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Summary

Given a set of continuous variables with missing data, we prove in this paper that the iterative application
of a simple “least-squares estimation/multivariate normal simulation” procedure produces an efficient pa-
rameters estimator. There are two main assumptions behind our proof: (1) the missing data mechanism
is ignorable; (2) the data generating process is a multivariate normal linear regression. Disentangling
the iterative procedure and its convergence conditions, we show that the estimator is a “method of sim-
ulated scores” (a particular case of McFadden’s “method of simulated moments”), thus equivalent to
maximum likelihood if the number of replications is conveniently large. We thus provide a non-Bayesian
re-interpretation of the estimation/simulation problem. The computational procedure is obtained intro-
ducing a simple modification into existing algorithms. Its software implementation is straightforward (few
simple statements in any programming language) and easily applicable to datasets with large number of
variables. 1
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1 Introduction

Missing data are a serious problem in almost all areas of empirical research. Economics, finance, social
and behavioral science frequently suffer from missing data due to nonresponse in sample surveys, as well
as biomedical applications that involve missing data in surveys and experiments.

We consider in this paper a particular but important case: the data generating process is a multivariate
normal linear regression, where the missing data mechanism is ignorable, and data can be missing in any
possible non-monotone pattern (general pattern).

We discuss in detail a parametric estimation procedure, that can be viewed as a simulated scores estimator
(Hajivassiliou and McFadden, 1990, a particular case of the method of simulated moments proposed in
McFadden, 1989, or Pakes and Pollard, 1989). Its properties are well defined and well known in the
literature, in particular its equivalence to Ml when the number of replications is conveniently large. In
this way we solve (or re-interpret) the estimation problem following a non-Bayesian paradigm, different
from the Mcmc, which is often applied to this type of problems.

The procedure we propose is straightforward, and can be obtained modifying existing algorithms (Raghu-
nathan et al., 2001). Otherwise it can easily be implemented with few simple statements in any pro-
gramming language. It is based on iterated “least-squares estimation/multivariate normal simulation” of
a system of simultaneous equations in structural form. The procedure estimates parameters (Ols) given
previously simulated values, and simulates missing values, given previously estimated parameters.

After describing the problem (section 2), we discuss the evaluation of the likelihood. From a practi-
cal/technical viewpoint, when the number of variables with potentially missing data is moderately large,
the number of possible patterns of missingness to be explicitly considered becomes too large; the classical
likelihood-based procedures become too complex in practice (section 3).

Estimation based on simulated scores would be much simpler (section 4), but it requires a simulation
step to complete the data. If simulation is performed in the most “intuitive” way (from the reduced form
equations, section 5.1) an eplicit expression of the simulated score can be derived (section 5.2).

It is easy to prove that iterated least squares estimation/simulation of the reduced form equations sets
to zero the simulated score, upon convergence (section 5.3), thus it is a simulated scores estimator.
This technique, however, does not escape the computational complexity due to large number of possible
patterns of missingness, and is therefore practically not feasible, analogously to maximum likelihood
(section 5.4).

In section 6 we solve the practical complexity with a least squares estimation/simulation procedure based
on linear simultaneous equations in structural form, that gives exactly the same results as the simulated
scores estimator of the previous sections: same results means same “numbers”, not just same asymptotic
properties. This is explained simply recalling that the simulation procedure is nothing but the Gauss-
Seidel technique, well known and used by econometricians specially for large scale equation systems in
the sixties and seventies (see, for instance, Evans, Klein and Schink, 1968). In our context, “convergence”
means exact numerical solution of an iterative procedure, thus easily verifiable in any practical application:
no risk of those ambiguities that, not many years ago, led Horton and Lipsitz (2001, p.246) to confess
that convergence “remains more of an art form than a science”.

Detailed analytical proofs are given in the appendices for the “bivariate normal” case.
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i X1 ..... Xk Y1 ..... Yp

1 • • • • • ?
2 • • • ? • •
3 • • • ? • ?
. • • • • ? •
. • • • • ? ?
. • • • ? ? ?
n-1 • • • • • •
n • • • ? ? •

Table 1: Dataset with missing values.

2 Statement of the problem

A schematic representation of an incomplete dataset is shown in Table 1. The n rows represent the
observational units and the k + p columns represent variables recorded for those units; question marks
identify missing values; they can occur anywhere, in any pattern (non-monotone).

