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Abstract

In financial time series analysis we encounter several instances of non–negative
valued processes (volumes, trades, durations, realized volatility, daily range, and
so on) which exhibit clustering and can be modeled as the product of a vector of
conditionally autoregressive scale factors and a multivariate iid innovation process
(vector Multiplicative Error Model).

Two novel points are introduced in this paper relative to previous suggestions: a
more general specification which sets this vector MEM apart from an equation by
equation specification; and the adoption of a GMM-based approach which bypasses
the complicated issue of specifying a general multivariate non–negative valued inno-
vation process.

A vMEM for volumes, number of trades and realized volatility reveals empirical
support for a dynamically interdependent pattern of relationships among the vari-
ables on a number of NYSE stocks.
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1 Introduction

In financial time series analysis we encounter several instances of non–negative valued
processes (volumes, trades, durations, realized volatility, daily range, and so on). The
Multiplicative Error Model, as introduced by Engle (2002), exploits the stylized fact
that these time series share similar persistence and clustering features as the absolute
or squared returns. As in the GARCH approach (Bollerslev (1986)), the conditional ex-
pectation of the variable of interest can be modeled as a time-varying function of the
information set (past value of the variable and past value of the conditional expectation)
and an iid (unit mean) innovation process.

The MEM is a generalization of the ACD model (Engle and Russell (1998)); other ex-
amples of MEMs are the CARR model by Chou (2005) or the model by Manganelli
(2005). Engle and Gallo (2006) have specified a simultaneous MEM where three differ-
ent measures of volatility (absolute returns, daily range and realized volatility) are jointly
modelled introducing lagged values of all variables in each equation for the conditional
expectations. Consistent parameter estimation equation by equation of such a model is
very simple and is based on the assumption that the covariance matrix of the innovation
term is diagonal. The empirical results show a dynamic interdependence of the indica-
tors, suggesting that a vector approach is advisable to gain further efficiency and have
more reliable interpretation of the significance of the links.

A first suggestion in order to obtain estimation in a vector MEM context is provided in
Cipollini et al. (2008). The equation by equation approach is used as a first stage (only
observable variables are involved) to reconstruct the marginals and then a copula function
is used to reconstruct a plausible joint pdf for the variables of interest.

In this paper we extend the results on vMEM in two directions. The first is the specifica-
tion of the vMEM in a more general form, namely one in which the conditional expecta-
tion of one variable is a function not only of its own past conditional expectation, but also
of past conditional expectations of other variables. This bars the equation by equation
cum copula approach from being used and suggests the adoption of a novel GMM ap-
proach which allows us to bypass the issue of reconstructing a multivariate non–negative
valued pdf for the vector of innovations.

The structure of the paper is as follows. In Section 2 we present the Multiplicative Error
Model summarizing its main features; Section 3 provides the main details on the GMM
derivation of the parameter estimates and on the issue of the nuisance parameter estima-
tion (the innovation covariance matrix). We introduce an illustration of the capability of
the model in reference with three variables, volumes, trades and realized volatility.

2 Multiplicative Error Models

The Multiplicative Error Model (MEM) extends the GARCH approach to processes xt
with non-negative support (Engle (2002), Engle and Gallo (2006)). In the univariate case,
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the model is specified as
xt = µtεt. (1)

µt is a scale factor assumed to evolve deterministically conditionally upon Ft−1: using
a general but rather informal notation we can denote this as µt = µ(Ft−1;θ), where θ
is a vector of unknown parameters ruling the dynamics of µt. εt is an innovation term
assumed to have non-negative support, conditional mean 1 and unknown variance σ2:
εt|Ft−1 ∼ D(1, σ2).

The previous assumptions on µt and εt give

E(xt|Ft−1) = µt (2)
V (xt|Ft−1) = σ2µ2

t . (3)

The Autoregressive Conditional Duration model by Engle and Russell (1998) is a special
case of MEM, but absolute returns, high-low range, number of trades in a certain inter-
val, volume, various versions of ultra-high frequency based measures of volatility can be
modeled with MEMs. One of the advantages of such a model is to avoid the need to resort
to logs (not possible when zeros are present in the data) and to provide conditional expec-
tations of the variables of interest directly (rather than expectations of the logs). Empirical
results show a good performance of these types of models in capturing the stylized facts
of the observed series (e.g. for daily range, Chou (2005); for volume, Manganelli (2005)).

