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Abstract

The paper explores some issues related to endogeneity in multilevel
models, focusing on the case where the random effects are correlated with
a level 1 covariate in a linear random intercept model. We consider two ba-
sic specifications, without and with the sample cluster mean. It is generally
acknowledged that the omission of the cluster mean may cause omitted-
variable bias. However, it is often neglected that the inclusion of the sample
cluster mean in place of the population cluster mean entails a measurement
error that yields biased estimators for both the slopes and the variance com-
ponents. In particular, the contextual effect is attenuated, while the residual
level 2 variance is inflated. After outlining a suitable framework, we derive
explicit formulae for measurement error biases that allow to implement sim-
ple corrections. The theoretical analysis is supplemented with a simulation
study and a discussion of the implications for effectiveness evaluation.

Keywords: between-within effects, cluster mean, contextual effect, effec-
tiveness evaluation, random effects.



1 Introduction
Regression analysis with data from observational studies is often threatened by
endogeneity, namely a lack of independence of the model errors from the covari-
ates, which yields biased estimators of the model parameters. Two major sources
of endogeneity, which will be considered in the paper, are covariate omission and
covariate measurement error.

Multilevel random effects models have at least one error term at each hier-
archical level, so the endogeneity can concern errors at any level. Our contri-
bution considers two-level random intercept models and focuses on the level 2
endogeneity arising when the level 2 errors (random effects) are correlated with
level 1 covariates. This issue is well known in the setting of panel data due to the
Hausman test (Hausman, 1978), but the topic has recently received some attention
also in a more general perspective: see Skrondal and Rabe-Hesketh (2004), Field-
ing (2004), Ebbes et al. (2004), Kim and Frees (2007) and Snijders and Berkhof
(2008).

Let us consider a random intercept model with a level 1 covariate Xij , named
Raw Covariate model

Yij = η + βXij + vj + eij (1)

where i = 1, 2, . . . , nj is the elementary (level 1) index and j = 1, 2, . . . , J is the
cluster (level 2) index. For example, in a panel setting the elementary units are the
waves and the clusters are the individuals, while in a cross-sectional framework
the elementary units are the individuals and the clusters are entities such as insti-
tutions or geographical areas. Moreover, Xij is a level 1 covariate with slope β,
vj are level 2 errors (random effects) and eij are level 1 errors.

Level 2 endogeneity is characterized by E(vj | Xij) 6= 0, implying that the
standard estimators of β are biased. Note that Cov(vj, Xij) 6= 0 is a sufficient,
though not necessary, condition for level 2 endogeneity.

If E(vj | Xij) is assumed to be a linear function of the cluster mean Xj , a
straightforward remedy to endogeneity is to add Xj to the model equation (Mund-
lak, 1978). From another point of view, some authors (Neuhaus and Kalbfleish,
1998; Snijders and Berkhof, 2008) point out that the inclusion of Xj as a further
regressor is just a way to disentangle the between-cluster and within-cluster ef-
fects, that are often conceptually and numerically rather different. However, it is
usually not recognized that in most cases Xj is a sample cluster mean used to
measure a population cluster mean: as a consequence, the model including Xj is
affected by measurement error and thus the contextual effect is attenuated, while
the residual level 2 variance is inflated. In the paper we deal with the measurement
error issue, studying the biases and proposing simple corrections based on the re-
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liability of the covariate. The properties of the corrected estimators are evaluated
through a simulation study.

Our analysis is complementary to the works of Croon and van Veldhoven
(2007) and Lüdtke et al. (2008), who deal with the attenuation of the contextual ef-
fect in a structural equation perspective. Some peculiarities of our analysis are: the
interpretation in terms of endogeneity, the proposal of a specific adjustment when
sampling from clusters of finite size, the attention devoted to the consequences
on the level 2 variance and the discussion of the implications for effectiveness
evaluation.

In our treatment the covariate Xij is assumed to be measured without error, so
the measurement error only affects the sample cluster mean Xj just because it is
a measure of a population cluster mean. The case of multilevel models where a
covariate itself is measured with error is treated for example by Woodhouse et al.
(1996), Hutchison (2004) and Ferrão and Goldstein (2008).

We focus on the balanced case, i.e. clusters of equal size n, where simple
formulae can be derived. However, we also deal with the extension to unbalanced
hierarchies.

The paper is organized as follows. Section 2 describes the data generating
model, while Section 3 explores the nature of level 2 endogeneity in the model
without the cluster mean. Section 4 deals with the measurement error connected
with the use of the sample cluster mean and Section 5 shows how to correct the
biases. Section 6 summarizes the properties of the models and reviews some
estimators. Section 7 discusses the solution to measurement error via structural
equation modelling. In Section 8 the finite sample performances of the estimators
are investigated through a simulation study. Section 9 discusses the implications
for effectiveness evaluation and Section 10 concludes.

2 The data generating model
To study endogeneity issues in the Raw Covariate model (1), the covariate Xij

must be treated as random and the hierarchical framework requires to specify
how Xij varies between and within clusters. The simplest choice is to assume a
variance component model

Xij = XB
j + XW

ij , (2)

where it is assumed that:

(X1) XB
j are iid with mean µX and variance τ 2

X > 0

(X2) XW
ij are iid with zero mean and variance σ2

X > 0
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(X3) XB
j ⊥⊥XW

ij , ∀i, j
Assumptions (X1)-(X3) imply the usual variance decomposition V ar(Xij) =
τ 2
X + σ2

X . The Intraclass Correlation Coefficient (ICC) is ρX = τ 2
X/(τ 2

X + σ2
X).

The assumptions τ 2
X > 0 and σ2

X > 0 imply that Xij varies both within and
between clusters. If the covariate Xij were purely within (i.e. τ 2

X = 0), level 2
endogeneity would not be an issue; however, purely within covariates are rare in
practice.

While Xij is observable, the components XB
j and XW

ij are unobservable, so
in the models they must be replaced with their observable counterparts, i.e. the
sample cluster mean Xj = 1

n

∑n
i=1 Xij for XB

j and the centered covariate X̃ij =

Xij − Xj for XW
ij . The consequences of such substitution will be explored in

Sections 4 and 5. For the moment we reason as if XB
j and XW

ij were observable.
In the light of decomposition (2), it is clear that the Raw Covariate model (1)

implicitly assumes the equality of between-cluster and within-cluster slopes. A
more general model without such restriction is

Yij = α + βW XW
ij + βBXB

j + uj + eij , (3)

where βW is the within slope and βB is the between slope. In many settings, the
between and within slopes are conceptually different and may even have opposite
signs, so it is important to distinguish them (Neuhaus and Kalbfleish, 1998). For
example, Gottard et al. (2007) use a logit random intercept model for the proba-
bility of employment, where it turns out that the within-school effect of the grade
is positive, while the between-school effect is negative.