We distinguish variables with missing data, called Y (a n× p matrix) from variables with complete data,
called X (a n× k matrix), assuming for Y the following multivariate normal distribution

yi ∼ N(Πxi, Σ), i = 1...n

where yi is the i−column of the Y ′ matrix, xi is the i−column of the X ′ matrix, Πxi is the expected value
(vector) of the multivariate normal distribution, Π denotes the unknown matrix of coefficients (p × k)
and Σ the unknown (p× p) covariance matrix. If no variable is complete, we still use the above notation
(in that case X will be a constant column and Π will be the vector of expected values).

For instance, the case of a bivariate normal distribution Y = (Y1, Y2), with a single column matrix X of
complete data (p = 2, k = 1), is one of the smallest possible cases (in terms of dimensions). We shall use
it often in this paper, as it helps to simplify the study without substantial loss of generality. We specify
the multivariate normal data generating process (often called reduced form in the rest of this paper) as
follows

Y = XΠ′ + E = XΠ′ + UΣ
1
2 (2.1)

where matrix X (n× 1) is completely observed, Π = [Π1,Π2]
′ denotes the matrix of unknown coefficients

(2× 1), U = [u1, u2] is a (n× 2) random matrix whose rows have independent bivariate standard normal

distribution, Σ
1
2 is a (2 × 2) matrix such that Σ

1
2
′
Σ

1
2 = Σ =

[
σ11 σ12

σ12 σ22

]
(for instance, Cholesky

decomposition) and the rows of E = UΣ
1
2 = [e1, e2] have bivariate normal distribution with 0 mean and

Σ variance-covariance matrix.

Missing data may affect Y1 and Y2 according to a general pattern. Thus, grouping the rows of the matrix
according to their missingness pattern as blocks, we have 22 = 4 possible blocks. We indicate with A the
block where Y1 and Y2 are both observed, with B the block where Y1 is observed and Y2 is missing, with
C the block where Y1 is missing and Y2 is observed and finally with D the block where Y1 and Y2 are
both missing, as in Table 2.

When necessary, Yobs will denote the observed portion of Y and Ymis the missing portion, so that Y =
(Yobs, Ymis).
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XA YA1 YA2 A− block

[X, Y1, Y2] = XB YB1 ? B − block

XC ? YC2 C − block

XD ? ? D − block

Table 2: Bivariate dataset with missing values.

3 Maximum likelihood estimation

We may wish to estimate parameters (Π and Σ) directly by maximum likelihood (e.g. Schafer, 1997, p.
16). Indexing the unique missingness pattern that actually appears in the sample by δ (δ = 1, 2, ..., ∆),
and denoting with D(δ) the subset of the rows i = 1, 2, ..., n that exhibit pattern δ, the likelihood of the
parameters θ = (elements of Π and Σ) is

P (θ|Yobs) =
∆∏

δ=1

∏

i∈D(δ)

|Σδ|−
1
2 exp

{
−1

2
(yi,obs −Πδxi)

′ Σ−1
δ (yi,obs −Πδxi)

}
(3.2)

where yi,obs denotes the observed variables of unit i, Πδxi and Σδ denote the corresponding mean subvector
and covariance submatrix. In the above equation, unit i belongs to a block of units whose missing data
pattern is δ; there are ∆ different patterns in the sample, each contributing to the likelihood in a different
way; the value of ∆ can be up to 2p.

If any rows of the data matrix are completely missing, those rows drop out of the likelihood function
P (θ|Yobs), under the ignorability assumption. In general, in order to obtain the Ml estimator of Π and
Σ, assuming ignorability of the missing data mechanism and a general pattern of missing values for the
p−variate Y variables, we should take into account explicitly up to 2p blocks, each contributing to the
likelihood function in a different way.

Maximization of (3.2) is practically intractable. Not only it requires an iterative alghoritm, because the
estimator has no closed form, but specially because the specification of the likelihood itself involves many
different terms (one for each block).2 Of course, algebraic tools like the “sweep operator” would
be helpful, as for instance in the case of Em estimator (e.g. Little and Rubin, 1987, ch. 6; see also
Kofman and Sharpe, 2003, for a recent application to financial data); the computational complexity of
the method, however, would discourage most practitioners.

