical copulas derived

from Kendall correlations of current estimates of εt. When this solution is avail-

able, a pseudo-loglikelihood can be constructed as

l =
T∑
t=1

ln c(ut; ξ̂) +
T∑
t=1

K∑
i=1

[ln (εt,ifi(εt,i;φi))− lnxt,i] , (14)

where ξ̂ is the current estimate of ξ. Invoking asymptotic arguments for its adop-

tion, such a possibility can reduce considerably the amount of computations dur-

ing optimization because (14) depends only on θ and φ. We will make a further

comment about this point below, when we give some details on the estimation of
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the correlation matrix appearing in elliptical copulas.

3.1.1. Computational Details with Elliptical Copulas

In this section we illustrate some details of the estimation when the copula belongs

to the Elliptical family and all parameters of the vMEM are estimated via full

maximum likelihood.

Using the notation given in section 2.2.1, the log-likelihood of the model can be

written as

l = −
T∑
t=1

K∑
i=1

lnxt,i −
T

2
|R|+ T lnK∗(ν;K)

+
T∑
t=1

[
ln g1(q

′
tR
−1qt;ν;K)−

K∑
i=1

ln g2(q
2
t,i;ν) +

K∑
i=1

ln (εt,ifi(εt,i;φi))

]
,

(15)

where

• in the Normal copula case: lnK∗(K) = 0, ln g1(x;K) = ln g2(x) = −x/2;

• in the Student-T copula case:

lnK∗(ν;K) = ln

[
Γ((ν +K)/2)Γ(ν/2)K−1

Γ((ν + 1)/2)K

]
,

ln g1(x; ν,K) = −ν +K

2
ln
(

1 +
x

ν

)
,

g2(x; ν) = −ν + 1

2
ln
(

1 +
x

ν

)
.

In order to perform full ML estimation of the correlation matrix of the copula, it is
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convenient to reparameterize it in an unconstrained way, as illustrated in McNeil

et al. [21], p. 235. In fact, any correlation matrix R can be represented as

R = Dc′cD, (16)

where c is an upper-triangular matrix with ones on the main diagonal and D is

a diagonal matrix with diagonal entries D1 = 1 and Dj =
(

1 +
∑j−1

i=1 c
2
ij

)−1/2

for j = 2, . . . , K. Using this approach, the estimation of R is transformed in

an unconstrained problem, since the K(K − 1)/2 free elements of c vary into

R. As mentioned before, different methods relative to full ML estimation can

be taken into account, in particular for estimating the parameters of the copula:

for instance, we can use Kendall correlations for estimating R (Lindskog et al.

[19]) or tail dependence indices for estimating the shape parameter ν (Kostadinov

[18]). Using this approach, a pseudo-loglikelihood as in (14) can be constructed

and optimized as mentioned in section 3.1. Note that, using (16), ln(|R|) =

2
∑K

i=2 lnDi.

For speeding up computations and improve numerical stability it is convenient to

use analytical derivatives when the optimization algorithm needs the score func-

tion. We illustrate it by using the following notation: C = cD, q̃t = C′−1qt,

q∗t = R−1qt, ˜̃qt = q′tR
−1qt = q̃′tq̃t, qt = (qt,1; . . . ; qt,K), qt,i = G−1(ut,i;ν) (see

also (12)).

Parameters entering the matrix c

The portion of the score relative to the free parameters of the c matrix (those above

14



the main diagonal) has elements

∇cij l = ∇cij

[
−T

K∑
i=2

ln(Di) +
T∑
t=1

ln g1(˜̃qt;ν;K)

]
. (17)

Using some algebra we can show that

∇cij

K∑
i=2

ln(Di) = −DjCij

∇cij ln g1(˜̃qt;ν;K) = −2∇˜̃qt
(ln g1(˜̃qt;ν;K))Djq

∗
t,j(q̃t,i − Cijqt,j).

By replacing them into (17) we obtain

∇cij l = TDjCij + 2Dj

T∑
t=1

q∗t,j(Cijqt,j − q̃t,i)∇˜̃qt
(ln g1(˜̃qt;ν;K)).

