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Abstract

In this paper we describe an approach to assess the potentiality of
a probabilistic system for indirect identification through DNA evidence.
The aim is, before an identification is attempted, to provide, the expected
performances of the system and help all the parts involved to judge if
the system fits their requirements. The analysis provided considers the
probabilities associated to the weight of evidence related to the case, also
suggesting possible strategies to improve the system. A detailed case study
is illustrated as well as some possible information theoretic measures able
to summarize the information capabilities of the DNA markers employed
in a specific indirect identification.

Keywords: Indirect Identification, DNA STR markers, Weight of Evidence
distribution, Information decay, Information theoretic measures.

1 Introduction

Nowadays, the identification of individuals obtained trough DNA evidence has
definitely to be considered out of its infancy. Actually, reliable kits of primers

I allow to determine inexpensively the genotypes of biological traces typed on
some STR loci. Moreover, in many circumstances, the probabilities required to
evaluate the hypotheses relevant for a case can be obtained by means of software
available for free (Familias , http://www.math.chalmers.se/ mostad/familias/),
or at a reasonable cost (DNA-View, http://dna-view.com/).

The identification issue is addressed by comparing the evidence probability
expressed conditionally to a pair of competitive identification hypotheses mean-
ingful for the case. In forensic science their ratio is often called the Weight
of evidence (WE), Balding (2006) whereas, in Statistics, according to different
inferential approaches, the same quantity is named the Likelihood ratio or the
Bayes factor.

n this work we have used results obtained through the PrepFiler (TM) Forensic DNA
extraction Kit produced by the Applied Biosystem



This paper considers the potential identification capabilities of probabilistic
models built to cope with specific identification cases. The focus is on indirect
identifications, a wide class of problems including issues such as disputed pater-
nities, searching missing persons, the family reunification of citizens of foreign
birth and permanent resident aliens and many others.

It is commonly acknowledged that an identification model reduces is abil-
ity to provide strong support to one of the hypotheses according to the ”dis-
tance” between the persons who require the identification and the position in
the pedigree of the searched individual. Common sense also suggests that more
conclusive results are expected if the family donors’ characteristics are rare.

Despite the expected differences in the system’s performances according to
the specific case, the WE is almost invariably evaluated making use of those
loci included in the kit of primers adopted by each laboratory, only considering
the family members more easily available to provide their DNA profile, but not
taking into account the expected performances of the resulting identification
tool.

The aim of this paper is to formalize how to measure the ability of a system to
investigate on the specific identification, to give suggestions on how to improve
its performances, and to illustrate the matter trough an articulated case study.

2 Probability models for DNA evidence

To evaluate the probability of observed DNA evidence, consider the individuals
implied in the analysis with respect to some nuclear STR DNA loci, among
those commonly used for forensic identification.

In a locus we observe a genotype, i.e. two alleles inherited from each of the
parents. In a population and in a specific locus the possible observable alleles
are generally known, A = {ay, ..., a; } and so is the probability to observe them,
Pr(A = a; = 0;,Vi. The random variable X represents the uncertainty about
genotypes and a determination of X is simply indicated by x. The X sample
space X is constituted by k(k + 1) - 0.5 different genotypes. The genotype’s
probability distribution is provided by two kinds of models.

Segregation models: for a locus, they evaluate the probability of an off-
spring’s genotypes conditionally to their parents. The first Mendelian law is
the basic model to specify the genotype’ s probability of a child, ¢, given the
genotypes of their parents, m and f. If z. = (¢,2), &m = (¢,7) and zf = (r, s),
we have:

1
PT(.Z‘C | T, xf) = Z(I{z,r}(xC) + I{z’,s} (xc) + I{j_]r}(l'c) + I{j,s} (acc)) (1)

If mutations or laboratory errors are involved, other more sophisticated mod-
els are required to describe the segregation process as described in Dawid et al.
(2007).

Population models: they determine the probability of an individual’s geno-
type conditionally to their belonging to a specified population in which the



alleles’ probabilities, @, are assumed known. The most popular of such mod-
els derives by the conditions introduced by Hardy-Weinberg for a population
in equilibrium and the genotypic probability is calculated from the probabili-
ties of the alleles in the population. For a generic individual g, the genotype
probability is:

PT(.Z‘g = (Z’j) | 9) = 91 : Gj : (1 + I{i,j:i;ﬁj}{iaj})a (2)

According to the specific structure of the population related to a case, to
take into account the characteristics of inbreeding and co-ancestry, it is possible
to make use of more realistic models, as described in Balding (2006).