However, one can be interested to model jointly the dynamics of two or more non-negative
time series. Examples are: volatility forecasting using different measures; volatility
spillovers for studying contagion among markets; order execution dynamics in order-
driven markets; joint dynamics of duration, volume and volatility for the same asset (see
Cipollini et al. (2007) and references therein for details about these examples). This mo-
tivates the following multivariate extension of the MEM.

Let xt be a K–dimensional process with non–negative components1. A vector MEM (or
vMEM for shortly) for xt is defined as

xt = µt � εt = diag(µt)εt, (4)

where � indicates the Hadamard (element–by–element) product and diag(.) denotes a
diagonal matrix with the vector in the argument as main diagonal. Conditionally on the
information set Ft−1, µt can be defined as above, that is

µt = µ(Ft−1;θ), (5)

except that now we are dealing with a K– dimensional vector depending on a (larger)
vector of parameters θ. The innovation vector εt is a K–dimensional random variable de-
fined over a [0,+∞)K support, with unit vector 1 as expectation and a general variance–

1In what follows we will adopt the following conventions: if x is a vector or a matrix and a is a scalar,
then the expressions x ≥ 0 and xa are meant element by element; if x1, . . . , xK are (m, n) matrices then
(x1; . . . ; xK) means the (mK, n) matrix obtained stacking the matrices xi’s columnwise.
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covariance matrix Σ,
εt|Ft−1 ∼ D(1,Σ). (6)

From the previous conditions follow that

E(xt|Ft−1) = µt (7)
V (xt|Ft−1) = µtµ

′
t �Σ = diag(µt)Σ diag(µt), (8)

where the latter is a positive definite matrix by construction.

Both in the univariate and in the vector case, empirical applications require to complete
the specification of the model. We discuss this in the vector case.

About the scale term µt, a sufficiently general specification can be

µt = ω +
L∑
l=1

[
αlxt−l + γlx

(−)
t−l + βlµt−l

]
. (9)

Among the parameters (whose nonzero elements are arranged in the vector θ) ω has
dimension (K, 1), whereasαl, γl and βl have dimension (K,K). Some of the elements of
this second set of coefficients can be constrained to zero if the corresponding component
is not interesting for structuring µt. In this sense, L denotes the maximal lag that, for
at least one of these coefficients, includes non zero elements. The terms γlx

(−)
t−l aim to

capture asymmetric effects associated with the sign of an observed variable: the vector
x

(−)
t contain xt,i’s multiplied by a function related to a signed variable, be it a return (0, 1

values) or a signed trade (buy or sell 1,−1 values). For example, when different volatility
indicators of the same asset are considered, such an indicator assumes value one when its
previous day’s return rt−1 is negative. In a market volatility spillover study, each market
would have its own indicator function built from the sign its own returns rt−1,i. Finally, in
a microstructure context, we can think of assigning positive or negative values to volumes
according to whether the trade was a buy or a sell.

As far as the error term εt, a completely parametric formulation of the vMEM requires
full specification of its conditional distribution. Some proposals about this are provided
in Cipollini et al. (2007), in which marginals for the components εt,i satisfying above
requirements are linked together using copulas. However, full parametric formulation of
the distribution of the error component can be quite tiring for a number of reasons.

1. Multivariate distributions defined on the non–negative orthant are often not suffi-
ciently flexible. Furthermore, sometimes they are defined via the characteristics
function without an explicit pdf, thus complicating considerably parameter estima-
tion (see, as an example, the discussion on the multivariate gamma in Cipollini et al.
(2007) and the work of Ahoniemi and Lanne (2007)). These are the main reasons
that motivate recurring to copulas.

2. For what concerns the copula approach, although there is a one-to-one correspon-
dence between the cdf of an absolutely continuous rv and its copula representation,
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practical choices are often driven by convenience reasons. For instance, Elliptical
copulas are appealing because can be employed also for moderately largeK and can
accommodate tail dependency. However they have an elliptically symmetric behav-
ior that can represent a limit in some contexts. On the contrary, some Archimedean
copulas can accommodate asymmetric dependency profiles but appear less usable
when the dimension K tends to increase (McNeil et al. (2005)). As a consequence,
even when combined with correct formulations of the marginals, copulas are not
always able to model adequately the association among components of the error
term.