Parameters entering the vector ν

The portion of the score relative to ν is

∇ν l = ∇ν

[
T lnK∗(ν;K) +

T∑
t=1

ln g1(˜̃qt;ν;K)−
T∑
t=1

K∑
i=1

ln g2(q
2
t,i;ν)

]

The derivative of lnK∗(ν;K) can sometimes be computed analytically. For in-

stance, in the Student-T copula we have

∇ν lnK
∗(ν;K) =

1

2

[
ψ

(
ν +K

2

)
+ (K − 1)ψ

(ν
2

)
−Kψ

(
ν + 1

2

)]
.

For the remaining quantities we suggest numerical derivatives when, as in the
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Student-T case, the quantile function G−1(x;ν) cannot be computed analytically.

Parameters entering the vector θ

The portion of the score relative to θ is

∇θl = ∇θ
T∑
t=1

[
ln g1(˜̃qt;ν;K)−

K∑
i=1

ln g2(q
2
t,i;ν) +

K∑
i=1

ln (εt,ifi(εt,i;φi))

]
.

After some algebra we obtain that

∇θl =
T∑
t=1

∇θµ′tat (18)

where at has components

at,i =
f

(1)
i (εt,i;φi)bt,i + f

(2)
i (εt,i;φi)

µt,i

with

bt,i = 2
qt,i∇q2t,i

ln g2(q
2
t,i;ν)− q∗t,i∇˜̃qt

ln g1(˜̃qt;ν, K)

g(qt,i;ν)
(19)

f
(1)
i (εt,i;φi) =εt,ifi(εt,i;φi)

f
(2)
i (εt,i;φi) =−

[
εt,i∇εt,i

ln fi(εt,i;φi) + 1
]
.
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For instance, if a marginal has a distribution Gamma(φi, φi) then

f
(1)
i (εt,i;φi) =dGamma(εt,i;φi + 1, φi)

f
(2)
i (εt,i;φi) =φi(εt,i − 1).

where dGamma(x;α, β) denotes the probability density function of theGamma(α, β)

distribution computed at x.

Parameters entering the vector φ

The portion of the score relative to φ has elements

∇φi
l = ∇φi

T∑
t=1

[
ln g1(˜̃qt;ν;K)−

K∑
i=1

ln g2(q
2
t,i;ν) +

K∑
i=1

ln fi(εt,i;φi)

]
.

After some algebra we obtain

∇φi
l =

T∑
t=1

[−∇φi
Fi(εt,i;φi)bt,i +∇φi

ln fi(εt,i;φi)] (20)

where bt,i are given in (19). For instance, if a marginal has a distributionGamma(φi, φi)

then

∇φi
fi(εt,i;φi) = ln(φi)− ψ(φi) + ln(εt,i)− εt,i + 1

whereas ∇φi
Fi(εt,i;φi) can be computed numerically.
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3.1.2. Computational Details with the Normal Copula

Even if the Normal copula can be obtained as a special case of the Elliptical cop-

ula presented in the previous section, its particular analytical structure suggests

alternative solutions for estimating R and hence the remaining parameters. In

fact, using some matrix algebra the contribution of the copula to the loglikelihood

can be rewritten as

[copula contribution] =
T

2

[
− ln |R| − trace(R−1Q) + trace(Q)

]
, (21)

where

Q =
q′q

T

and q = (q′1; . . . ; q
′
T ) is a T ×K matrix.

A direct maximization in R of this quantity, leads to the estimator R̂ = Q. How-

ever this result is obtained without imposing any constraint relative to its nature

of correlation matrix (diag(R) = 1 and positive definiteness). On the other hand,

a direct maximization of (21) taking into account these constraints does not return

an equation with an explicit solution (see Cipollini et al. [8] for the details).

An acceptable compromise which should increase efficiency, although the result

is formally not interpretable as a ML estimator, is to normalize the estimator R̂,

in order to transform it into a correlation matrix:

R̃ = D
− 1

2
Q QD

− 1
2

Q ,

18



where DQ = diag(Q11, . . . , QKK). This solution can be justified observing that

the copula contribution to the likelihood depends on R exactly as if it were the

correlation matrix of i.i.d. normally distributed rv’s qt with mean 0 and correlation

matrix R (see also McNeil et al. [21], p. 235). Using this constrained estimator of

R we obtain the following concentrated log-likelihood

lc =
T

2

[
− ln |R̃| − trace(R̃−1Q) + trace(Q)

]
+[marginals contribution]. (22)

It is interesting to note that (22) gives a relatively simple structure of the score

function. Using some tedious algebra, we can show that the components of the

score∇θlc and∇φlc have exactly the structure in (18) and (20), with the quantity

bt,i in (19) changed into

bt,i = −(Cqt)i
φ(qt,i)

, (23)

where the C matrix is here given by

C = Q−1D
1/2
Q QD

1/2
Q Q−1 −Q−1 + IK − R̃−1 + D−1

Q −D
−1/2
Q diag(Q−1D

1/2
Q Q).