4 Score and simulated score

Hajivassiliou and McFadden (1990) introduced a simulation-based estimator called method of simulated
scores (see also Hajivassiliou, 1993, Hajivassiliou and Ruud, 1994, Hajivassiliou and McFadden, 1998,
Stern, 2000). In a general context, the intuition behind the method of simulated scores is the following.
Suppose that, at least in principle, there are no difficulties in writing explicitly the log-likelihood (based on
observed data only) and its first derivatives (the score). We may add, to the score function, a simulated
term, and call the resulting expression a “simulated score”. If the additive simulated term has zero
conditional expectation (given observations, and considering expectation with respect to the simulation
process), then the resulting expression would be an “unbiased simulator of the score”. Like the score
function, also an unbiased simulator of the score should have a zero expected value at the “true” value

2As well known, the problem would be much simpler for monotone missing data patterns, where explicit estimates of Π
and Σ can be derived using Anderson’s (1957) method of factored likelihoods. The parameters are transformed in such a
way that the likelihood factorizes into distinct factors corresponding to complete data problems (Little and Rubin, 1987,
Ch. 6).
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of the parameter θ, and a nonzero expectation for different values of θ (identifiability). The estimator is
the value of θ that sets to zero the simulated score in the sample.

Although it is not always easy to construct in practice an unbiased simulator of the score (Stern, 2000,
p. 25), it is quite simple in our case.

The simulated score is obtained differentiating the “simulated loglikelihood”, that is the loglikelihood of
the “completed” data Ỹ . Being related to completed data, this simulated score has the usual expression
for the multivariate normal, simple and manageable

∂ log f(Ỹ |X; Π, Σ)
∂Π

= Σ−1
(
Ỹ −XΠ′

)′
X (4.3)

∂ log f(Ỹ |X; Π,Σ)
∂Σ−1

=
n

2
Σ− 1

2

(
Ỹ −XΠ′

)′ (
Ỹ −XΠ′

)
(4.4)

When only a subset of the data is observable, the score is obtained differentiating the loglikelihood of the
observed data (Yobs). Unlike the previous case, due to the missing data, this score has a rather complex
expression. For instance, in the simple bivariate case, the three blocks A, B and C contribute to the
score with different formulas, while block D does not contribute at all, since it contains no Yobs

∂ log f(Yobs|X; Π, Σ)
∂Π

= Σ−1




(YA1 −XAΠ1) (YA2 −XAΠ2)
(YB1 −XBΠ1) σ12

σ11
(YB1 −XBΠ1)

σ12
σ22

(YC2 −XCΠ2) (YC2 −XCΠ2)
0 0




′

X (4.5)

∂ log f(Yobs|X, Π, Σ)
∂Σ−1

=
nA

2
Σ +

nB

2

(
σ11 σ12

σ12
σ2

12
σ11

)
+

nC

2

(
σ2

12
σ22

σ12

σ12 σ22

)

−1
2

∑

i=A

(yi −Πxi) (yi −Πxi)
′

−1
2

(
1 σ12

σ11
σ12
σ11

σ2
12

σ2
11

) ∑

i=B

(yi1 −Π1xi)
2

−1
2

(
σ2

12
σ2

22

σ12
σ22

σ12
σ22

1

) ∑

i=C

(yi2 −Π2xi)
2 (4.6)

(the rule of matrix differentiation has been used, e.g. Amemiya, 1985, Appendix 1, Theorem 21; a slight
simplification in the formulas is obtained if differentiation is performed with respect to Σ−1 rather than
Σ).

It is known that, given the parameter values θ = (elements of Π and Σ), the conditional expectation of
the simulated score (eq. 4.3, 4.4), given the observed variables, is equal to the score (eq. 4.5, 4.6). In our
context it means that

Eθ

[
∂ log f(Ỹ |X; θ)

∂θ
|Yobs, X

]
=

∂ log f(Yobs|X; θ)
∂θ

(4.7)

The above equality holds in general for latent variable models, when observations are related to the
latent variables through a known function (see Gouriéroux and Monfort, 1996, pp. 35-36). In any case,
a detailed proof is given in Appendix 1 for the bivariate normal case.
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5 Reduced form estimation/simulation

5.1 Simulation

In order to complete the data set we build a simulation step. We first build this step “as if” the parameters
of the data generating process were known; later, we shall consider the estimation phase, necessary to
get parameter values.