In the paper we assume that the data are generated by model (3), so we will
refer to it as the data generating model. In the following we will often use the
alternative parametrization

Yij = α + βW Xij + δXB
j + uj + eij , (4)

where δ = βB−βW is the contextual coefficient (Raudenbush and Willms, 1995).
To help understand endogeneity issues, we formulate the assumptions under-

lying the data generating model (3) in a fashion similar to the econometric treat-
ment of panel data (Wooldridge, 2002). First of all, observable and unobservable
random variables of different clusters are assumed to be independent. Then a two-
stage sampling is assumed: J clusters are drawn at random from the population
of clusters and, for each sampled cluster, a random sample of elementary units is
drawn. In unbalanced designs the cluster sample sizes are assumed to be unrelated
with the model errors.

Let us consider an arbitrary cluster j of sample size n and define XW
j =

(XW
1j , . . . , XW

nj )
′. The assumptions on the model errors are:
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(Y1) level 1 exogeneity: E(eij | uj, X
B
j ,XW

j ) = 0, ∀i
(Y2) level 2 exogeneity: E(uj | XB

j ,XW
j ) = 0

(Y3) level 1 homoscedasticity: V ar(eij | uj, X
B
j ,XW

j ) = σ2
Y |XBXW , ∀i

(Y4) level 1 uncorrelatedness: Cov(eij, ei′j | uj, X
B
j ,XW

j ) = 0, ∀i 6= i′

(Y5) level 2 homoscedasticity: V ar(uj | XB
j ,XW

j ) = τ 2
Y |XBXW

Two consequences of level 1 exogeneity (Y1) are that: (i) errors at different
levels are uncorrelated, i.e. Cov(eij, uj | XB

j ,XW
j ) = 0; (ii) each level 1 error is

uncorrelated with the covariates, i.e. Cov(eij, X
W
sj | uj) = 0, s = 1, . . . , n and

Cov(eij, X
B
j | uj) = 0. Covariances (ii) are null also marginally w.r.t. uj .

A consequence of level 2 exogeneity (Y2) is that each level 2 error is uncorre-
lated with the covariates, i.e. Cov(uj, X

W
sj ) = 0, s = 1, . . . , n and Cov(uj, X

B
j ) =

0.
In the data generating model (3), under the stated assumptions the residual

variance of Y decomposes as τ 2
Y |XBXW + σ2

Y |XBXW . Moreover, the residual ICC
of Y , which is equal to the residual correlation among the responses of two units
belonging to the same cluster, is

ρY |XBXW =
τ 2
Y |XBXW

τ 2
Y |XBXW + σ2

Y |XBXW

. (5)

Two useful models derived from the data generating model (3) are the Between
and Within models. Computing the cluster mean on the elements of model (3)
leads to the Between model:

Y j = α + βBXB
j + βW X

W

j + uj + ej , (6)

where the bar denotes a sample cluster mean, e.g. Y j = 1
n

∑n
i=1 Yij .

Subtracting model (6) from model (3) yields the Within model:

Ỹij = βW X̃W
ij + ẽij , (7)

where the tilde denotes a deviation from the sample cluster mean, e.g. Ỹij =
Yij − Y j .
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3 Level 2 endogeneity in the Raw Covariate model:
omitted-variable bias

If XB
j is omitted from the data generating model (4), and thus included in the level

2 error, the model reduces to the Raw Covariate model (1) with β = βW :

Yij = η + βW Xij + vj + eij , (8)

where η = (α + δµX) and vj = δ(XB
j − µX) + uj , with E(vj) = 0. The residual

level 1 variance is the same as in model (4), i.e. σ2
Y |X = σ2

Y |XBXW , while the
residual level 2 variance is

τ 2
Y |X = V ar(vj) = δ2τ 2

X + τ 2
Y |XBXW . (9)

Assumptions (X3) and (Y2) imply Cov(vj, Xij) = Cov(vj, X
B
j ) = δτ 2

X ,
which is null if δ = 0. Since vj depends on Xij only through XB

j , the corre-
lation among vj and Xij has bounds that depend on the ICC of the covariate. In
fact, if δ 6= 0 then

Corr(vj, Xij) =
sign(δ)

√
ρX√

1 + τ 2
Y |XBXW /(τ 2

Xδ2)
. (10)

The relevance of level 2 endogeneity is summarized by the squared correlation
among vj and Xij , which is an increasing function of δ2 and lies in the interval
(0, ρX).

In summary, when δ 6= 0 the Raw Covariate model is affected by level 2
endogeneity, which can be seen as a consequence of omitting the population clus-
ter mean XB

j from the data generating model (4); alternatively, such endogeneity
can be viewed as stemming from a wrong equality assumption on the between
and within slopes in model (3). In such a case, the estimable slope of the Raw
Covariate model is a meaningless average of βB and βW .

Denoting with ψ = β − βW the bias of the slope, which cannot be expressed
in closed form, model (8) can be expressed as:

Yij = η + (β − ψ)(XB
j + XW

ij ) + vj + eij

= η + βXij +
[−ψXB

j + vj

]
+

[−ψXW
ij + eij

]

= [η − ψµX ] + βXij +
[−ψ(XB

j − µX) + vj

]
+

[−ψXW
ij + eij

]

= [α + (δ − ψ)µX ] + βXij +
[
(δ − ψ)(XB

j − µX) + uj

]
+

[−ψXW
ij + eij

]
.

Therefore, the estimable residual variance at level 1 is

V ar(−ψXW
ij + eij) = ψ2σ2

X + σ2
Y |XBXW (11)
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and the estimable residual variance at level 2 is

V ar((δ − ψ)(XB
j − µX) + uj) = (δ − ψ)2τ 2

X + τ 2
Y |XBXW , (12)

which both depend on the bias of the slope ψ and exceed the corresponding pop-
ulation residual variances σ2

Y |XBXW and τ 2
Y |XBXW when δ 6= 0. Note that the

estimable level 2 residual variance (12) differs from τ 2
Y |X defined in (9).

4 Level 2 endogeneity in the Sample Cluster Mean
model: measurement error bias

The level 2 endogeneity of the Raw Covariate model can be avoided by allowing
between and within effects to be different, as in the data generating models (3) or
(4). However, these models cannot be fitted since XB

j and XW
ij are unobservable.

Their sample counterparts are the sample cluster mean Xj = 1
n

∑n
i=1 Xij and the

centered covariate X̃ij = Xij−Xj , respectively. In other words, the unobservable
split (2) is replaced with the observable split

Xij = Xj + X̃ij . (13)

Note that
Xj = XB

j + X
W

j (14)

and
X̃ij = XW

ij −X
W

j = X̃W
ij , (15)

where X
W

j is the sample cluster mean of the latent within components XW
ij . Thus

both XB
j and XW

ij are measured with error: this is an instance of classical error
model (Carroll et al., 2006) with the peculiarity that the measurement errors of the
two covariates have the same absolute value, but opposite signs.

Since
∑n

i=1 X̃ij = 0 for every j and thus
∑J

j=1

∑n
i=1 XjX̃ij = 0, the sample

covariance among Xj and X̃ij is zero. The population variance of the sample
cluster mean is

V ar(Xj) = V ar(XB
j ) + V ar(X

W

j ) = τ 2
X + σ2

X/n . (16)

Moreover, V ar(X̃ij) = n−1
n

σ2
X , Cov(Xj, X̃ij) = 0 and Cov(Xj, Xij) = V ar(Xj).