3.2. GMM Inference in the Semiparametric vMEM

As illustrated in some detail in Cipollini et al. [9], the semiparametric version of

the vMEM leads to by far simpler inferences, obtainable via GMM. The moment
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equation to be solved for estimating θ is given by

g(θ) ≡
T∑
t=1

∇θµ′t[diag(µt)Σ̂T diag(µt)]
−1(xt − µt) = 0 (24)

where

Σ̂T =
1

T

T∑
t=1

utu
′
t (25)

is a consistent estimate of the variance matrix of the innovation term (3) and ut is

defined by

ut = xt � µt − 1. (26)

The asymptotic variance matrix of the GMM estimator of θ is estimated by a

sandwich-like estimator whose structure is

Âvar(θ̂T ) =

[
T∑
t=1

∇θµ′t[diag(µt)Σ̂T diag(µt)]
−1∇θ′µt

]−1

. (27)

3.3. Some Details about the Estimation of θ

If one assumes that µt evolves following the general equation (6), its dynamic

behavior depends in general uponK+3K2L parameters, which reduce toK+3K2

for a model with 1 lag only. For instance, for K = 3 and L = 1 there are 30

parameters.

A reduction in the number of free parameters can be obtained estimating ω from

stationary conditions (the equivalent of variance targeting in a GARCH context,
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see Engle and Mezrich [14]). Imposing that µt is stationary we have

ω =

[
I−

L∑
l=1

(αl + γl/2 + βl)

]
µ, (28)

where µ = E(xt). By substituting (28) into (6) and replacing µ with its natural

estimate, that is the unconditional average x, we obtain

µ̃t =
L∑
l=1

[
αlx̃t−l + γlx̃

(−)
t−l + βlµ̃t−l,

]
(29)

where the symbol x̃ represents the demeaned version of x. This strategy saves

K parameters in the iterative estimation, and, from informal experiments not re-

ported here, provides very good performances in comparison with direct ML esti-

mates of ω and improves the numerical stability of the algorithms.

To save time, it is also useful take into account analytic derivatives of µ̃t with

respect to the elements of θ. To this aim, we rewrite the i-th equation into (29) as

µ̃t,i = α′(i)x̃t−1(i) + β′(i)µ̃t−1(i)
, (30)

where: α(i) is a vector stacking the elements of α and γ appearing in the i-th

equation that are not constrained to zero; x̃t−1(i) is the vector of corresponding

elements into lagged xt−l or x
(−)
t−l ; β(i) is a vector stacking the elements of β

appearing in the i-th equation that are not constrained to zero; µ̃
t−1(i)

is the vector
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of corresponding elements into lagged µt−l. Within this framework we have

∇θi
µ̃t,i = ∇θi

µ̃′
t−1(i)

β(i) +

x̃t−1(i)

µ̃
t−1(i)

 (31)

where θ(i) = (α(i);β(i)).

3.4. Further Computational Details

3.4.1. Optimization

In order to optimize the log-likelihood functions specified by the parametric vMEM’s

or the moment functions employed in the semiparametric version, we tested dif-

ferent optimization routines, amenable to the following categories: algorithms

that use the criterion function only (we label them as derivative free); algorithms

that employ the criterion function and the gradient (we name them BFGS-like);

algorithms that needs the gradient and the Hessian (or some surrogates able to

approximate the curvature, like the OPG or some other quantity related to the

asymptotic variance matrix of coefficients; we label this category as Newton-like).

It is known that, broadly speaking, derivative free algorithms are computationally

less demanding and more stable than the others, but are characterized by rela-

tively low rates of convergence toward the solution; on the opposite, Newton-like

algorithms have better rates of convergence but need derivatives and are relatively

instable when the current estimate is far from the solution, in particular if there

are many parameters and the function to be optimized is relatively flat.