Simulation step: For fixed values of the reduced form parameters (Π and Σ), missing values (elements
of yi,mis) are filled in with their conditional expectations (given all observed variables xi and yi,obs) plus
simulated pseudo-random errors with appropriate conditional variances and covariances (given the same
observations).

To make things more explicit with the bivariate example, the simulation step produces a completed data
matrix, expressed as a block matrix as follows

Ỹ =




YA1 YA2

YB1 ỸB2

ỸC1 YC2

ỸD1 ỸD2


 (5.8)

Indicating ui = (ui1, ui2)
′ as random variates from a bivariate standard normal distribution, the com-

pleted data (Ỹ ) are as follows

{
yi1 = Π1xi +

√
σ11 ui1

yi2 = Π2xi + σ12
σ11

(yi1 −Π1xi) +
√

σ22 − σ2
12

σ11
ui2

, i ∈ A (5.9)

{
yi1 = Π1xi +

√
σ11 ui1

ỹi2 = Π2xi + σ12
σ11

(yi1 −Π1xi) +
√

σ22 − σ2
12

σ11
ũi2

, i ∈ B (5.10)

{
yi2 = Π2xi +

√
σ22 ui2

ỹi1 = Π1xi + σ12
σ22

(yi2 −Π2xi) +
√

σ11 − σ2
12

σ22
ũi1

, i ∈ C (5.11)

{
ỹi1 = Π1xi +

√
σ11 ũi1

ỹi2 = Π2xi + σ12
σ11

√
σ11 ũi1 +

√
σ22 − σ2

12
σ11

ũi2

, i ∈ D (5.12)

The simulation step defined is rather straightforward and obvious. When the variables are both observed
(A-block) they are obviously left unchanged, and equation (5.9) writes their explicit expression as given
by the data generating process (2.1). It must be noticed that the representation in equation (5.9) has
been used to make easier the comparison with the other equations. It includes explicitly the error terms
ui1 and ui2, which are independent standard normal variables introduced by the data generating process
(2.1). Thus the error term of yi1 is

√
σ11 multiplied by ui1. The expression of yi2 includes the conditional

mean (given yi1), which is Π2xi + (σ12/σ11)(yi1 − Π1xi) and the error term which is ui2 multiplied by
the square root of the conditional variance

√
σ22 − σ2

12/σ11.

When one variable is observed and the other is missing (B and C-blocks), the observed variable is obvi-
ously left unchanged (and is represented according to the data generating process 2.1), while the other is
replaced by its conditional mean (given the observed variable) plus a zero mean pseudo-random error with
the appropriate conditional variance (equations 5.10 and 5.11, where ũi1 and ũi2 are independent stan-
dard normal deviates produced by a pseudo-random number generator; note the difference between the
random errors u produced by the data generating process, and the pseudo-random errors ũ produced by
the pseudo-random number generator). Finally, when both variables are missing (D-block), simulation is
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performed using the unconditional mean plus a bivariate zero mean pseudo-random error with covariance
matrix Σ. Equivalently, as explicitly written in equation (5.12), we first simulate the value ỹi1, with the
appropriate unconditional mean and variance, then simulate ỹi2 with the appropriate conditional mean
and variance (given ỹi1).

Summarizing, the equations above describe in a unified way observed variables and variables simulated
conditionally on the observed data.

5.2 Simulated score of data completed from simulation of the reduced form

equations

Having completed the data with the above simulation step, the simulated score (4.3), expliciting all
simulated values, is (see Appendix 2 for the proof)

∂ log f(Ỹ |X; Π,Σ)
∂Π

= Σ−1




(YA1 −XAΠ1) (YA2 −XAΠ2)

(YB1 −XBΠ1) σ12
σ11

(YB1 −XBΠ1) +
√

σ22 − σ2
12

σ11
ũB2

σ12
σ22

(YC2 −XCΠ2) +
√

σ11 − σ2
12

σ22
ũC1 (YC2 −XCΠ2)

√
σ11 ũD1

σ12√
σ11

ũD1 +
√

σ22 − σ2
12

σ11
ũD2




′

X (5.13)

(analogously for eq. 4.4).

5.3 The estimation/simulation procedure

Of course, to apply the simulation technique in practice, an estimate of the the parameters Π and Σ must
be available.

Estimation step: Estimation of the reduced form parameters (Π and Σ), using complete data, is per-
formed by Ordinary Least Squares (Ols).