In the following the models where XB
j is replaced with Xj and XW

ij with X̃ij

are labelled working models.
Starting from expression (3), a bit algebra shows that the working version of

the data generating model, named Sample Cluster Mean model later on, is

Yij = α + βW X̃ij + βBXj + zj + eij (17)
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or
Yij = α + βW Xij + δXj + zj + eij , (18)

where zj = uj − δX
W

j , with E(zj) = 0 and

V ar(zj) = δ2σ2
X/n + τ 2

Y |XBXW . (19)

In addition, the working Between model corresponding to (6) is

Y j = α + βBXj + zj + ej , (20)

while the working Within model corresponding to (7) is

Ỹij = βW X̃ij + ẽij . (21)

Since X̃ij = X̃W
ij the working Within model allows to unbiasedly estimate βW .

However, when δ 6= 0, the Sample Cluster Mean model and the working Between
model are affected by measurement error, which causes level 2 endogeneity. In
particular, in the Sample Cluster Mean model (17) X̃ij is a purely within covariate
and thus orthogonal to both zj and Xj , so its slope βW can be unbiasedly esti-
mated. On the other hand, Xj is endogenous, because Cov(zj, Xj) = −δσ2

X/n.
The corresponding correlation when δ 6= 0 is

Corr(zj, Xj) =
−sign(δ)

√
1− λX√

1 + nτ 2
Y |XBXW /(δ2σ2

X)
, (22)

where λX is the reliability of the sample cluster mean Xj as a measure of the
cluster component XB

j in a cluster of size n:

λX =
V ar(XB

j )

V ar(Xj)
=

τ 2
X

τ 2
X + σ2

X/n
=

(
1 +

1

(τ 2
X/σ2

X)n

)−1

. (23)

The reliability λX lies in the interval (0, 1) and it is an increasing function of the
product of the variance ratio τ 2

X/σ2
X by the cluster size n. For example, a reliabil-

ity of 2/3 is obtained with n = 2 and τ 2
X = σ2

X (a typical panel data configuration)
or with n = 20 and τ 2

X = 0.10σ2
X (a typical cross-section configuration).

The relevance of level 2 endogeneity can be summarized by the squared cor-
relation among the random effects zj and the sample cluster mean Xj , which is
an increasing function of δ2 and lies in the interval (0, 1− λX).
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5 Correction of measurement error biases in the Sam-
ple Cluster Mean model

The measurement error of Xj induces a correlation among zj and Xj in the Sam-
ple Cluster Mean model, yielding biased estimates of α, βB, δ and τ 2

Y |XBXW .
However, we are going to show that such estimates can be easily corrected.

Let us consider an estimator of βB that is unbiased if the model is not affected
by level 2 endogeneity, and let βB,m denote the estimand of such estimator in
presence of level 2 endogeneity. The subscript m of βB,m stands for measurement
error due to the sample cluster mean. To see how βB,m is related to βB and βW ,
note that the working Between model (20) is just a restricted version of the popu-
lation Between model (6) where βB and βW are constrained to be equal, so βB,m

is an average of βB and βW . Indeed, in the balanced case, by the least squares
criterion βB,m = Cov(Xj, Y j)/V ar(Xj), and thus after a bit algebra it follows
that

βB,m = λXβB + (1− λX)βW = βB − (1− λX)δ . (24)

The estimable βB,m is greater than the true βB if δ < 0 and lower if δ > 0. In both
cases the bias is a decreasing function of the reliability λX and vanishes when
λX = 1.

As for the Sample Cluster Mean model, in equation (17) X̃ij is uncorrelated
with any level 2 term, so its slope βW can be unbiasedly estimated, while the
estimable between slope is equal to βB,m defined in (24). The measurement error
affects also the intercept of the Sample Cluster Mean model: indeed, from (17)
and (24) it follows that the estimable intercept is

αm = α + (1− λX)δµX . (25)

Since model (18) is a reparameterization of model (17), the slope βW of Xij

can be unbiasedly estimated, while the slope δ of Xj cannot. Indeed, the estimable
contextual coefficient δm is

δm = βB,m − βW = λX(βB − βW ) = λXδ , (26)

so the population contextual coefficient δ is attenuated by the reliability of the
covariate, with relative bias −(1− λX).

The contextual coefficient δ can be unbiasedly estimated with a simple correc-
tion:

δ̂c =
δ̂m

λ̂X

, (27)

where the subscript c means corrected. The estimate of δm can be obtained from
the Sample Cluster Mean model (18), while λX can be estimated by plugging
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estimates of σ2
X and τ 2

X into the reliability (23). Unbiased estimates of σ2
X and

τ 2
X can be obtained by fitting a variance component model for X , or using the

so-called ANOVA formulae based on the observed between and within sum of
squares (Snijders and Bosker, 1999).

The expectation and sampling variance of δ̂c can be approximated via the first-
order Taylor approximation for the ratio of two random variables (Casella and
Berger, 2001):

E
[
δ̂c

]
= E

[
δ̂m

λ̂X

]
≈ δm

λX

(28)

and

V ar
[
δ̂c

]
= V ar

[
δ̂m

λ̂X

]
≈

(
δm

λX

)2
[

V ar(δ̂m)

δ2
m

+
V ar(λ̂X)

λ2
X

]
, (29)

where the formula for the variance is obtained using Cov(δ̂m, λ̂X) = 0. The
sampling variance (29) can be estimated by plugging in the point estimates of δm

and λX and their estimated sampling variances (the sampling variance of λ̂X can
be computed via the delta method).

Even if the corrected estimator δ̂c is approximately unbiased, from (29) it
follows that its sampling variance is higher than the sampling variance of the
standard estimator δ̂m, so it should be checked if the correction is convenient in
terms of mean squared error, comparing M̂SE(δ̂c) = V̂ ar(δ̂c) with M̂SE(δ̂m) =

V̂ ar(δ̂m) + (δ̂m − δ̂c)
2.

Another consequence of measurement error is that the estimable level 2 vari-
ance is not the one defined in (19). In fact, the estimable slope of X is δm rather
than δ, so that the actual level 2 error in (18) is (δ − δm)Xj + zj . The estimable
residual level 2 variance is

τ 2
Y |XBXW ,m = V ar[(δ − δm)Xj + zj]

= V ar[(1− λX)δ(XB
j + X

W

j )− δX
W

j + uj]

= V ar[(1− λX)δXB
j − λXδX

W

j + uj]

= (1− λX)2δ2τ 2
X + λ2

Xδ2σ2
X

n
+ τ 2

Y |XBXW

= (1− λX)δ2τ 2
X + τ 2

Y |XBXW . (30)

Therefore, the Sample Cluster Mean model entails an overestimation of the pop-
ulation level 2 variance τ 2

Y |XBXW . On the contrary, the level 1 variance σ2
Y |XBXW

is unbiasedly estimated, so the residual ICC of Y , defined in (5), is overestimated.
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The level 2 residual variance τ 2
Y |XBXW can be unbiasedly estimated with a

simple correction:

τ̂ 2
Y |XBXW ,c = τ̂ 2

Y |XBXW ,m − (1− λ̂X)τ̂ 2
X δ̂c

= τ̂ 2
Y |XBXW ,m − ϕ̂X δ̂2

m (31)

where ϕ̂X = (1/λ̂2
X)(1 − λ̂X)τ̂ 2

X . In principle, it is possible to derive a Tay-
lor approximation of the sampling variance of τ̂ 2

Y |XBXW ,c, but this is not relevant
as Wald tests for variance components are not appropriate (Snijders and Bosker,
1999). The usual test for the nullity of a variance component is a LRT with a
halved p-value (Snijders and Bosker, 1999), but it is not simple to define an anal-
ogous test based on the corrected variance (31). A proper test can be obtained
with the structural model approach presented in Section 7.