3. As far as the marginals, in principle each one of them can follow a different dis-
tribution. This could require an expensive tuning of the model, in which different
choices for the marginals are compared.

4. As a final point, full specification of the distribution of εt may be not interesting if
the main focus of the analysis is on the dynamics of the µt component.

Hence, we assume in this work that the error component has an unspecified distribution
with conditional moments as in (6), thus leading to a semiparametric specification of the
vMEM.

3 Model Inference

In this section, we illustrate how to obtain inferences on the semiparametric specification
of the vector MEM proposed in section 2. The parameter of main interest is that ruling the
dynamics of µt, i.e. θ, whose dimension is denoted by p; relative to it, the variance matrix
of the error term, i.e. Σ, represents a nuisance parameter of dimension K(K + 1)/2.2

The key ingredient for the inference is represented by the two conditional moments of the
observed variable xt, (7) and (8), that follow from model assumptions. Even if different
estimation methods, relying essentially on first and second moments, can be taken into
account, in order to simplify the exposition we focus attention on Generalized Method
of Moments (GMM). Connections with other estimation methods leading to comparable
inferences are illustrated in appendix A.

3.1 Efficient GMM inference

Let us define
ut = xt � µt − 1, (10)

2Because of the symmetry, the nuisance parameter could be better denoted with vech(Σ), the vector
obtained stacking the portion of each column up to the main diagonal included. However, in the following
we indicate the nuisance parameter as Σ order to simplify the exposition.
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where� indicates the element–by–element division and we suppressed dependency of ut
on the parameter θ, on the information Ft−1 and on the current value of the dependent
variable xt.

From (7) and (8) one obtain immediately that ut is a conditionally homoskedastic martin-
gale difference, that is

E(ut|Ft−1) = 0 (11)
V (ut|Ft−1) = Σ. (12)

Following Wooldridge (1994, sect. 7) a conditional moment restriction like (11) can be
used as a key ingredient for estimation. By means of the law of iterated expectations,
this equation gives rise to K moment conditions of the form E(ut) = 0, usually not
enough for estimating the p-dimensional parameter θ. However, any (M,K) matrix Gt

depending deterministically on the information Ft−1 gives

E(Gtut|Ft−1) = 0, (13)

and then, by the law of iterated expectations,

E(Gtut) = 0, (14)

so that Gt is uncorrelated with ut.3 A matrix with the characteristics of Gt (namely
dependent on Ft−1 and uncorrelated with ut) is usually named instrument or instrumen-
tal variable and may depend on one vector of nuisance parameters ψ (assumed for the
moment a known constant).

Equation (14) provides M moment conditions. If M = p, we have as many equations as
the dimension of θ, thus leading to the MM criterion

g =
1

T

T∑
t=1

gt = 0 (15)

where gt = Gtut.

Under correct specification of the equation arising (14) (the µt equation in our case)
and some regularity conditions, the GMM estimator θ̂T , obtained solving (15) for θ, is
consistent (Wooldridge (1994, th. 7.1)). Furthermore, under some additional regularity
conditions we have asymptotic normality of θ̂T , with asymptotic variance matrix

Avar(θ̂T ) =
1

T
(S′V−1S)−1. (16)

3As remarked by Wooldridge (1994, p. 2693), equation (14) requires that the absolute value of each
component of ut and Gtut has finite expectation(s?).
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where

S = lim
T→∞

1

T

T∑
t=1

E (∇θ′gt) (17)

V = lim
T→∞

1

T
V

(
T∑
t=1

gt

)
(18)

(Wooldridge (1994, th. 7.2)). The structure of the vector MEM permits some consider-
able simplifications, stemming in particular from ut being a martingale difference (see
Wooldridge (1994)). In fact, such characteristic implies that gt = Gtut also is a martin-
gale difference (equation (14)): this leads to simplifications in the assumptions needed for
the asymptotic normality, by virtue of the martingale CLT, and is a sufficient condition
for making terms gt’s into (18) serially uncorrelated, thus leading to

V = lim
T→∞

[
1

T

T∑
t=1

E (gtg
′
t)

]
. (19)