The joint use of the simulation and estimation steps allows to implement an iterative estimation/simulation
procedure. We may start from values of Π and Σ estimated by Ols from the fully observed data only,
then use the estimated parameters to simulate missing values. This can be called iteration 0, and provides
a first set of completed data. We can now use the completed data to estimate again by Ols the reduced
form parameters, and use the new estimates for a new simulation of the missing data (iteration 1). And
so on, iteratively. Appendix 3 “explicitly” derives parameters estimated at the k-th iteration using data
completed after k−1 iterations (therefore based on the k−1-th iteration estimates). Still for the bivariate
example, for coefficients Π the expression is

Π̂
′(k) = Π̂

′(k−1)

+(X ′X)−1
X ′




ê
(k−1)
A1 ê

(k−1)
A2

ê
(k−1)
B1

σ̂
(k−1)
12

σ̂
(k−1)
11

ê
(k−1)
B1 +

√
σ̂

(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũB2

σ̂
(k−1)
12

σ̂
(k−1)
22

ê
(k−1)
C2 +

√
σ̂

(k−1)
11 − σ̂

(k−1)2
12

σ̂
(k−1)
22

ũC1 ê
(k−1)
C2

√
σ̂

(k−1)
11 ũD1

σ̂
(k−1)
12√
σ̂

(k−1)
11

ũD1 +
√

σ̂
(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũD2




(5.14)
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From the above equation it is clear that the procedure converges (for Π) when X is orthogonal to the
k − 1-th iteration vectors of residuals (the two columns in brackets). Σ is estimated from residuals upon
convergence. As a conclusion, if the estimation/simulation steps are applied iteratively to the reduced
form equations, till numerical convergence of the parameter estimates, then an explicit condition for
numerical convergence of the procedure exists, and it can be derived from equation (5.14).

It is quite evident the relationship of the simulated score (5.13) with the convergence condition implied in
equation (5.14). The two columns in brackets are the residuals of the completed Ỹ corresponding to the Π
and Σ used for simulation. When computed at the convergence values Π̂(k) = Π̂(k−1) and Σ̂(k) = Σ̂(k−1),
residuals are orthogonal to X, thus the simulated score is zero. We can therefore conclude that the Ols

estimator of the reduced form parameters, at convergence of the estimation/simulation procedure, sets
to zero the simulated score.

Summarizing, we can state that

the iterated estimation/simulation procedure based on the reduced form equations produces a simulated
scores estimator with “one” replication.

Finally we observe that in the above statement we refer to “one” replication, because only “one” set
of pseudo-random error terms are generated and used for the simulation. It is shown in the literature
(Gouriéroux and Monfort, 1996, pp. 35-36) that the asymptotic covariance matrix of the simulated score
estimator is larger than for the maximum likelihood estimator, the difference being proportional to the
inverse of the number of replications, and thus negligible when the number of replications (S) is very
large

Vas

[√
n

(
θ̂S − θ

)]
= I−1 +

1
S

I−1 (I∗ − I) I−1 (5.15)

If the simulated scores estimator is based on one replication and sample size n, its asymptotic variance-
covariance matrix is

Vas

[√
n

(
θ̂ − θ

)]
= I−1 + I−1 (I∗ − I) I−1 (5.16)

It is clear from (5.16) that there is a loss of efficiency with respect to maximum likelihood, whose
asymptotic variance-covariance matrix would be I−1. Roughly speaking, we can say that there is an
efficiency price that must be paid to the simulation, and it is I−1 (I∗ − I) I−1. We notice that it is
proportional to the difference between the information of the latent and observable model (so, if the
latent and the observable model were the same -no missing data- the difference would be zero and
obviously there would be no loss of efficiency; of course, there would be no simulation). Summarizing,
the well known result is that

the method of simulated scores is (asymptotically) inefficient if it is based on “one” replication of simulated
pseudo-random errors, but its efficiency increases with the number of replications and becomes equivalent
to maximum likelihood when the number of replications tends to infinity.

In Appendix 4 an explicit expression for the variance of the estimator is derived, and compared with the
(inverse of) the information matrix.