In principle, ML methods can use algorithms belonging to all three categories. On
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the contrary, a GMM method based on just identified moment conditions, as in

our case, give rise to pseudo-score functions (i.e. functions the expected value of

which is exactly zero at the true parameter value) and a corresponding sandwich

estimation of the variance matrix. Note, though, that the pseudo-score function

does not necessarily correspond to the gradient of an underlying criterion function

to be optimized. This makes the Newton-like algorithm as the natural solution for

this case.

After some heuristic experiments, we found a good mix by combining a derivative

free algorithm and a Newton-like algorithm for both types of vMEM’s described

in the previous sections. The former starts from some (very rough) initial values

and iterates for a pre-specified number of steps (or until convergence, if reached

before); the latter exploits the refinement performed by the previous one by iter-

ating until convergence (usually quite fast). Using only the first algorithm causes

very slow convergence; employing only the second one entails, very frequently, a

crash of the estimation session.

In particular, we used the NEWUOA as a derivative free algorithm, described

in Powell [24] and compared with other approaches in Powell [25].6 Even with

many parameters, it does a really good job in refining the starting values to more

reliable estimates of the parameters for the following algorithm. Note that since

GMM lacks an underlying criterion function (see above), we surrogated it with

g(θ)′Âvar(θ)−1g(θ)/2 (see section 3.2). We programmed the relative code of

6We thank the author for making available his Fortran code to us.
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the Newton-like algorithm. In ML, we used the OPG (instead of the Hessian) for

approximating the curvature of the function, in a way to exploit the job done in

computing the score. In GMM we used the moment function (24) as a gradient

function and Âvar(θ)−1 for capturing the curvature (see section 3.2).

3.4.2. Computational Tricks with Copulas

Copulas require routinely to compute cumulative density functions corresponding

to some input values: in the vMEM, this happens for Fi(εt,i;φi) (see (12)). Nu-

merical problems arise when the input value εt,i is ’extreme’, in the sense that, at

a computational level, Fi(εt,i) = 1.7 Two can be the dangerous consequences of

this situation:

1. G−1(Fi(εt,i)), where G is the symmetric cumulative density function in-

volved in the chosen copula (we omit parameters), returns an ’Inf’, causing

a crash of the estimation session;

2. numerical derivatives for computing ∇φi
Fi(εt,i;φi) are relatively unstable.

Among the approaches experimented with, we found that a simple and effective

solution is to correct slightly the value of εt,i as input for both G−1(Fi(εt,i)) and

∇φi
Fi(εt,i;φi). In practice, for some small quantity de that we will specify below,

εt,i is adjusted to F−1(1−de) whenever F (εt,i) > 1−de. For reasons of symmetry,

we applied a similar adjustment for εt,i close to 0, by correcting it to F−1(de)

whenever εt,i < de. The value of de was set to
√
dneps after some tuning (about

7More technically, the problems arise when Fi(εt,i) > 1 − dneps, where dneps denotes the
smallest positive floating-point such that 1− dneps < 1.
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dneps, see note 7).

4. Model Selection Issues

vMEM’s are ruled in general by many parameters and we may not have available

some theory relative to possible lack of interdependency among the variables un-

der analysis in order to specify a relatively parsimonious formulation of the model.

One may thus find it useful to have an automated model selection algorithm that,

starting from an initial formulation, is able to select a simple but effective specifi-

cation. We believe that such a device simplifies considerably the specification of

a vMEM for a potential user who can thus avoid a tedious ’manual’ selection of

the model.

To this aim, we suggest an automated general to specific selection algorithm.

Starting from an initial ’large’ formulation (for instance a full formulation at lag

1), the algorithm removes at each iteration the component of the model with the

smallest not significant Wald test statistic, stopping itself when only significant

variables are included in the formulation. In our implementation we constrained

the selection, do not allowing to remove parameters on the main diagonal of the

α1 and β1 matrices. In fact, models with many parameters can experience un-

reliable estimates of the asymptotic variance matrix, a fact that could produce a

precocious removal of components that can be relevant in the model. Moreover,

this solution permits to appreciate the additional contribution of non diagonal pa-

rameters relative to the results of separated univariate MEM’s.