The martingale difference structure of ut gives also a simple formulation for the efficient
choice of the instrument Gt, where efficient is meant producing the ’smallest’ asymptotic
variance among the GMM estimators arisen by g functions structured as in (15), with
gt = Gtut a and Gt being an instrument. Such efficient choice is

G∗t = −E(∇θu′t|Ft−1)V (ut|Ft−1)
−1. (20)

By computingE (gtg
′
t) into (19) andE (∇θ′gt) into (17) we obtainE (gtg

′
t) = −E (∇θ′gt) =

E (G∗tΣG∗′t ), so that

V = −S = lim
T→∞

1

T

T∑
t=1

E (G∗tΣG∗′t )

and (16) specializes as

Avar(θ̂T ) = − 1

T
S−1 =

1

T
V−1. (21)

Considering the analytical structure of ut in the vector MEM (equation (10)), we have

∇θu′t = −∇θµ
′
t diag(µt)

−1 diag(ut + 1),

so that (20) becomes
G∗t = ∇θµ

′
t diag(µt)

−1Σ−1.

Replacing it into gt = Gtut and this, in turn, into (15), we obtain that the GMM estimator
of θ in the vector MEM solves the MM equation

1

T

T∑
t=1

∇θµ
′
t[diag(µt)Σ diag(µt)]

−1(xt − µt) = 0 (22)
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and has asymptotic variance matrix

Avar(θ̂T ) =
1

T

[
lim
T→∞

1

T

T∑
t=1

E
[
∇θµ

′
t[diag(µt)Σ diag(µt)]

−1∇θ′µt
]]−1

. (23)

It is interesting to remark that (22) specializes in the univariate MEM as

σ−2 1

T

T∑
t=1

∇θµ
′
t

xt − µt
µ2
t

= 0, (24)

that represents just the 1-order condition of the univariate MEM under Gamma assump-
tion of the multiplicative error term (Engle and Gallo (2006)). The only substantial dif-
ference is the impossibility, in the vector version, of removing the variance of the error
term, Σ, from the equation. This motivates the importance of investigating the role of
this nuisance parameter in making inference about θ (section 3.2). In the appendix A
we discuss some interesting connections with other estimation methods, like Estimating
Functions (EFs) and Weighted Nonlinear Least Squares (WNLS).

3.2 Inference on Σ

In section 3.1, in discussing GMM inference on θ we admitted the possibility that the
instrument Gt may depend on a vector of nuisance parameters but we assumed to know
it, in order to simplify matters. Now, it’s time to remove this restriction and to investigate
how inferences on the nuisance parameter affect those on the main parameter. This is
especially important in vector MEM because the proposed efficient MM equation (22) for
estimating θ depends on the nuisance parameter Σ.

A clear handling of the role of nuisance parameters in the context of GMM inference is
provided in Newey and McFadden (1994, sect. 6). The theory of such paper is devel-
oped by using MM conditions for estimating both the main and the nuisance parameters.
Considering the remarked connections between MM and EFs (appendix A), other useful
references can then be found in Liang and Zeger (1995), Jørgensen and Knudsen (2004).
Whatever not being referenced to dependent data, many arguments of these paper can be
trivially adapted to our framework simply adjusting notation.

For investigating the role of nuisance parameters ψ in inferencing the main parameters
θ, the basic idea is to stack the moment functions of both in a joint GMM estimator.
Partitioning correspondingly the expectation of the derivative w.r. to parameters, S, and
the variance matrix, V, of such stacked moment function, we can study how Avar(θ̂T )

depends on ψ̂T

In the following, we denote as λ = (λ1;λ2) = (θ;ψ) the stacked vector of parameters,
as

gi =
1

T

T∑
t=1

gt,i (25)
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the corresponding stacked moment functions and as

Sij = lim
T→∞

1

T

T∑
t=1

E(∇λ′
j
gt,i) (26)

Vij = lim
T→∞

1

T

T∑
t=1

E(gt,ig
′
t,j) (27)

(i, j = 1, 2) the corresponding portion of the S and V matrices relative to g.