5.4 Computational complexity

The computational complexity of the previous procedure increases if considering more than two variables
(p > 2) with missing data on a non-monotone pattern (general pattern). In such a case the rows of the
data matrix can be grouped according to their missingness pattern as blocks. We may have up to 2p
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possible missingness patterns, and consequently up to 2p different blocks. There would be no difficulty
in the estimation phase (simple Ols of a set of reduced form equations). On the contrary, the simulation
phase would be very complex in practice. For each missing data pattern, in fact, we should specify the
appropriate simulation step, with the pseudo-random errors conditional on the Y -observed in that data
pattern. So we should build, in practice, up to 2p different simulation steps (one for each block). Thus
we face a computational complexity analogous to direct maximum likelihood (section 3).

Concluding, the estimation/simulation procedure based on the reduced form, as well as the Ml estimation,
do not solve our practical/technical problem.

6 A simple structural form estimation/simulation procedure

The topic dealt with in this section is how to estimate the model parameters in any real case, without
considering explicitly the likelihood function stated in terms of the possible 2p different blocks, and
without facing up the technical problem of the simulation in 2p different blocks.

The method is prompted to the “sequential regression multivariate imputation” approach (Srmi and
related software IVE-ware, Raghunathan et al., 2001), with a simple modification that considers the
multivariate distribution of the error terms also in the structural form equations.

To begin with, we estimate coefficients and variance of the linear regression model related to the variable
with fewest missing values (let be Y1) by Ols, using the observed part of Y1 (Yobs,1). The imputed values
are Ỹ1 = Xmis,1Π̂1 +

√
σ̂11 ũ1. This step only aims at providing initial values of the iterative procedure,

and should have no influence on the final results after convergence (analogous considerations are, for
instance in Pollock, 2003).

Having completed Y1, we attach it as an additional column to X. We then regress the next variable with
fewest missing values (say Yobs,2) against X and the completed Y1, and use the Ols estimated coefficients
and variance for a simulation step that completes Y2. Going on, the first iteration ends when all the
missing values are completed. As the Srmi’s authors put in evidence, the updating of the right hand
side variables after simulating the missing values depends on the order in which we select the variables.
Thus, the simulated values for Yj , for example, involve only (X, Y1, ..., Yj−1), but not Yj+1, ..., Yp. For
this reason the procedure continues to re-estimate and overwrite the simulated values iteratively.

The system of regression equations has, as dependent variable for each equation, the variable to be
“simulated if missing” and has on the right hand side all the others variables

Y1 = Xγ11 + Y2γ12 + Y3γ13 + ... + Ypγ1p + ε1

Y2 = Xγ21 + Y1γ22 + Y3γ23 + ... + Ypγ2p + ε2

...

Yp = Xγp1 + Y1γp2 + Y2γp3 + ... + Yp−1γpp + εp (6.17)

where γ11, γ21, ..., γp1 are scalars or (k × 1) vectors depending on X being a single column or a (n× k)
matrix, while all the other γ-s are scalars and ∈= (ε1, ε2, ..., εp) has a multivariate normal distribution.

Equations (6.17) represent a system of simultaneous equations in structural form, as the jointly dependent
variables Y appear also on the right hand side of the equations. A convenient textbook-type representation
of the system in structural form is

BY ′ + ΓX ′ =∈′, (6.18)

that is, for the i-th observation (i = 1, ...n)

Byi + Γxi = εi (6.19)
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The matrices of the structural form coefficients are

B(p×p) =




1 −γ12 −γ13 ....... −γ1p

−γ22 1 −γ23 ....... −γ2p

....... ....... ....... ....... .......

−γp2 −γp3 ....... −γpp 1


 and Γ(p×k) =




−γ
′
11

−γ′21
.......

−γ′p1




(the dimensions of Γ being p× k, where k is the number of columns of X).

We remember that we can easily derive the reduced form (or “restricted” reduced form, e.g. Greene,
2008, Ch. 16) “solving” the structural form system (6.19) for yi

yi = −B−1Γxi + B−1εi = Πxi + ei (6.20)

Remark 1: A structural form model like (6.17) is underidentified, as it violates the order condition for
identification (eg. Greene, 2008, Ch. 16): infinite sets of γ-values would be observationally equivalent. It
is therefore useless (or impossible) to apply the estimation techniques suitable for simultaneous equation
systems, like two or three stage least squares, full information maximum likelihood, etc.. Nevertheless,
without expecting any “good” properties for the γ̂, we can estimate each equation by Ols.