Two comments are in order here. We chose to base the algorithm on the selection
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of significant variables since it is relatively simple and applicable to both the para-

metric and the semiparametric formulations of the vMEM (with semiparametric

models we cannot usually refer to information criteria). Second, we pay special

attention to a number of statistical and computational details (explained in what

follows) which bypass some obstacles potentially responsible for the slowing (or

even breaking) down of the procedure. Considering the number of parameters

in common applications (with three-four variables), the algorithm is quite fast.

In fact, as often it is the case, the main computational burden lies in the estima-

tion of the starting model; subsequent steps are relatively fast because can exploit

previous estimates as more precise starting values.

In order to give an idea of the performance of the automated algorithm, we ran

a simple simulation experiment. The ’true’ model employed in simulations is

based on the semiparametric vMEM estimated in Cipollini et al. [9] for modeling

the joint dynamics of volumes (in million shares), number of trades (in thou-

sand trades) and realized volatility relative to the IBM stock (period 01/02/2001

- 12/30/2005). As the only modification, we concentrated the dynamic effects in

just one lag (table 1). In the spirit of a semiparametric model, the simulated inno-

vations are obtained through resampling the residuals estimated on the real data.

Both x0 and µ0 were set to unconditional averages of the IBM series.

By using these settings, we simulated 501 series composed by 1200 observations.

For each one of them, we selected the model by means of the algorithm described

starting from a full model (the one with all coefficients) at lag 1. In order to com-

pare the performances, we estimated also the full model and the model with the
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correct formulation. The main results are displayed in table 1, where we com-

pared the Mean Squared Errors (MSE) of the selected and the true model against

those of the full model.

We note that the algorithm tends in general to produce more accurate inferences

than the full model, particularly for the zero coefficients, even if the correct model

performs, as expected, significantly better. We remark that the algorithm has se-

lected the correct formulation in 130 cases over 501, which is a relatively good

performance after taking into account the relatively small value of some coeffi-

cients inside the true model.

5. Volatility Spillovers

The current (2007-2008) financial crisis is characterized by its global features. Al-

though it may be traced to the money and credit market conditions in the United

States, its effects are far reaching and raise the question of how capital market in-

tegration is reflected in the transmission of volatility movements from one market

to another. In what follows we restrict our attention to some European markets

and use our vector MEM to identify significant links in a four variable model for

daily ranges in France (CAC40, labeled F), Germany (DAX, labeled D), Great

Britain (FTSE100, labeled UK), and Switzerland (SMI, labeled CH). We think

that these markets are representative of a number of features of interest for Euro-

pean markets (adoption of the Euro, membership in the EU, presence of global-

ized transnational corporations with high capitalization, attraction of Eurodeposit

in different currency denominations). The choice of the daily range stems from its
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good properties in estimating daily volatility Alizadeh et al. [2] and the simplicity

of its calculation. The time series are depicted in Figure 1 with the fairly common

features of high volatility in the first part of the sample (with a further boost in

2003), a period of low volatility from 2003 to the first half of 2007, and, finally,

the burst of volatility starting in the last few months of 2007 and in 2008.

Figure 1: Graphs of daily range (in annualized percentage terms) of four indices: CAC40 (F),
DAX (D), FTSE100 (UK), SMI (CH) (Jan. 4, 2000 - Oct. 14, 2008).

F D

UK CH

Our analysis starts from the descriptive statistics of the features of the series,

which show similar properties, with the DAX index exhibiting higher average
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volatility and volatility of volatility. The serial correlation values of the Ljung-

Box statistics are extremely high signaling a high degree of persistence in the

series. Finally, unconditional correlations are quite high (more so in the values of

Pearson’s than in Spearman’s, the latter being more robust to common exceptional

days) with the clear indication that markets do have a high degree of common

movement.

Table 2: Descriptive statistics of daily range (in annualized percentage terms) of four indices:
CAC40 (F), DAX (D), FTSE100 (UK), SMI (CH) (Jan. 4, 2000 - Oct. 14, 2008).