Using this representation, Newey and McFadden (1994) and Jørgensen and Knudsen
(2004) develop concepts and theories sharing many common points. One of the main
differences between the two works can be explained as follows. Newey and McFadden
(1994) emphasize two-step estimators: a first-step estimate of ψ is obtained by solving
g2 = 0, where g2 is made to depend on ψ but not on θ; a second step estimate of θ is
then obtained by plugging the first step estimate ψ̂T into g1 and then solving g1 = 0 for
θ. Since g2 does not depend on θ, this framework implies S21 = 0, an assumption not
made by Jørgensen and Knudsen (2004). Of course, by means of iteration the two-step
approach in Newey and McFadden (1994) can be extended to a more general iterative
approach.

In general, if θ̂T and ψ̂T are consistent estimators of the corresponding parameters and
the regularity conditions for asymptotic normality are satisfied, then

Avar(θ̂T ) =
1

T
[S−1VS−1′]11 (28)

(see (16)). Using some block matrix algebra we can show that

[S−1VS−1′]11 =
[
(S−1)11V11 + (S−1)12V21

]
(S−1)′11

+
[
(S−1)11V12 + (S−1)12V22

]
(S−1)′12

= (S−1)11

[
lim
T→∞

1

T

T∑
t=1

V
[
gt,1 + (S−1)−1

11 (S−1)12gt,2
]]

(S−1)′11,

(29)

a result slightly different from Newey and McFadden (1994, th. 6.1) in order to encompass
also the case S21 6= 0 considered by Jørgensen and Knudsen (2004).

Equation (29) shows that, in general, the moment function of the nuisance parameter,
g2, impacts on Avar(θ̂T ): ignoring it can lead to inconsistent standard errors for the
components of θ̂T . We can easily check that a sufficient condition for ignoring the effect
of g2 is

S12 = 0, (30)

a condition named Nuisance Parameter Insensitivity (NPI) by Jørgensen and Knudsen
(2004). In such case

[S−1VS−1′]11 = S−1
11 V11S

−1′
11 . (31)
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An interesting interpretation of NPI provided by Newey and McFadden (1994, th. 6.2)
(but contained also in Jørgensen and Knudsen (2004, sect. 3.2), whatever in a slightly
different form) is that, under certain regularity conditions, we have S12 6= 0 if and only if
inconsistency in estimating ψ in the first step leads to inconsistency in estimating θ in the
second step. This means that g1 is ψ-insensitive, if and only if an inconsistent estimate
of ψ does not affect consistency of θ̂T .

Jørgensen and Knudsen (2004, th. 1) states that NPI is not only sufficient, but also neces-
sary for (31). However, a careful inspection of assumptions for proving the necessary part
(sect. 6.3 of the cited paper) reveals that this requires also S21 = −V21. Thus, this result
does not cover the case considered by Newey and McFadden (1994), in which S21 = 0.4

Returning now to the vector MEM, we can check that the moment function for estimating
θ in equation (22), denoted here as g1, is Σ–insensitive. In fact, expressing it as sum of
martingale differences gt,1 = ∇θµ

′
t[diag(µt)Σ diag(µt)]

−1(xt − µt), we have

∇σij
gt,1 = −∇θµ

′
t diag(µt)

−1Σ−1∇σij
ΣΣ−1 diag(µt)

−1(xt − µt),

whose conditional expectation is 0. By the law of iterated expectations, S12 = 0 also.
This implies that (23) is the asymptotic variance matrix of θ̂T even when Σ is estimated,
instead of being known as assumed in section 3.1, and can be consistently estimated by

Âvar(θ̂T ) =

[
T∑
t=1

∇θµ
′
t[diag(µt)Σ̂T diag(µt)]

−1∇θ′µt

]−1

, (32)

where µt is computed on the basis of θ̂T and Σ̂T is a consistent estimator of Σ. By invok-
ing above interpretation of NPI, we note as the Σ-insensitivity of g1 implies that by using
the identity matrix in place of Σ̂T (equivalent to equation by equation estimation of the
vector MEM) we likewise have consistency (even if not efficiency) of the corresponding
estimator θ̂T .