5.1 Unbalanced designs
In unbalanced designs, the value of the reliability λX changes with the cluster
size, so there is no more a unique value of λX . There are two main ways to obtain
a pooled value of λX to be used for correcting the measurement bias: (i) take the
reliability at the average cluster size λX(n), where n in formula (23) is replaced
with the average cluster size n = J−1

∑J
j=1 nj; (ii) compute the reliability λX(j)

for each cluster and then take the average reliability λX = J−1
∑J

j=1 λX(j).
In balanced designs, λX = λX(n), while in unbalanced designs λX < λX(n),

and the difference increases with the degree of unbalancedness. The simulations
reported in Section 8.3 show that λX is closer to the actual attenuation factor and
yields a satisfactory correction in most cases.

5.2 Sampling from clusters of finite size
The data generating model defined in Section 2 assumes the existence of a pop-
ulation cluster mean which is measured through the mean of a random sample.
The population cluster mean is thus a latent variable, i.e. a variable that cannot be
directly observed, no matter how large is the cluster sample size. This assump-
tion may be sensible or not, depending on the context. Table 1 summarizes some
relevant cases: cases A and B refer to situations where the above assumption is
appropriate, while case C requires a modification.

In case A of Table 1 the population cluster mean is a latent construct and the
level 1 units yield parallel measures of such construct. For example, the school
climate may be measured by asking each pupil to evaluate it. A construct of this
kind, which is measured (but not defined) by level 1 units, is called reflective by

11



Table 1: Variance of Xj originated within clusters in some relevant cases.

Source of within Nature of the Cluster size in Variance of Xj

case variability of Xij cluster mean the population originated within
clusters

A parallel measurement reflective irrelevant σ2
X/n

B random sampling formative infinite σ2
X/n

C random sampling formative finite σ2
X

n
× N−n

N−1

Lüdtke et al. (2008). Another case of parallel measurement arises when the level
1 units are repeated measures in a longitudinal design. When measuring a latent
construct the variability in the measures stems from the instrument and does not
disappear even if the whole population is observed.

On the other hand, in cases B and C of Table 1 the construct is formative, i.e. it
is defined by aggregating the values of the level 1 units, e.g. the school proportion
of females. In cases B and C the variability in the measures arises only from
random sampling. In case B the size of the clusters in the population is infinite,
i.e. the units within a cluster cannot be exhaustively enumerated. For example,
the clusters may be different plants yielding a given product. On the contrary, in
case C the clusters have finite size, for example the students of a school.

As shown in Section 4, the variance of the sample cluster mean V ar(Xj) is the
sum of two components: the variance of the population cluster mean V ar(XB

j )

and the residual variance V ar(X
W

j ) originated within clusters and due to parallel
measurement in case A and sampling in cases B and C. This residual variance is the
usual sampling variance of the mean σ2

X/n in cases A and B, since they both imply
model (2) for Xij , under assumptions (X1)-(X3) of Section 2; on the contrary, in
case C, where the clusters have finite size, the variance of Xj originated within
clusters is the variance of the sample mean under simple random sampling from a
finite population

σ2
X

n

N − n

N − 1
∼= σ2

X

n
(1− n

N
) , (32)

where N is the population cluster size and n/N is the within-cluster sampling
fraction. Thus, σ2

X/n is a good approximation of (32) if the within-cluster sam-
pling fraction is low, but it substantially overestimates the actual variance when
large portions of the clusters are sampled. In such cases the reliability of the clus-
ter mean should be modified accordingly:

λf
X =

τ 2
X

τ 2
X +

σ2
X

n
N−n
N−1

. (33)
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When the population is made of a finite number of clusters of finite size, τ 2
X and

σ2
X are not model parameters, but they are the between and within variances of X

in the finite population.
The reliability λf

X is an increasing function of the within-cluster sampling frac-
tion n/N taking values in the interval (λX , 1]: if n/N → 0 then λf

X → λX , while
if n = N then λf

X = 1. Indeed, when the clusters are fully observed (n = N ) the
variance of Xj originated within clusters vanishes, so the measurement error of
the sample cluster mean is no more an issue.

In order to estimate the reliability λf
X , it should be noted that the standard

estimators of τ 2
X are biased when sampling from finite clusters. Indeed, the cluster

variance is estimated by subtracting from the variance of the observed cluster
means the spurious variance due to sampling. This fact is true for ML, REML and
ANOVA estimators and it is explicit in the ANOVA formulae

σ̂2
X = S2

X,w (34)

τ̂ 2
X = S2

X,b −
σ̂2

X

n
,

where S2
X,w is the sample within variance, while S2

X,b is the sample between vari-
ance (Snijders and Bosker, 1999). In the case of finite cluster sizes, the estimator
of the within variance σ̂2

X is still unbiased, while the estimator of the between
variance τ̂ 2

X is downward biased, since the spurious variance σ̂2
X/n is computed

under the assumption of random sampling from clusters of infinite size. In order
to obtain an unbiased estimator, the spurious variance should be adjusted:

τ̂ 2
X,f = S2

X,b −
σ̂2

X

n

N − n

N − 1
. (35)

Therefore, the reliability λf
X should be estimated by plugging in (33) the standard

ANOVA estimate σ̂2
X (34) and the adjusted ANOVA estimate τ̂ 2

X,f (35).

6 Summary of the models
The two cases of endogeneity discussed in the paper are summarized in Table 2.

It is instructive to compare the Raw Covariate model (8), which has a single
covariate Xij , with the Sample Cluster Mean model (18), which has covariates
Xij and Xj . Both models are affected by level 2 endogeneity when βB 6= βW .
However, in the Raw Covariate model the endogeneity arises from the omission
of the relevant covariate XB

j , while in the Sample Cluster Mean model the endo-
geneity is due to the measurement error caused by using Xj instead of XB

j . In the
Sample Cluster Mean model the problem is less serious since the slope of Xij is

13



Table 2: Two cases of endogeneity: omitted variable and measurement error in the
working models (8) and (18) when the population model is: Yij = α + βW Xij +
δXB

j + uj + eij

Raw Covariate model Sample Cluster Mean model
only Xij Xij and Xj

Model equation Yij = η + βW Xij + vj + eij Yij = α + βW Xij + δXj + zj + eij

Regressor omission yes (if δ 6= 0) no
Measurement error no yes (if λX < 1)
Level 2 error covariance Cov(vj, Xij) = δτ 2

X Cov(zj, Xj) = −δ
σ2

X

n

Estimable βW βW + ψ βW

Estimable δ - λXδ
Estimable lev 1 res var ψ2σ2

X + σ2
Y |XBXW σ2

Y |XBXW

Estimable lev 2 res var (δ − ψ)2τ 2
X + τ 2

Y |XBXW (1− λX)τ 2
Xδ2 + τ 2

Y |XBXW

not affected and a simple correction is available for the slope of Xj . Note that in
the in the Sample Cluster Mean model the covariance between the random effects
and the sample cluster mean depends not only on model parameters, but also on
the design through the cluster size n.