After coefficients have been estimated by Ols, the variance covariance matrix is computed from residuals
Ψ̂ = (1/n)

(
B̂Y ′ + Γ̂X ′

)
(B̂Y ′ + Γ̂X ′)′ (this is nothing but the usual way of estimating variances and

covariances from residuals; for instance, see Foschi et al. 2003). Differently from the Srmi method, that
considers only variances (Raghunathan et al., 2001, p. 94), we use the Cholesky decomposition of the
matrix Ψ̂ to produce vectors of pseudo-random numbers for simulation, thus considering also covariances
besides variances.

When a value of Y1 is missing, we simulate the value obtained from the right hand side of the first
equation in (6.17), where the γ-s are at the previous iteration estimated value, the value(s) of X is (are)
observed, and the values of the Y on the right hand side are, in any case, complete (some of them are
observed, the others have been produced by simulation in the previous iteration). The same is done for
the second equation of the system, filling in values of Y2, and so on. The values of ε1, ε2, ..., εp are jointly
produced by the pseudo-random generator with a cross equation variance-covariance matrix equal to the
last estimated Ψ̂.

Repeated cycles continue until convergence on the estimated parameters has been achieved.

A question naturally arises when dealing with an iterative simulation-based method: why and when does
the iterative estimation/simulation procedure converge? The transformation between structural form
and reduced form helps to answer this question. It is in fact not at all obvious how convergence is
achieved if we only consider the procedure as it has just been described (note the strong similarity of the
procedure with the well known Gibbs sampling, e.g. Gelfand and Smith, 1990: equation (6.17) can be
viewed as producing Y1 from its conditional distribution, given X,Y2, ..., Yp, etc.). But we may think at
the sequence of iterations in a different order, as if iterations were “grouped”: studying the convergence
of this “reordered” sequence of estimation and simulation phases becomes conceptually manageable. In
fact, if we keep parameter values fixed (the γ-s and the Cholesky decomposition of the matrix Ψ̂), and
iterate substitutions of simulated values on the right hand side of equations (6.17), then these iterated
substitutions (e.g. Thisted, 1988, sec. 3.11.2) are “exactly” the steps of the Gauss-Seidel method for the
“simultaneous solution” of the (6.17) system (also called “stochastic simulation” of the system, because
of the presence of the ε terms; see, for example, Bianchi et al, 1978). For several decades, Gauss-Seidel
was the main algorithm for solving large scale nonlinear systems of simultaneous equations, and was very
well known to all econometricians dealing with macro-models (e.g. Evans et al, 1968, Fair and Taylor,
1983). We get, therefore, the following result.
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Convergence: For fixed values of the structural form parameters, the iterated substitution of simulated
values converges to the reduced form derived from the structural form (or “restricted” reduced form,
equation 6.20).

Now we can re-estimate parameters (with Ols on the structural form) and start again a new cycle of
iterated substitutions in (6.17), and so on.

The strictly tighted sequence of estimations and simulations for each structural equation is thus disen-
tangled and converted into a reordered sequence of iterations. In each iteration, an Ols estimation of
“all” the structural form equations (6.17), using observed and previously simulated values, is followed by
the simultaneous solution of the equation system (or derivation of the reduced form 6.20) that produces
“all” the values of the variables Y .

We are now ready to show the connection between the structural form approach of this section and the
reduced form approach of section 5.3.

Proposition: The reduced form parameters estimator, derived from the Ols estimator of the strucural
form parameters, is equal to the Ols direct estimator of the reduced form parameters.

The proof of this proposition can be found in Appendix 5.

The discussion on convergence of the iterated simulations with fixed parameters and the proposition stated
above ensures that we can get exactly the same results either if we perform estimation and simulation
directly on the reduced form, or if we use the structural form.

Remark 2: It is preferable to work, in practice, with the structural form; it is computationally simpler
and more intuitive. Nevertheless, passing to the reduced form is necessary for our proofs, because the
reduced form is much more manageable from the analytic point of view.

To conclude, we underline that our method is based on a different paradigm from the Srmi method;
the latter, in fact, follows a Bayesian paradigm, and aims at convergence in distribution. Moreover we
underline that, while Srmi draws the pseudo-random deviates for each equation “independently”, the
method we propose considers multivariate stochastic terms. This simple modification allowed us to prove
the “good” properties of the estimator, obtained at convergence achieved.