Hereafter we refer to generic segregation and population models since our
proposal is not influenced by such choices.

3 Indirect identification

3.1 Generalities

In indirect identifications we consider the possibility that someone, the candi-
date, (C), is the unobserved individual (I) posed in the pedigree of a certain
family in a well defined position. In many circumstances, as in case of disputed
paternity, identification does not mean to name the candidate, whose identity
is known, but it consists in confirming that C' and I are the same person.

More formally, consider two alternative conjectures, H = {Hy, H;}, where,
conventionally, Hy is the no-identification hypothesis, which assumes C' to be a
generic member of a population, and H; recognizes C' to be the family member
1.

The relative support to H; provided by some generic observed characteris-
tics, F = e, is measured by the weight of evidence, defined by:

_ Pr(E =elH)
- Pr(E =e|Hp)’ (3)

Computing the WE does not require to probabilize the hypotheses, which
simply appear as conditioning circumstances but, since a WE € [0,00], it is
difficult to appreciate how much considerable the WE must be to provide strong
support to Hy or Hy.

If otherwise prior probabilities for Hy and H; are available, we can directly
derive their posteriors. For Hi:

WE

WEPT(Hl)
Pr(H|E = ¢) = —— "8 — (4)
1+ WE B ()
or, equivalently, in odds form:
Pr(Hy|E = Pr(H
r(i|E=e) _ o, pPriH) (5)
Pr(Hp|E =e) Pr(Hy)

w



3.2 WE computations based on STR DNA evidence

To specify the WE computation in indirect identifications based on DNA STR
loci, let the set F = {F+,F~, I} to contain the family members involved in the
analysis. F7T is the set of relatives providing their DNA profiles; 7~ considers
the unobserved relatives required to link the members in F7 to I.

Once the candidate C' and the donors in FT have been typed, the required
WE can be easily computed since the following assertions of conditional inde-
pendence hold:

a) H only affects the probability to observe z¢, i.e. Xz+ L H, so that:

Pr(ar+ |Hy) = Pr(as- | Ho); (6)

b) If H; holds, C = I, so that:

1sexc =x1

Priwcles,xr, Hy) = { 0 otherwise

c) X¢ L X#|Hy, so that:

Pr(zc|zz+, Ho) = Pr(zc|Ho). (7)

Considering a), b) and c) we have:

Pr(zc,zr+|H1)  Pr(zclers, Hy) Pr(zz+|H)

WE = =
(zc) Pr(zc,zz+|Ho) Pr(zcles+, Ho) Pr(zz+|Ho)

Z Pr(zc|ep+, xp-, o1, Hi) Pr(ar|ese, v p-, Hi) Pr(zz-|oz+ Hy)

Tp—,T1€X

PI‘(IEC|, ‘T]:+7H0))
Z Pr(zc|zr+,xr, H1) Pr(zr|ar+, Hy)

_ rreX

- Pr(zc|Ho)
~ Pr(zr =aclrer, Hy)

N Pr(zc|Ho)

As a result, in indirect identification based on STR loci, the W FE can be
evaluated by assessing two probabilities for each considered locus. If H; holds,
we only need to evaluate the probability to observe the C’s genotypes condi-
tionally to the observations in F+. To derive Pr(z; = z¢|xz+, Hy) is possible
algebraically (Evett and Weir (1998), Balding (2006)) or numerically, by means
of some specialized software, as illustrated in (Egeland and Mostad (2002), and
(Brenner (1997)). Conditionally to Hy, the probability to observe the C’s geno-
types is evaluated according to the population model considered adequate to
the specific identification.



4 The evaluation of the identification system

4.1 Theory

Now we concentrate on the evaluation of a indirect identification system char-
acterized by a familial structure and by the genetic evidence observed on the
family’s members in F* who want to identify someone as their relative I. Note
that, now, we do not consider a specific candidate, i.e. this activity is realized
before the evidence x¢ is observed.

The evaluation of the system is achieved by considering WFE as a random
variable whose uncertainty is induced by the unobserved random variable X¢.
Since the X distribution varies according to Hy and H;, also the uncertainty
on W E varies conditionally to the hypotheses.