The Raw Covariate model and the Sample Cluster Mean model can be fitted
via likelihood methods such as FIML (Full Information Maximum Likelihood)
and REML (REstricted Maximum Likelihood). FIML and REML are two ver-
sions of the GLS (Generalized Least Squares) estimator for the fixed effects that
differ in the estimation of the variance components: FIML is efficient, but it under-
estimates the residual level 2 variance, so in some settings it may be convenient to
use the unbiased, even if less efficient, REML method (Verbeke and Molenberghs,
2000).

The GLS estimator of β in the Raw Covariate model, also known as the ran-
dom effects estimator, is a weighted average of the OLS Between and Within esti-
mators. In particular, in the balanced case, it can be shown that (Raudenbush and
Willms, 1995; Baltagi, 2001)

β̂GLS = (1− q)β̂B + qβ̂W , (36)

where q = SSW /(SSW +(1−λY |X)SSB), with SSW =
∑

j

∑
i(Xij−Xj)

2 and
SSB =

∑
j n(Xj −X)2, while λY |X = τ 2

Y |X/(τ 2
Y |X + σ2

Y |X/n).

It follows from (36) that β̂GLS tends to β̂W as n →∞, so in designs with large
clusters the Raw Covariate model gives an approximately unbiased estimate of
βW .
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When βB = βW = β, the Between and Within models have the same coeffi-
cient β, so β̂B and β̂W are two distinct unbiased, though not efficient, estimators
of β. In this case, the efficient estimator is β̂GLS .

A popular solution to the endogeneity problem in the Raw Covariate model is
the fixed effects approach, i.e. replacing the random effects with cluster-specific
intercepts. The fixed effects approach is equivalent to fitting the Within model
(21), which allows to unbiasedly estimate the within slope βW , but it precludes
the estimation of the between slope βB (Wooldridge, 2002). Moreover, the level
2 variance τ 2

Y |X is not a model parameter and it can only be estimated quite inef-
ficiently as the variance of the estimated fixed effects.

7 The structural model approach
In general, the bias stemming from covariate measurement error can be amended
by fitting a structural model that includes a measurement model for the covariate
(Kaplan, 2000). This is true also for the special case of the measurement error of
the sample cluster mean investigated by Lüdtke et al. (2008) (see also Croon and
van Veldhoven (2007)).

The structural model approach consists in the simultaneous estimation of the
measurement model (2) for the covariate X and the regression model (3) for the
response Y . This strategy cannot be easily implemented in standard software, with
the notable exception of Mplus (Muthén and Muthén, 2007), that uses maximum
likelihood to yield efficient estimators. Section 8.5 reports some simulation results
for the structural estimator, in order to make a comparison with the performance
of the reliability-adjusted estimator of Section 5.

The structural model approach gives standard errors that account for measure-
ment error, so the inferential procedures are correct, e.g. it is straightforward to
perform a likelihood ratio test for the residual level 2 variance of Y . More impor-
tantly, this approach can be easily extended to complex models, such as models
with several covariates, random slopes and categorical responses.

Lüdtke et al. (2008) argue that the structural model approach is strictly appro-
priate when the cluster mean is an indicator of a reflective construct, though it is
suitable also when the cluster mean is a formative measure in a design with a low
within-cluster sampling fraction (see Table 1). As discussed in Section 5.2, when
all the units of the clusters are sampled the measurement error vanishes and the
contextual effect is unbiasedly estimated from a model with the sample cluster
mean. In intermediate cases, when the within-cluster sampling fraction is mod-
erate, the structural model approach yields an inflated contextual effect (Lüdtke
et al., 2008), while the use of the sample cluster means yields an attenuated con-
textual effect. However, the correction based on the reliability can be modified as
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proposed in Section 5.2 in order to obtain an approximately unbiased estimator of
the contextual effect.

8 Simulation study
We perform a Monte Carlo study in order to assess the bias on the slopes and on
the residual variances and to evaluate the finite sample properties of the estimators.
The data are generated from the model defined by equations (2) and (4), while
the fitted models are the Raw Covariate model (8) and the Sample Cluster Mean
model (18). The estimator is REML in both cases.

The simulation study consists of several experiments with 1000 independent
replications each. The experiments are variations on the following scenario:

• hierarchical structure: balanced with J = 200 clusters of n = 10 observa-
tions each (total sample size of 2000 observations);

• values of the covariate Xij: drawn from model (2) as the sum of two inde-
pendent normal variates with µX = 1, τ 2

X = 0.2 and σ2
X = 1;

• values of the response Yij: drawn from model (4) with α = 0, βW = 1, δ =
1, normal level 1 and 2 errors with zero means and τ 2

Y |XBXW = σ2
Y |XBXW =

1. In the first part of the simulation study (Tables 3 to 6) the contextual
coefficient δ takes several values in the interval [−1.5, +1.5], while in the
second part it is fixed at δ = 1.

From the hierarchical structure and the model for the covariate it follows that
the reliability of the covariate is λX = 2/3.

8.1 Comparing the Raw Covariate and Sample Cluster Mean
models

Table 3 reports the Monte Carlo means of the REML estimates obtained from the
Raw Covariate model (8) and Sample Cluster Mean model (18).

The estimator of the slope in the Raw Covariate model is unbiased for βW

only when δ = βB − βW is zero, otherwise the bias increases with the absolute
value of δ, with a direction depending on the sign of δ. When δ 6= 0 both level 2
and level 1 variances are inflated, but the level 2 variance is inflated to a greater
extent, so the ICC is overestimated.

As discussed in Section 5, the Sample Cluster Mean model yields an unbiased
estimate of the within slope βW , whatever the value of δ. However δ, and con-
sequently βB, are estimated with bias unless δ = 0. According to formula (26),
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Table 3: MC means for J = 200 clusters of size n = 10 and varying δ (τ 2
X = 0.2,

1000 replications, REML).
δ Raw Covariate model: only Xij Sample Cluster Mean model: Xij and Xj

(βB − βW ) η βW τ 2
Y |X σ2

Y |X α βW δ τ 2
Y |XBXW σ2

Y |XBXW

-1.50 -1.48 0.98 1.45 1.00 -0.50 1.00 -1.01 1.16 1.00
-1.00 -0.99 0.98 1.19 1.00 -0.35 1.00 -0.66 1.06 1.00
-0.50 -0.49 0.99 1.05 1.00 -0.16 1.00 -0.34 1.02 1.00
-0.25 -0.25 1.00 1.01 1.00 -0.09 1.00 -0.17 1.00 1.00
0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00
0.25 0.25 1.01 1.02 1.00 0.08 1.00 0.17 1.01 1.00
0.50 0.50 1.01 1.05 1.00 0.17 1.00 0.34 1.02 1.00
1.00 0.99 1.02 1.20 1.00 0.34 1.00 0.67 1.07 1.00
1.50 1.48 1.02 1.45 1.00 0.49 1.00 1.00 1.16 1.00

True values of model (4): α = 0, βW = 1, τ2
Y |XBXW = σ2

Y |XBXW = 1

the average estimate of δ is attenuated by the reliability λX = 2/3. The level 2
variance is inflated unless δ = 0, and depends on δ as shown by formula (30). On
the contrary, the level 1 variance is always unbiased, so the ICC is overestimated.