Finally, equation (12) suggests that a natural estimator for the nuisance parameter Σ can
be

Σ̂T =
1

T

T∑
t=1

utu
′
t (33)

where ut is the working residual (10) computed by using current values of θ̂T . An in-
teresting characteristic of such estimator, is that it is not compromised by zeros in the

4In fact, using block matrix algebra we can check that (31) is equivalent to [S−1VS−1′]12 =
0. On the other side, this equation can be written as (S′11 − S′12V

−1
22 V21)(V−1)11S12 + (S′21 −

S′11V
−1
11 V12)(V−1)22S22 = 0, so that:

• when S21 = −V21 and g1 is in standardized form (i.e. S11 = −V11), (31) implies S12 = 0 (it is
the Jørgensen and Knudsen (2004) case; we note that this proof is different from that of their lemma
2) ;

• when S21 = 0, (31) implies S12 = (V−1)−1
11 V−1

11 V12(V−1)22S22 (it is the Newey and McFadden
(1994) case).
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data.

4 Interdependence in Trading Activity

After the consolidated success of GARCH models, a new momentum is being added to
the analysis and forecasting of financial asset volatility by more accurate measurement
methods made possible by the availability of ultra–high frequency data. The contribu-
tions in the literature on realized volatility (cf. Andersen et al. (2003)) have allowed the
derivation of daily time series of volatility which are less noisy than the corresponding
squared daily returns.

In a modelling framework, it is of interest to investigate whether volatility forecasts can
be improved upon by inserting other variables available in the relevant information set.
Since the seminal paper by Clark (1973), it has been recognized that stochastic volatility
can arise as a consequence of the stochastic number of intra–daily number of trades, and
ultimately, the information flow is considered a latent factor which manifests itself as
volatility, volume, number of trades, liquidity, and so on. A number of papers deal with
the interrelationships among these variables both from a theoretical and an empirical point
of view. Without recalling the details of the theoretical contributions, we refer to Andersen
(1996) for a microstructure–based model which accounts for the presence of informed
and uninformed traders and provides the ground for an econometric model which jointly
specifies the dynamics of returns and volumes conditional on an autoregressive process
for the flow of information arrival.

In what follows we will illustrate the estimation and model selection procedures for the
semiparametric vector MEM in reference to the joint dynamics of three variables mea-
sured on single stocks and related to market activity: volumes (vm), number of trades
(tr) and realized volatility (rv). In so doing, we adopt an empirically motivated approach
without an explicit theoretical model linking the three variables (for a similar analysis on
volumes, durations and squared returns with a different model, see Manganelli (2005)).

From the New York Stock Exchange Trades and Quotes (TAQ) database, we constructed
the series relative to the tickers American Express (AXP), IBM, J.P. Morgan (JPM), Mc-
Donald’s (MCD) and Walmart (WMT) during the period 01/02/2001 - 12/30/2005 (1256
observations). In order to avoid numerical problems, we rescaled vm and tr by express-
ing them, respectively, in million shares and thousand trades; realized volatility is not
annualized. The graphs of the variables are reported in Figure 1.

Table 1 reports a number of descriptive statistics and diagnostics on the original series.
We start by reporting the minimum, maximum, mean and standard deviation (sd) of the
series grouped by ticker. By and large the series exhibit range of values that are compara-
ble with one another, with JPM having some very high values of realized volatility which
increase the sample mean. The Ljung–Box statistics computed at various lags show that
the autocorrelation in the variables is very high (p-values uniformly below 10−5) and clus-
tering is an empirical feature of the data to be taken into consideration. Finally, we report
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the unconditional correlations (both Pearson’s and Spearman’s) which show that gener-
ally the volumes have a high correlation with the number of trades and realized volatility,
while the latter two have a correspondingly lower (and in the case of Spearman coeffi-
cients, even negative) correlation. The period analyzed is characterized by a decrease of
volatility and an increase in the number of trades (with a lower average volume per trade)
which accounts for this phenomenon.

We estimated the vMEM on each ticker, starting from a full specification (in the sense out-
lined below) and removing each time the coefficient with the smallest and not significant
(at 5% significance level) Student’s t test statistic. This general–to–specific specification
search ends up retaining only significant coefficients. As the starting estimated model, we
have assumed a vMEM with all coefficients at lag 1 (i.e. αi,j,1, γi,j,1, βi,j,1 for i, j = 1, 2, 3)
and a diagonal lag-2 matrix α2, included to capture further significant serial correlation.
During the general–to–specific model selection, the elements on the main diagonals ofα1

and β1 were always kept in the specification.