More specifically we need to define:

a) WE(X¢), the support for WE. For a generic locus with & alleles, the set of
possible WEs is determined evaluating (8) for each of the possible k(k +
1)/2 genotypes for each of the n considered loci posed in the set £ =
{li - i € {1,...,n}}. The cardinality of WE(Xc,,, ... Xcy,) is equal to
[T, ki(k; + 1)/2, corresponding to the number of the possible genetic
profiles observable on C for the loci in £, so that:

WE(Xcuy,---Xeu,) = @uecWE(zeu,) Vrcy, € X,V € Ly (9)

b) two probability distributions for the W E random variable, specified accord-
ing to the conditioning hypotheses. Since loci commonly used in forensic
identification are located at large genetic distance they can be considered
independent and their joint probability obtained by factorization.

If Hp holds, Yxc,, € Xcy, ¢

Pr(WE(zcy,, ..., vcu,|Ho) = [ [ Przc.]Ho) (10)

lL,eL

where each term which can be evaluated by means of the assumed popu-
lation model.

Since according to Hy, C =1, Vzco,, € Xcoy,:

Pr(WE(zcu,,---,xcou, | H1) = H Pr(zri, = xcy,
lL,eL

zf+,li7H1) (11)

where each term is obtainable analytically or computationally.

For the case-study analysed in section 5, we developed an allele Bayesian
network (Lauritzen and Sheehan (2003)) making use of the Matlab BN
toolbox (Murphy (2001)). Note that, since the X¢ probability distribution
is required, forensic specialized software devoted to evaluate the WE for



a specific ¢ should be repetitively used a very large number of times,
becoming almost useless.

The possibility to get a large variety of different WEs, able to discrimi-
nate between the hypotheses, depends on how much (10) and (11) diverge.
Some information theoretic measures of information are considered in Ap-
pendix B.

4.2 Thresholds for the system evaluation

Considering a WE defined as in (3), the unity is the natural threshold producing
a meaningful partition of the W E support. As a matter of fact:

PT(WE(XC,lla'-')Xc,ln,|H1)) <1 (12)

is the probability to get support against the identification hypothesis if it is
actually true. At the same time, if a prior probability on H; is available, (12)
provides the probability to get a posterior probability of identification smaller
than the prior, even if the identification hypothesis is true.
Also:
PT(WE(XC,ZI,. .. ,Xc7ln’|H0)) > 1, (13)

is the probability to get support against the no-identification hypothesis
when the latter is true or to get a posterior probability of no-identification
smaller than the prior, even if Hy is true.

As it is apparent, this form of evaluation can be used either the pure like-
lihood or the subjective Bayesian paradigms are employed. Whether (12) and
(13) are small enough to make the system performances acceptable depends on
an utility function, to be specified according to the case and the decision maker.

An implicit form of decision rule is embedded in the classification of likeli-
hood ratios proposed by Royal (2000) and based on an ancillary experiment.

The author considers two urns: Hj contains only white balls; Hy has the
same number of white and red balls. The experiment consists in drawing balls
with replacement from one unspecified urn: conditionally to the results we are
required to evaluate the support provided to the hypotheses that Hy or H; is the
employed urn. Royal imagines that, after n draws, only white balls have been
drawn so that the W E favouring H; is equal to 2. The aim of the experiment
is to give the opportunity to determine a value for WE assumed to give support
to H;. For instance, after 8 consecutive white balls you might believe H; has
received strong support. This would imply that, in the indirect identification
of interest, all the genetic profiles implying a WE > 256 or, generally speaking
W E greater than a threshold, 75, must be considered strong evidence for Hi.
Obviously an analogous experiment could be arranged to determine a value of
WE, 11, such that all the possible observations implying a smaller W E, must
be considered strong evidence favouring Hy. Although Royal is convinced of
the objectivity of the proposed experiment, the role of the individual called to
decide on what is the number of drawn balls required to classify the experimental
results into ”strong evidence” is of paramount importance.



More explicitly, according to the subjective Bayesian approach, we could
introduce the thresholds 71 and 7 as the W E values able to convert the elicited
prior probabilities on Hy and H; into reputed high identification posteriors
probabilities. For instance, if we specify the no-informative prior Pr(Hy) =
P(H;) = 0.5, and we believe that posteriors must be, for both hypotheses, close
to the certainty, e.g. 0.9973, to be considered conclusive, then, by (5), for each
possible value of WE less than or equal to 71 = %9927 — (), 002707, or greater

0.9973
than or equal to 7 = 8:88;? = 369, 37, the hypotheses Hy and H; could be
considered highly supported.
According to which distribution of WE is employed and using terms in-
troduced by Royal, the W E support is partitioned into the subsets described
in Table 1 and the evaluation of the system can be achieved computing the

corresponding probabilities.