In the simulation experiment of Table 3 the reliability of the covariate is λX =
2/3, so the consequences of the measurement error due to the use of Xj are sub-
stantial. In this respect, any configuration (n, τ 2

X , σ2
X) with the same value of

λX is equivalent. However, the behavior of the estimators in the Raw Covariate
model is strongly influenced by the cluster size n. Therefore, we replicate the
simulation experiment for two other designs keeping constant the total sample
size nJ = 2000 and the reliability λX = 2/3. Specifically, we use the follow-
ing designs: (i) n = 2, J = 1000 and τ 2

X = 1 and (ii) n = 20, J = 100 and
τ 2
X = 0.10. The first design may be interpreted as a panel study with two waves

or a cross-section study with two units per cluster, e.g. a study on eyes or twins.
The second design is typical of many cross-section studies, e.g. in educational
settings. The results are reported in Tables 4 and 5, respectively.

Let us first discuss the role of the cluster size n in the Sample Cluster Mean
model. In this model the estimator of βW is unbiased regardless of n, while the
bias on δ depends on n through the reliability λX . For a fixed variance ratio
τ 2
X/σ2

X , if n →∞ then λX → 1 and the bias vanishes; in our simulations the bias
on δ does not depend on n since we change τ 2

X/σ2
X in order to keep λX constant.

The level 1 residual variance σ2
Y |XBXW is unbiasedly estimated, while the level

2 residual variance τ 2
Y |XBXW is overestimated according to formula (30), which

implies that the bias increases with the cluster variance of the covariate τ 2
X . In
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Table 4: MC means for J = 1000 clusters of size n = 2 and varying δ (τ 2
X = 1,

1000 replications, REML).
δ Raw Covariate model: only Xij Sample Cluster Mean model: Xij and Xj

(βB − βW ) η βW τ 2
Y |X σ2

Y |X α βW δ τ 2
Y |XBXW σ2

Y |XBXW

-1.50 -1.12 0.62 2.26 1.14 -0.50 1.00 -1.00 1.75 1.00
-1.00 -0.70 0.70 1.49 1.09 -0.33 1.00 -0.67 1.33 1.00
-0.50 -0.34 0.84 1.12 1.03 -0.17 1.00 -0.33 1.08 1.00
-0.25 -0.17 0.92 1.03 1.01 -0.08 1.00 -0.17 1.02 1.00
0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00
0.25 0.17 1.08 1.03 1.01 0.08 1.00 0.17 1.02 1.00
0.50 0.34 1.16 1.12 1.03 0.16 1.00 0.33 1.09 1.00
1.00 0.70 1.30 1.50 1.09 0.33 1.00 0.67 1.34 1.00
1.50 1.13 1.37 2.28 1.14 0.50 1.00 1.00 1.76 1.00

True values of model (4): α = 0, βW = 1, τ2
Y |XBXW = σ2

Y |XBXW = 1

Table 5: MC means for J = 100 clusters of size n = 20 and varying δ (τ 2
X = 0.1,

1000 replications, REML).
δ Raw Covariate model: only Xij Sample Cluster Mean model: Xij and Xj

(βB − βW ) η βW τ 2
Y |X σ2

Y |X α βW δ τ 2
Y |XBXW σ2

Y |XBXW

-1.50 -1.49 0.99 1.22 1.00 -0.49 1.00 -1.01 1.07 1.00
-1.00 -0.99 1.00 1.10 1.00 -0.32 1.00 -0.67 1.04 1.00
-0.50 -0.50 1.00 1.03 1.00 -0.16 1.00 -0.34 1.01 1.00
-0.25 -0.24 1.00 1.00 1.00 -0.08 1.00 -0.17 1.00 1.00
0.00 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00
0.25 0.25 1.00 1.02 1.00 0.10 1.00 0.15 1.01 1.00
0.50 0.50 1.00 1.03 1.00 0.16 1.00 0.34 1.01 1.00
1.00 1.00 1.00 1.10 1.00 0.34 1.00 0.66 1.03 1.00
1.50 1.50 1.01 1.22 1.00 0.50 1.00 1.00 1.08 1.00

True values of model (4): α = 0, βW = 1, τ2
Y |XBXW = σ2

Y |XBXW = 1
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Tables 3 to 5 the bias on δ is constant, but the bias on τ 2
Y |XBXW changes a lot.

As for the Raw covariate model, formula (36) implies that the GLS estimator,
and thus the REML estimator, tends to the Within estimator as n → ∞. Thus,
when the cluster size increases the bias on βW vanishes as confirmed by the results
of Table 5. The residual variances are inflated according to formulae (11) and (12).
However, if the target level 2 variance is not τ 2

Y |XBXW but τ 2
Y |X defined in (9), then

the bias is downward. The existence of two meaningful level 2 variances such as
τ 2
Y |XBXW and τ 2

Y |X is a source of ambiguity: for example, when Kim and Frees
(2007) state that a consequence of endogeneity is a severe underestimation of the
level 2 variance, they implicitly refer to τ 2

Y |X . In the simulations of Tables 3 to
5, τ 2

Y |XBXW = 1 but τ 2
Y |X varies depending on δ and τ 2

X . As n increases the
level 2 variance from the Raw covariate model tends to τ 2

Y |X . For example, when
δ = 1 and n = 2 (Table 4) the MC mean of the estimated level 2 variance is
1.50, compared to τ 2

Y |XBXW = 1 and τ 2
Y |X = 2; instead, when δ = 1 and n = 20

(Table 5) the MC mean of the estimated level 2 variance is 1.10, compared to
τ 2
Y |XBXW = 1 and τ 2

Y |X = 1.10.

8.2 Sampling variance and MSE in the Sample Cluster Mean
model

The corrected estimator of the contextual effect δ̂c of equation (27) is approxi-
mately unbiased, but its sampling variance is larger than that of the biased estima-
tor δ̂m. Thus it is of interest to assess if the correction is convenient in terms of
MSE. Table 6 reports the Monte Carlo means, standard errors and MSE of δ̂m and
δ̂c from the Sample Cluster Mean model, using the same model parameters and
data structure as in Table 3. In addition, Table 6 reports the Monte Carlo mean
of the standard error of δ̂c calculated by means of formula (29), showing that the
approximation performs well.

Both MSE(δ̂c) and MSE(δ̂m) increase with the absolute value of δ, but
MSE(δ̂c) grows at a much lower rate. MSE(δ̂c) is lower than MSE(δ̂m) for
values of |δ| greater than 0.5, suggesting that the proposed correction is worth-
while in many situations. The minimum value of δ for which the correction is
convenient decreases with the cluster size n. For example, a simulation not re-
ported here shows that with the design of Table 4, where n = 2, the correction is
worthwhile even for |δ| = 0.25.