We report the coefficients of the models selected in Table 2. The format of the table
was chosen as to have four matrices reported by each ticker (α1, γ1, β1 and α2). The
coefficient corresponds to the estimated effect of the variable indicated in the column (at
time t−1) on the variable indicated in the row (at time t); below each value, in parentheses,
we report the associated Student’s t test statistic.

We can initially comment on the fact that the main innovation in this version of vMEM,
namely the nondiagonality of β1, proves to be useful since there are many significant
(albeit small) coefficients. Asymmetric effects are present (mainly for the coefficients of
lagged realized volatility on itself and other variables).

The estimation results are complemented by a number of diagnostic test and additional
information on the specification of the model (Table 3). In it we report the p-values of the
Ljung–Box tests for the whole three–variable system at various lags, showing the gener-
alized improvement of the autocorrelation in the vMEM residuals (some minor problems
are still present for JPM, MCD, and WMT).

The second set of results in Table 3 pertain to the Wald test statistics computed on co-
efficients restrictions in a spirit very similar to Granger causality tests. The first row
reports the p-values of such tests for the null hypothesis that all off-diagonal coefficients
are jointly equal to zero. All tests are highly significant confirming the relevance of the
interaction. Moreover, these links maintain their significance even when tested in a pair-
wise fashion (a total of 3 ∗ 2 = 6 pairs). When a ‘-’ is present the effect turned out to be
not significant at the estimation stage. Results vary from ticker to ticker: no feedbacks
are present from realized volatility to the other variables for AXP; full interdependence
among the three variables is exhibited by IBM only; JPM has all links significant, with the
exception of volume to number of trades; MCD shows some peculiar behavior, whereby
the only significant link is between lagged realized volatility and current number of trades;
finally WMT has interdependence between volumes and trades and unilateral influence of
realized volatility on the other two variables.

There is high persistence in the estimated system of equations as represented by the 2
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largest eigenvalues of the companion matrix associated with the estimated coefficients.
Finally, the correlation coefficients computed on the residuals are fairly similar across
tickers and so are their estimated standard deviations.

5 Concluding Remarks

In this paper we have presented an extension to the specification of the vector Multiplica-
tive Error Model introduced by Cipollini et al. (2006), specifying all matrices of coef-
ficients to be full matrices. In such a specification, the approach proposed in Cipollini
et al. (2007) to estimate the system with univariate model estimation adopting Gamma
marginals, and then using copula functions to retrieve the contemporaneous correlation
among innovations would not be applicable. The non–diagonality of β1 is shown in the
empirical applications to be supported by the data. Moreover, the semiparametric ap-
proach we have followed here relieves the analysis from the need to specify any distribu-
tional assumption or specific choices of a copula function.

The empirical application that is presented in this paper is merely illustrative of the poten-
tial importance of the method. We have chosen to estimate a three-dimensional model on
variables that are related to the information flow and end up signalling different aspects
of market activity. We believe that the dynamic interdependence that is exhibited by the
results points to the importance of modelling all available information about volatility in
a joint fashion.
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Table 3: Selected diagnostics of the selected vMEM applied to (vm = volumes / 1000000;
tr = number of trades / 1000; rv = realized volatility) of five tickers (2001 - 2005).

Statistics AXP IBM JPM MCD WMT
Ljung–Box Test (p-values)

lag 12 0.0766 0.1451 0.0071 0.1997 0.0130
lag 22 0.1016 0.1498 0.0336 0.0234 0.0908
lag 32 0.1545 0.1657 0.0503 0.1366 0.1393

Restrictions (p-values)
off diagonal = 0 0.0001 0.0000 0.0025 0.0000 0.0000
vmt−1 9 trt 0.0004 0.0013 0.0156 - 0.0000
trt−1 9 vmt - 0.0000 0.0018 - 0.0000
vmt−1 9 rvt 0.0413 0.0073 - - -
rvt−1 9 vmt - 0.0012 0.0007 - 0.0005
trt−1 9 rvt 0.0029 0.0008 0.0393 - -
rvt−1 9 trt - 0.0089 0.0065 0.0000 0.0082