WE <7 1 <WE <19 WE > 19
Hy strong evidence weak evidence | misleading evidence
H, | misleading evidence | weak evidence strong evidence

Table 1: WE classification according to 7 and 72 and Hy and H;

Nevertheless the probability to observe misleading evidence under Hy re-
minds the Neyman-Pearson (N-P) type I error, differences should be clear.
In N-P the WE (or LR) is simply the way of finding the set of profiles A =
{N,ecwou « PriWE(zc,, ... xcu,|[Ho > 72) with probability a, such that
Pr(WE(A|H;)) is maximized. In N-P the subjective choice of o dominates
the analysis and the WE threshold is determined consequently, regardless of its
meaning.

Here the result of the analysis is the probability to get a bigger or smaller
WEs determined at a reputed meaningful value, conditionally to Hy or Hj.

5 Case study

In this section we consider a real case which seems to take advantage of the
proposed method.

Mr. A. R. would would like to assess his father identity. For a number of
reasons he believes to be the son of Mr. G.M., who died some years ago.

The indirect identification is considered from three perspectives, with special
regard to the systems’ identification potentialities.

Genetic data of the individuals related to the case are in Tab. 2; genetic
population data are in Brisighelli et al. (2009).

Results are gathered in Tab. 3 and 4 where we display the probabilities to
get the WE values according to the dichotomous and trichotomous partition of
the WE support, along the lines of Section 4. The values of 7 and 75 are derived
having in mind a prior for the hypotheses such that: Pr(Hy) = P(H;) = 0.5 and
posteriors probabilities equal to 0.9933. For this choice, the thresholds become:
71 = 0.0067 and 7 = 148.41.



Loci Miss M.P.M. | Mrs A.L.P. | Mr A.R.
D8&S1179 14-14 13-14 13-13
D21S11 31.2-32.2 30-32.2 28-28
D7S820 10-10 10-10 8-11
CSF1PO 12-12 12-12 11-12
D3S1358 18-18 15-18 15-18

THO1 6-9 9-9.3 6-7
D13S317 12-12 10-12 8-8
D16S539 10-10 9-10 11-11

VWA 17-17 17-19 16-16
TPOX 8-9 8-9 8-11
D18S51 15-17 16-17 15-15
D5S818 10-12 9-12 10-13

FGA 20-22 22-23 23-25

PENTAD 13-13 12-13 9-10
PENTAE 12-14 12-17 17-17

Table 2: Genetic Data on 15 loci for the individuals considered in the case

Probabilities
Ft I H | WE <0.0067 | 0.0067 < WE < 148.41 | WE > 148.41
Miss H, 0.1647 0.8345 0.0008
M.P.M. Half H, 0.0005 0.7936 0.2019
Brother | Hy 0.3079 0.6911 0.0010
Miss M.P.M. H, 0.0008 0.5961 0.4031
& Mrs. A.L.P. | Father | Hyp 0.9998 0.0002 0.0000
H, ~0 ~0 ~1
Mr. Father | H, 0.9997 0.0001 0.0002
AR. H, 0.000005 0.000001 0.999994

Table 3: Probability of Strong, Weak and Misleading evidence in the considered
identification perspectives



Probabilities

Ft 1 H| WEL1|  WE>1
Miss Hy | 0.8890 0.1110
M.P.M. Half H; 0.1151 0.8849
Brother | Hy | 0.9262 0.0738

Miss M.P.M. H; 0.0804 0.9196

& Mrs. A.L.P. | Father | Hy | 0.9998 0.0002
o, 0.0067 0.9933
Mr. Father | Ho | 0.9980 0.0020
AR. H, | 0.000006 | 0.999994

Table 4: Probability for the hypotheses Hy and H; to receive or not to receive
support in the considered identification perspectives

5.1 The first attempt

The first attempt to assess the Mr. A.R.’s paternity started from the fact that
his alleged father, Mr. G.M., had a daughter, Miss M.P.M. with his wife, Mrs.
A.L.P.. To avoid the exhumation of Mr. G.M’ corpse, Miss M.P.M requested
that her own genetic profile be used. Since her mother, Mrs. A.L.P. did not
provide her DNA, we evaluated the WE according to the hypotheses specified
below:

e Hy: Mr. AR. is Miss M.P.M.’s half brother;
e Hy Mr. A.R and Miss M.P.M. do not share recent relatives.