F D UK CH
min 2.76 2.44 2.21 2.70
max 94.05 103.65 102.52 94.65

mean 15.56 18.27 14.24 12.87
sd 10.47 12.54 9.69 8.99

Ljung-Box statistics
lag 12 8111.0 10893.3 8049.7 8524.3
lag 22 12428.3 17367.7 11771.5 12531.3
lag 32 15625.4 22738.6 14282.1 15378.3

Pearson correlations
F 0.8841 0.8299 0.8430
D 0.7721 0.8037

UK 0.7879
Spearman correlations

F 0.8814 0.7923 0.7524
D 0.7497 0.7279

UK 0.7213

The results of the final selected model are presented in table 3. We have inserted

a dummy variable over the period Jan. 5, 2000 to July 1, 2003 and then, again,

from July 2, 2007 to the end of the sample in order to mitigate the problem of

residual autocorrelation when the time span is characterized by a higher average
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level of volatility. The insertion of a flexible function modelling the dynamics of

a smooth component of the series (as in, e.g. Engle and Rangel [15], Brownlees

and Gallo [4] in the univariate case) is beyond the scope of this paper. We group

the coefficients by matrices, also to visually impress the result that the automated

procedure is selecting a model where many off diagonal elements are statistically

significant. A few comments are in order: the values of the coefficients are in line

with volatility clustering (relatively low α and γ coefficients, and values of β’s

on the main diagonal around 0.9). Interestingly, no asymmetric coefficient for the

French index is statistically significant (while all others are). The off diagonal el-

ements of the matrix β all have a negative sign. We interpret this finding taking as

an example the German index volatility. At a given time say that we have a higher

value of the range (and that the corresponding returns are negative). This has an

immediate effect on the own conditional expectation through the own diagonal

coefficients α and γ and a spillover to other markets as well (in the direction of an

increase in the conditional expected volatility). Two periods after (isolating just

the subsequent effects) the relatively high own β coefficient gets decreased by the

other lagged conditional expectations through the negative coefficients. In other

words, the model seems to signal that the speed of absorption of a shock is higher

in this model than in one where β is diagonal, with a richer dynamics of effects.
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Table 3: Estimated coefficients and t statistics (within brackets) of the selected vMEM applied to
the daily range (in annualized percentage terms) of four indices: CAC40 (F), DAX (D), FTSE100
(UK), SMI (CH) (Jan. 4, 2000 - Oct. 14, 2008).

F D UK CH
ω1 0.00388 0.00400 0.00429 0.00374
ω2 0.00287 0.00242 0.00321 0.00229

α1 F 0.0345 0.0156 0.0365 -
(4.82) (2.04) (3.49)

D - 0.0515 - -
(5.1)

UK 0.0408 - 0.0497 -
(5.25) (4.48)

CH - - 0.043 0.051
(4.35) (5.28)

γ1 F - 0.0462 0.0344 0.0213
(4.71) (2.98) (2.17)

D - 0.065 0.0341 0.0278
(3.8) (2.72) (2.27)

UK - 0.0352 0.0511 0.0302
(4.52) (4.19) (2.9)

CH - 0.0321 0.0249 0.0457
(4.7) (2.23) (4.07)

β1 F 0.9113 -0.0226 -0.0632 -
(54.88) (-2.34) (-4.37)

D - 0.8544 -0.0467 -
(64.11) (-3.76)

UK -0.0934 - 0.9033 -
(-5.93) (53.28)

CH -0.0449 - -0.0573 0.9209
(-3.73) (-3.56) (88.6)

α2 F - - - -

D - 0.0458 - -
(2.84)

UK - - - -

CH - - - -
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Some diagnostics complete our illustrative analysis and are reported in Table 4.

We have an overall portmanteau statistics at different lags which still pinpoints to

the difficulty of reining in the autocorrelation. Judging from the original values of

autocorrelation in each series discussed in Table 2 the problem has been noticeably

reduced with our vMEM. The issue of spillovers is addressed by testing the joint

significance of all off-diagonal elements (null hypothesis strongly rejected) and

of coefficients from one market to all others. In the latter case, there is always

dynamic interdependence with the exception of a direct link from the French index

to the German index.
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Table 4: Some diagnostics of the selected vMEM applied to the daily range (in annualized per-
centage terms) of four indices: CAC40 (F), DAX (D), FTSE100 (UK), SMI (CH) (Jan. 4, 2000 -
Oct. 14, 2008).