Companion matrix eigenvalues
largest 0.9917 0.9971 0.9944 0.9978 0.9976

2-nd largest 0.9916 0.9722 0.9926 0.9950 0.9882
Residuals statistics

σ̂vm 0.1416 0.1075 0.1193 0.2688 0.1018
σ̂tr 0.0224 0.0213 0.0206 0.0306 0.0211
σ̂rv 0.7022 0.4437 0.7882 0.8079 0.4692

ρ̂vm,tr 0.6927 0.7996 0.7073 0.6728 0.7255
ρ̂vm,rv 0.5321 0.4904 0.5390 0.4972 0.3486
ρ̂tr,rv 0.4851 0.4700 0.4975 0.5411 0.3556
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A Connections with other inferential methods

As stated in section 3.1, GMM inferences about θ that are efficient in some sense can be
derived by solving equation (22). However, the same condition (and, by consequence, the
same inferences) can also be obtained by means of other inferential methods.

The first one is Estimating Functions (EFs). Proposed originally by Godambe (1960) and
Durbin (1960) in a more empirical context, EFs have gained a considerable popularity
in some applied domains, as some Biometrics models (see Liang and Zeger (1995) and
references therein) and some Stochastic Processes models (see Bibby et al. (2004) and
references therein). Despite this, EFs have remained relatively unknown to econometri-
cians, at least until the recent surveys of Bera and Bilias (2002) and Bera et al. (2006).
An excellent reference about EFs for dependent data is provided by Heyde (1997).

Adapting notation to the framework of this paper, an estimating function for a p–dimensional
vector θ based on a sample x(T ) is a p−dimensional function denoted as

g(θ; x(T )) in short g.

The EF estimator θ̂T is defined as the solution to the corresponding estimating equation:

θ̂T such that g = 0. (34)

To be a useful estimating function, regularity conditions on g are usually imposed. Among
these, a central requirement is the 0-unbiasedness of g, that is E (g) = 0, an assumption
that looks like a MM condition. In applying EFs to time series models, when a martingale
difference ut depending on θ is available a frequently considered class of EFs is{

g : g =
1

T

T∑
t=1

Gtut

}
, (35)

where Gt are (p,K) matrix functions defined exactly as in section 3.1. Writing down
the corresponding estimating equation, it can be easily checked that the EFs approach
leads exactly to the MM condition (15), hence to the same asymptotic variance of the
estimator that, in turn, is ’minimized’ by the same efficient instrument (20). In the EF’s
literature, the efficient EF in the class (35), is sometimes named Hutton–Nelson quasi
score function.5

A second inferential approach that leads to the same inferential results is Quasi Maxi-
mum Likelihood (QML) in its Weighted Nonlinear Least Squares (WNLS) declination
(Wooldridge (1994, sect. 6)). Such an approach can be usefully employed when the main
interest lies in estimating the parameters of the conditional mean of xt (µt in the vector

5A careful comparison of Newey and McFadden (1994, sect. 5) and Heyde (1997, ch. 2) suggests that
connections among GMM and EFs are not restricted to formulations considered in (35) and (15). In par-
ticular, the optimality theorem in Heyde (1997, p. 29) looks very similar to theorem 5.3 in Newey and
McFadden (1994).
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MEM) assumed correctly specified. The WNLS estimator of θ solves

min
θ

1

2T

T∑
t=1

(xt − µt)′ Ŵ−1
t (xt − µt) , (36)

where Wt is a (K,K) symmetric, positive definite matrix depending deterministically
on Ft−1 and, possibly, on nuisance parameters (i.e. exactly as the Gt matrix of section
3.1). Since, under conditions (7) and (8), the optimal WNLS estimator of θ is obtained
exactly by choosing Wt = V (xt|Ft−1) (Wooldridge (1994, p. 2700)), Wt is thought
to be a consistent estimator of V (xt|Ft−1) based on the current values of the parameters.
Deriving from (36) the first order condition for θ̂T and replacing Wt with (8), as indicated
above, we obtain equation (22).

Wooldridge (1994) describes also a different declination of QML. Such a different ap-
proach can be used whenever, as in the vector MEM, both the mean and the variance
function are jointly parameterized by a vector θ. Under correct specification of these two
conditional moments, a QML estimator can be obtained under the nominal assumption of
xt|Ft−1 normally distributed with first two moments as in (7) and (8). Such an approach
leads to different inferences about θ and we do not pursue further this here.
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