Stated in this way the identification procedure clearly deals with one person,
Miss M.P.M., who wants to identify her half brother. This circumstance only
indirectly implies they share the father. In other words, if the case were simplis-
tic labelled as a ”paternity test”, the very indirect nature of the identification
would be obscured.

According to the traditional approach, the case was addressed through eval-
uating the WE, making use of the Miss M.P.M.’s and Mr. A.R.’s genetic traces,
obtaining a WE = 0.017, a figure which definitely does not support H;. Then
some doubts arose about the ability of the system to identify her half brother,
using exclusively Miss M.P.M.’s genetic data.

After an evaluation of the identification system it became clear that the
suspicion was well founded. Looking at Tab. 3, whatever hypothesis is assumed
true, the system only rarely can achieve a definite result, since the probability
of weak evidence is about 0.80. Moreover, if we consider the partition of the
WE support into the sets [0, 1), (1, 0], an even more embarrassing result arises.
Now the probability to observe evidence not supporting Hy and H; when they
are actually true turns to be around 0.11, again an unacceptably high value for
this delicate matter.



5.2 The second attempt

Later, the analysis was replicated since Mrs. A.L.P., Miss M.P.M.’s mother,
was convinced to provide her genetic profile. The results, provided in Tab. 3 -
lines 3-4, make clear the benefits of such additional evidence: the probability to
observe weak evidence now reduces to 0.70 if Hy holds, or to less than 0.60 if
the identification hypothesis is assumed. Nevertheless, lines 3-4 in Tab. 4 show
that the probability to observe evidence against the hypotheses when they are
respectively true, is around 0.08, definitely too high a value.

After these attempts there seem to be only two ways to cope with the case.

The first one is to include, among the evidence, the genetic profiles of some
further family’s members, as, for instance, Mr. A.R.’s mother, or to extend the
analysis to more loci.

If the previous remedies cannot be overtaken or if some doubts arise about
the assumed familial relationships, the only chance is to re-state the identifica-
tion hypotheses.

5.3 The third attempt

Since the evaluation of the identification system has given poor results and
since Mr. A.R. questioned about the assumption that Miss M.P.M.’s father
was Mr.G.M., a further possibility was to evaluate two separate identification
systems devoted to:

1. the identification of Miss M.P.M.’s father, starting from Miss M.P.M and
her mother’s genetic evidence;

2. the identification of Mr. A.R.’s father, starting from Mr. A.R.’s genetic
profile.

The performances of the two identification systems are summarized in the
last four lines of Tab. 3 and 4 . It clearly shows that, now, Mr. A.R. has the
opportunity to carry on the identification of his father quite safely, and the same
happens for Miss M.P.M.. The only drawback is that, unfortunately, the Mr.
G.M.’s corpse must be exhumed.

The results obtained can be considered an example of satisfactory perfor-
mances. These empathize how the identification systems’ performances depend
on the distance between the family’s DNA donors and the individual providing
the identification of possible candidates. In Appendix A we formalize such idea
in a simplified setting.

6 Discussion
In this paper we described a methodology to deal with the assessment of the

identification abilities of a probabilistic identification system, devoted to indirect
identification.

10



The goal of the analysis is to provide, before the identification process is un-
dertaken, probabilistic information on the possible misleading results possibly
deriving from the analysis. We also provide the probability for the system to
produce strong or weak support to the hypotheses of interest. In a design-of-
experiment perspective we consider how to improve the model performances.
In the considered framework, the traditional requirement of additional observa-
tions for certain values of the design variables becomes the request of additional
genetic profiles from family’s members and/or increasing the number of typed
loci.

The main contribution of the paper is to recognize a large variety of the indi-
rect identification system behaviours according to specific cases, which implies
the use of different amounts of information to maintain a satisfactory standard
of performances. This is in our opinion a very important issue since, up to now,
the capabilities of proposed identification systems have not been revealed to the
interested parts, including those called to express the final judgement on the
identification trial.

For sake of simplicity we did not consider segregation models implying muta-
tion or population models including co-ancestry but the effect of such reasonable
refinements are under study.

A Information decay on the direct lineage

Now we formally illustrate how much the information provided by a DNA donor
to identify a relative on their direct lineage decays according to the distance
between the DNA donor and the considered unobserved relative.