Statistics
Portmanteau (p-values)

lag 12 0.0007
lag 22 0.0164
lag 32 0.0469

Restrictions (p-values)
off diagonal = 0 0.0000

Dt−1 9 Ft 0.0000
Dt−1 9 UKt 0.0000
UKt−1 9 Dt 0.0005
Dt−1 9 CHt 0.0000
CHt−1 9 Dt 0.0232
Ft−1 9 UKt 0.0000
UKt−1 9 Ft 0.0000
Ft−1 9 CHt 0.0002
CHt−1 9 Ft 0.0299

UKt−1 9 CHt 0.0000
CHt−1 9 UKt 0.0037

Residual Correlations
ρ̂F,D 0.7730
ρ̂F,UK 0.6252
ρ̂D,UK 0.6190
ρ̂F,CH 0.5969
ρ̂D,CH 0.5717
ρ̂UK,CH 0.5259
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Further insight on the long–term dynamics can be gained by looking at the forecast

equation

µT+τ = ω + A1µT+τ−1 + A2µT+τ−2

for τ ≥ 2, where A1 = α1 + γ1/2 + β1 collects the combined one-lag effects

and A2 = α2 the diagonal two-lag effects. This equation can be rewritten in a

companion form as

µ∗T+τ = ω∗ + Aµ∗T+τ−1

where

µ∗T+τ =

 µT+τ

µT+τ−1

 ,

ω∗ =

 ω

0

 ,

and

A =

 A1 A2

I 0

 . (32)

The identification of relevant links is complemented by the estimation and in-

ference on the A1 matrix, reported in Table 5 with the corresponding t-stats in

parentheses. We notice that some individually significant effects, when combined

together for multi–period forecasts become statistically insignificant, namely, the

link from UK to France and from UK to Switzerland. We can also notice that the

effects from France to UK and to Switzerland, as well as from UK to Germany
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are negative, the former being more sizeable than other coefficients. Finally, to

confirm that the model is stationary, we report the two largest eigenvalues of the

companion matrix A, equal, respectively, to 0.9925, and 0.9841.

Table 5: Estimated A1 matrix in expression (32). The rows and columns refer to the four indices
in the following order: CAC40 (F), DAX (D), FTSE100 (UK), SMI (CH) (Jan. 4, 2000 - Oct. 14,
2008).

t-1
t F D UK CH
F 0.9458 0.0161 -0.0095 0.0106

69.9953 2.0419 -0.5813 2.1442
D – 0.9384 -0.0296 0.0139

– 57.0620 -2.6752 2.2702
UK -0.0525 0.0176 0.9785 0.0151

-3.8703 4.5091 54.222 2.9077
CH -0.0449 0.0161 -0.0019 0.9946

-3.7209 4.6731 -0.1101 106.76

6. Concluding Remarks

Vector Multiplicative Error Models allow for the estimation of a dynamic autore-

gressive model for non–negative processes which finds many interesting applica-

tions in financial econometrics (volatility, volumes, and trading activity in gen-

eral). We allow the model to have a full interdependent structure in its general

form, but we recognize the need for a more parsimonious specification both be-

cause of estimation performances and the interpretability of the results. Given the

articulated estimation procedure there are various cross-roads at which appropri-

ate choices have to be made from a computational point of view given the highly

nonlinear nature of the optimization process involved. We have provided some
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computational details showing how they can simplify the burden of repeated es-

timation of the model in selecting significant links. The simulation exercise with

realistic parameter values shows that the performance is quite satisfactory. The

application to daily ranges as volatility proxies for four main European markets

show that volatility interdependence is adequately captured by this class of mod-

els with significant asymmetric effects which increase volatility when returns are

negative.
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A. Appendix: Software Implementation

The software implementation of vMEM’s is constructed with the aim of combin-

ing two requirements: a (relatively) user-friendly front-end and a (relatively) fast

engine in computations. The front-end, which handle data, input the model and

manage the results, is programmed in R (http://www.r-project.org/);

the computational routines (optimization algorithms, log-likelihoods, scores, Hes-

sians, OPG’s, Sandwich estimators, moment functions, etc.) has been programmed

in Fortran 77; only some probability density functions and cumulative density

functions are written in C, in a way to exploit some native C routines (named

’standalone math library’) available from R sources.

41



Copyright © 2009 

Fabr iz io Cipol l in i ,  

Giampiero M. Gal lo 


	Fabrizio Cipollini,
	Giampiero M. Gallo
	Università degli Studi
	di Firenze
	Copyright © 2009