In the next subsections we focus on the case δ = 1, i.e. a contextual coefficient
for which the proposed correction for measurement error is worthwhile, whichever
the cluster size.
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Table 6: Sample Cluster Mean model: MC mean, s.e. and MSE of δ̂m and δ̂c for
J = 200 clusters of size n = 10 and varying δ (τ 2

X = 0.2, 1000 replications,
REML).

δ δ̂m δ̂c MSE
(βB − βW ) MC mean MC s.e. MC mean MC s.e. s.e.(δ̂c)† δ̂m δ̂c

-1.50 -0.995 0.152 -1.510 0.251 0.239 0.2784 0.0631
-1.00 -0.669 0.145 -1.014 0.229 0.223 0.1306 0.0527
-0.50 -0.337 0.139 -0.510 0.213 0.212 0.0458 0.0455
-0.25 -0.168 0.138 -0.256 0.214 0.212 0.0259 0.0457
0.00 -0.003 0.139 -0.005 0.213 0.210 0.0194 0.0452
0.25 0.172 0.141 0.262 0.216 0.211 0.0258 0.0468
0.50 0.332 0.137 0.501 0.209 0.212 0.0471 0.0437
1.00 0.667 0.143 1.010 0.226 0.224 0.1312 0.0512
1.50 1.003 0.143 1.520 0.239 0.239 0.2680 0.0576

True values of model (4): α = 0, βW = 1, τ2
Y |XBXW = σ2

Y |XBXW = 1
† MC mean of the s.e. calculated by (29).

8.3 Unbalanced case
To evaluate how the measurement error correction based on the reliability of X
works in unbalanced cases, we perform some simulations with varying cluster
sizes nj . In particular we consider a balanced design with J = 200 and n =
10 and three unbalanced designs with the same average cluster size, i.e. n =
10. For each design we fit the Sample Cluster Mean model. Table 7 reports the
measurement error bias, the pooled reliabilities λX(n) and λX defined in Section
5 and the corresponding corrections of the contextual coefficient δ.

The attenuation on δ due to measurement error increases with the degree of
unbalancedness, while the reliability at the average cluster size λX(n) is obviously
constant. On the contrary, the average reliability λX decreases with the degree of
unbalancedness and it is close to the true attenuation factor, except in the last case.
To summarize, the average reliability λX tends to under-correct the estimate of δ,
but the correction is satisfactory in most cases.

8.4 Sampling from clusters of finite size
In order to evaluate the measurement error correction when sampling from clus-
ters of finite size, we consider the case of sampling n = 10 values of the covariate
X from J = 200 clusters of finite size N , for N = {10, 20, 40, 100, 200, 1000},
with level 2 variance τ 2

X = 0.2 and level 1 variance σ2
X = 1. At each replication
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Table 7: Sample Cluster Mean model in the unbalanced case: MC means of δ̂m,
λ̂X and δ̂c for δ = 1 and different degrees of unbalancedness, J = 200 and n = 10
(τ 2

X = 0.2, 1000 replications, REML).

cluster size nj λ̂X with n average λ̂X

j=1,· · · ,100 j=101,· · · ,200 δ̂m λ̂X(n̄) δ̂c
̂̄λX δ̂c

10 10 0.66 0.66 1.00 0.66 1.00
7 13 0.65 0.66 0.98 0.65 1.00
4 16 0.57 0.66 0.86 0.60 0.95
1 19 0.34 0.66 0.51 0.48 0.71

True values of model (4): α = 0, βW = 1, δ = 1
τ2
Y |XBXW = σ2

Y |XBXW = 1

Table 8: Sample Cluster Mean model when sampling from clusters of finite size:
MC mean and MSE of δ̂m and δ̂f

c for δ = 1 when sampling n = 10 units from
J = 200 clusters of varying size N (τ 2

X = 0.2, 1000 replications, REML).
MC Mean MSE

N n/N λf
X δ̂m δ̂f

c δ̂m δ̂f
c

10 1.00 1.000 1.003 1.003 0.0265 0.0265
20 0.50 0.792 0.804 1.031 0.0595 0.0376
40 0.25 0.722 0.725 1.016 0.0965 0.0441

100 0.10 0.688 0.689 1.009 0.1153 0.0434
200 0.05 0.677 0.678 1.010 0.1231 0.0475

1000 0.01 0.669 0.669 1.003 0.1297 0.0492
True values of model (4): α = 0, βW = 1, δ = 1

τ2
Y |XBXW = σ2

Y |XBXW = 1

the value of the covariate X is sampled without replacement from the finite pop-
ulation, while the response Y is generated according to model (4), with βW = 1,
δ = 1 and τ 2

Y |XBXW = σ2
Y |XBXW = 1.

Table 8 reports the results for the uncorrected estimator of the contextual co-
efficient δ̂m and the corrected estimator δ̂f

c = δ̂m/λ̂f
X , where λ̂f

X is the estimate of
the reliability (33) for simple random sampling from clusters of finite size, using
the ANOVA estimates (34) and (35) defined in Section 5.2.

The first row of Table 8 reports the results when the within-cluster sampling
fraction is 1, i.e. the values X are not sampled and thus the measurement er-
ror is not an issue. On the contrary, the last row refers to a tiny within-cluster
sampling fraction (n/N = 0.01), so λf

X
∼= λX = 2/3 and thus the attenua-
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Table 9: Structural model approach: MC mean, s.e. and MSE of δ̂s for δ = 1 and
λX = 2/3 (1000 replications, FIML).

δ̂s

n J τ 2
X ICC MC Mean MC s.e. s.e.(δ̂s)† MSE

2 1000 1.0 0.5000 0.9992 0.0778 0.0709 0.0060
10 200 0.2 0.1667 1.0006 0.2204 0.2134 0.0485
20 100 0.1 0.0909 1.0067 0.4453 0.4149 0.1981
True values of model (4): α = 0, βW = 1, δ = 1, τ2

Y |XBXW = σ2
Y |XBXW = 1

† MC mean of the s.e. calculated by Mplus.

tion due to measurement error is very close to the case of sampling from clus-
ters of infinite size, see Table 6 at the row δ = 1. In the intermediate cases
(n/N = {0.5, 0.25, 0.10, 0.05}), the simulation results show that the modified
reliability λf

X is a good approximation of the attenuation of the contextual coef-
ficient due to measurement error, thus the corrected estimator δ̂f

c has a good per-
formance. Using λX instead of λf

X would yield an overcorrection that becomes
remarkable for within-cluster sampling fraction of 0.25 or more. In terms of MSE
the corrected estimator δ̂f

c is better than the uncorrected estimator δ̂m, even if the
gap diminishes as the within-cluster sampling fraction increases.

8.5 The structural model approach
To evaluate the structural model approach outlined in Section 7, we perform sim-
ulations using the same data generating model and sample designs presented in
Section 8.1, focusing on the case δ = 1. We fit the structural equation model by
means of the ML estimator implemented in Mplus (Muthén and Muthén, 2007).
The simulation results are reported in Table 9, where the estimator of the contex-
tual coefficient δ is denoted by δ̂s.