Let X = (a,,as) the ancestor genotype and assume the alleles’ probabilities
0;,i = 1,...,k to be known in the population. For sake of simplicity let the
HW conditions and the first Mendelian law hold.

On the ancestor lineage consider the probability distribution of the trans-
mitted allele. At the first generation, n = 1, the transmitted allele can assume
only two values, r and s, with probability 0.5. For n > 1, the ancestor alleles
have its probability to be IBD equal to 0.5™ plus the probability to come from
the no-ancestor lineage.

Simple probability computations allow to express the allele distribution trans-
mitted on the ancestor lineage according to the number of generations, n:

Pr(A" = a;|X° = (ar,a5) = (%)njL(l*(%)nil)@i i=75
= (1*(%)"_1)91- i £ T, 8.

Since the allele coming from the no-ancestor lineage still has probability ruled
by the population parameters, the genotype probability along the generations
results to be:

11



PrX" = (0,0 X° = (a,0,)) = (5)"(0r+02)+ (1= (5)"7)20,0, i=r,j=s
= GO A= G0 =i s

= (1- (%)"*1)29@» P ET,jFE S

so that the usual WE, can easily be evaluated:

WE(X" = (ai,a;)|X° = (ar,a5)) = (%)n+1(9T9;595)+(1—(%)n_1) i=rj=s
= -GN =i

= 1 ini#s,

1
As a result, the WE approaches the unity from above at the (=)™ rate if the

candidate shares one or two alleles with the donor, from below if the ancestor
and the candidate have no common alleles.

B Some useful information-theoretic measures

Lauritzen and Mazumder (2008) have recently proposed the mutual information
between X; and X+ as a measure of the expected reduction in uncertainty
regarding X achievable exploiting the dependence between X and X z+.

The mutual information proposed by the authors, expressed in our notation.
is:

I(XIaX]:*) = Z Z lOg(PT($[|.T_7.-+,Hl)PT($[|$f+,H1)

rrEXT Tt GX}-+

- Z log(Pr(x;|Hy)Pr(xr|Hy),
TIEXT

= H(X;|Hy)— H(X |z r+, Hy)

where H(X) is the entropy of the random variable X.

As it appears, the proposed measure is not related to a specific case, but it
concerns the evaluation of a marker informativeness for a specific identification
issue and for some specified segregation and population models.

Since this paper focuses on a specific indirect identification case, i.e. having
observed the family’s DNA donors and studying the uncertainty on WE on

12



which randomness is induced by the unobserved candidate’s genetic profile, the
most suitable information measure seems to be Kullback-Leibler measure of
divergence.

In fact, Kullback and Leibler (1951) (K-L) defined this measure as the ex-
pected value of the log of a likelihood ratio, explicitly considered as the updat-
ing factor of the Bayes formula (4) expressed in log form. Since it is not known
which one of the hypotheses is true, Kullback and Leibler consider two different
measures.

P H
If Hy is true, the log(WE) = log( riwolers, )

- hich i I, b
Pr(mc|xf+,H0))’ which is equal, by (7),
Pr(zc|xr+, Hy)

Pr(zc|Ho)
K-L measure of divergence is:

to log( ) is averaged with respect to Pr(xzc|xz+, H;) and the

Pr(zc|xr+, Hy)

KHI(XC) = Z 1Og( )PT(:C0|:C_7:+,H1)

roe e PT(.TclHo)
= Z lOg(PT(.’L'0|£C_7:+,Hl))PT(.’L'C|.’L'_7:+,H1) -
ro€Xc
> log(Pr(zc|Ho)Pr(zc|zp+, Hy).
ro€Xc

If, otherwise, Hy holds, X distribution depends on the population model
Pr(zc|Hyp)

and related parameters and the expected value of the log(WE) = log(m
r(zcler+, H

is:

Pr(xc|Hop)
(Xc|XF+, Hy)

Kny(Xe) = Y log(g )Pr(ac|Ho)

ro€Xc

— Z log(Pr(xc|Ho)Pr(xc|Hp)

ro€Xc

— Y log(Pr(zcles+, Hi))Pr(zc|Ho)

Toc€EXC

The result is that not only we have a measure of the expected performances
of a marker for the specific identification problem at hand but we also get infor-
mation on the expected ability of the system to support each of the hypotheses
when they are true.
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