As expected, the structural estimator δ̂s is unbiased and more efficient than the
reliability-adjusted estimator δ̂c of Table 6, e.g. for the sample design J = 200
and n = 10 the reduction of the MSE is about 5%. However, the main advantage
of the structural estimator over the reliability-adjusted estimator does not lie in
the efficiency gain, which is modest, but in the capability to be easily extended to
complex models with several covariates and random slopes.

A detailed simulation study on the properties of the structural estimator is
carried out by Lüdtke et al. (2008).
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9 Implications for effectiveness evaluation
A relevant use of the data generating model (4) is for the assessment of the relative
effectiveness of a set of institutions, such as schools or hospitals. To illustrate
the point, we focus on the school effects framework of Raudenbush and Willms
(1995), where the level 2 units are schools and the level 1 units are pupils. In the
basic value-added specification, Yij is a measure of pupil’s final attainment and
Xij is a measure of prior attainment. Thus XB

j is the school component of prior
attainment and its slope δ is the contextual coefficient, whose estimate is usually
positive in the educational setting.

The total effect of school j, called Type A effect, is Aj = δXB
j + uj , which

is the sum of the effects of context δXB
j and school practice uj . The effect of

the school practice is called Type B effect: Bj = uj . Therefore, τ 2
Y |XBXW is the

variance of Type B effects, while τ 2
Y |X = δ2τ 2

X + τ 2
Y |XBXW , defined in (9), is

the variance of Type A effects. Students and their families are interested in Type A
effects, while evaluation agencies and school staffs are interested in Type B effects.

In the applications the unobservable school component of prior attainment XB
j

is replaced with the sample cluster mean Xj , so the Sample Cluster Mean model
(18) is adopted. The standard estimators of Type A and Type B effects are:

Âj = Y j − α̂− β̂W Xj (37)

B̂j = Y j − α̂− β̂BXj (38)

The measurement error involved in using Xj instead of XB
j is usually ignored

in the school evaluation framework, since the reliability λX is often over 0.90
(Raudenbush and Willms, 1995). However, in order to deal with cases where the
reliability λX is far from one, it is essential to examine the consequences of the
measurement error on the assessment of Type A and Type B effectiveness.

First note that the measurement error concerns βB but not βW , so the estimator
(38) of the Type B effects is biased, while the Type A effects can be well estimated.
Indeed the constant α is estimated with bias, as shown in (25), but this is irrelevant
for comparison purposes.

As for the variance of the effects, the estimable level 2 variance from the
Sample Cluster Mean model is τ 2

Y |XBXW ,m defined in (30), which is higher than
the variance of Type B effects,

τ 2
Y |XBXW ,m − τ 2

Y |XBXW = (1− λX)τ 2
Xδ2 =

(
1

λ2
X

− 1

λX

)
τ 2
Xδ2

m (39)

and lower than the variance of Type A effects,

τ 2
Y |X − τ 2

Y |XBXW ,m = λXτ 2
Xδ2 =

1

λX

τ 2
Xδ2

m . (40)
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Therefore, the variances of Type B and Type A effects can be estimated by correct-
ing the level 2 variance from the Sample Cluster Mean model using (39) and (40),
respectively. Note that for increasing cluster size n the reliability λX tends to 1,
so the difference (39) vanishes, while the difference (40) tends to τ 2

Xδ2.
Raudenbush and Willms (1995) and Rettore and Martini (2001) tackle the

problem of estimating the variance of Type A effects from the Raw Covariate
model in presence of level 2 endogeneity. To this end, they both suggest to fit the
Sample Cluster Mean model and correct the estimated level 2 variance by adding
the term δ2

mV ar(Xj), which is taken as an estimate of the term δ2τ 2
X in (9). In both

papers, the authors assume that the measurement error is negligible, so no attempt
to correct δm is made. Nevertheless, since V ar(Xj) = τ 2

X/λX , the proposed
correction term turns out to coincide with the correction term (40), derived under
an explicit treatment of measurement error. However, ignoring the measurement
error entails assuming that the level 2 variance from the Sample Cluster Mean
model is equal to the variance of Type B effects, which is not the case, as shown
in (39).

10 Concluding remarks
In many applications of multilevel analysis the between and within slopes are
different, namely there is a contextual effect. In such cases, the omission of the
cluster mean from the model equation generates level 2 endogeneity. However the
inclusion of the sample cluster mean yields a model that is still affected by level
2 endogeneity. Such endogeneity is due to the measurement error caused by the
substitution of the unobservable population cluster mean of the covariate with the
observable sample cluster mean. Focusing on the random intercept model with a
single covariate, in the paper we studied the effects of the measurement error on
the contextual coefficient and also on the variance components, an aspect usually
neglected. The attenuation factor of the contextual coefficient is the reliability
of the covariate, while the level 2 variance is inflated by a quantity that depends
on several factors. Our analysis focused on balanced designs, but we showed
that in unbalanced designs the average reliability is a good approximation of the
attenuation factor. We also addressed the issue of sampling from clusters of finite
size, showing the relationship among the attenuation factor and the within-cluster
sampling fraction.

We suggested a simple procedure that yields unbiased estimates of the pa-
rameters of interest. In particular, the correction of the contextual coefficient
through the reliability is straightforward and is carried out after fitting the mul-
tilevel model, so the task can be easily performed using standard software for
multilevel analysis. We derived an approximate formula for the standard error
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of the corrected contextual coefficient and showed that the correction is worth-
while in terms of MSE for moderate or large values of the contextual coefficient.
The correction can be applied even to the estimates obtained by other researchers.
Moreover, with good prior information on the ICC of the covariate, the amount of
attenuation can be evaluated when planning the sampling design.

An alternative approach for fitting random effects models with endogeneity is
based on Instrumental Variable (IV) estimators, proposed by Hausman and Taylor
(1981) and extended by Kim and Frees (2007). The key idea is that centering a
covariate with respect to the sample cluster mean yields an instrument for amend-
ing the effects of level 2 endogeneity. Contrary to standard IV applications, the
centered covariate is an internal instrument, namely it is derived without external
data. This approach allows to estimate only the within slope, so the measurement
error on the contextual coefficient is not an issue. Obviously, the IV method is not
useful when the contextual effects of level 1 covariates are of interest. Instead of
enhancing the estimators via instrumental variables, we prefer to solve the level
2 endogeneity by expanding the model with the cluster means: beyond the possi-
bility to estimate the contextual effects, in this way the mechanism underlying the
endogeneity is made explicit and the parameters have a clear interpretation that
facilitates the connection with the theory.

The approach based on the reliability described in this paper is useful to un-
derstand the consequences of the measurement error induced by sample cluster
means and yields a straightforward and effective correction when the model is
simple. In a linear model with several covariates the correction via the reliabil-
ity is still feasible: the formulas become complex, but they can be derived, e.g.
following the lines of Croon and van Veldhoven (2007). In non linear models the
reliability approach leads to intractable formulas and it can be useful only as a raw
approximation.

In order to deal with measurement error in complex models, more general
approaches are preferable. Particularly, the structural equation approach (Lüdtke
et al., 2008) can in principle be easily extended to a wide range of models, though
its performance needs further investigation.
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