7 Conclusion

In this paper we have introduced an estimation method for multivariate normal linear regression models
with missing values, assuming arbitray patterns for the missing values and ignorable missing data mech-
anisms. The method is essentially based on an iterative “least-squares estimation/multivariate normal
simulation” procedure, with some simple changes with respect to the Srmi. It can be viewed as a non-
Bayesian version of incomplete Gibbs sampling. The method seems to be friendly for the data analyst,
as it computes the parameters by estimating independently each equation of the system by Ols, and
it performs the simulation by introducing pseudo-random errors and solving simultaneously the same
system. Besides its technical simplicity and feasibility, peculiar of the method are the properties of the
estimator. Being a simulated scores estimator, it is consistent, asymptotically normal, and its efficiency
can be improved by increasing the number of replications; it becomes as efficient as maximum likeli-
hood if the iterative procedure is replicated a sufficiently large number of times, each time iterating to
convergence.
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Appendix 1

The identity (4.7) holds in general for latent variable models, when observations are related to the latent
variables through a known function (see Gouriéroux and Monfort, 1996, pp. 35-36). For convenience of
the reader, in this appendix we give the detailed proof for the bivariate normal.

We start expliciting step by step equation (4.3). Expliciting derivatives with respect to Π as a block
matrix, we have

∂ log f(Ỹ |X; Π, Σ)
∂Π

= Σ−1




(YA1 −XAΠ1) (YA2 −XAΠ2)

(YB1 −XBΠ1) σ12
σ11

(YB1 −XBΠ1) +
√

σ22 − σ2
12

σ11
ũB2

σ12
σ22

(YC2 −XCΠ2) +
√

σ11 − σ2
12

σ22
ũC1 (YC2 −XCΠ2)

√
σ11 ũD1

σ12√
σ11

ũD1 +
√

σ22 − σ2
12

σ11
ũD2




′

X

Computing expectation conditional on Yobs and X, we have

E

[
∂ log f(Ỹ |X; Π, Σ)

∂Π
|Yobs, X

]
= Σ−1




(YA1 −XAΠ1) (YA2 −XAΠ2)
(YB1 −XBΠ1) σ12

σ11
(YB1 −XBΠ1)

σ12
σ22

(YC2 −XCΠ2) (YC2 −XCΠ2)
0 0




′

X (A1.21)

In the same way, we explicit the derivatives of equation (4.4) with respect to Σ−1

∂ log f(Ỹ |X; Π, Σ)
∂Σ−1

=
n

2
Σ−




(YA1 −XAΠ1) (YA2 −XAΠ2)

(YB1 −XBΠ1)
(
ỸB2 −XBΠ2

)
(
ỸC1 −XCΠ1

)
(YC2 −XCΠ2)(

ỸD1 −XDΠ1

) (
ỸD2 −XDΠ2

)




′ 


(YA1 −XAΠ1) (YA2 −XAΠ2)

(YB1 −XBΠ1)
(
ỸB2 −XBΠ2

)
(
ỸC1 −XCΠ1

)
(YC2 −XCΠ2)(

ỸD1 −XDΠ1

) (
ỸD2 −XDΠ2

)




=
n

2
Σ− 1

2

∑

i∈A

{[
yi1 −Π1xi

yi2 −Π2xi

] [
yi1 −Π1xi

yi2 −Π2xi

]′}

− 1
2

∑

i∈B





[
yi1 −Π1xi

σ12
σ11 (yi1 −Π1xi) +

√
σ22 − σ2

12
σ11

ũi2

][
yi1 −Π1xi

σ12
σ11 (yi1 −Π1xi) +

√
σ22 − σ2

12
σ11

ũi2

]′


− 1
2

∑

i∈C





[
σ12
σ22

(yi2 −Π2xi) +
√

σ11 − σ2
12

σ22
ũi1

yi2 −Π2xi

][
σ12
σ22

(yi2 −Π2xi) +
√

σ11 − σ2
12

σ22
ũi1

yi2 −Π2xi

]′


− 1
2

∑

i∈D





[ √
σ11 ũi1

σ12√
σ11

ũi1 +
√

σ22 − σ2
12

σ11
ũi2

][ √
σ11 ũi1

σ12√
σ11

ũi1 +
√

σ22 − σ2
12

σ11
ũi2

]′


Computing conditional expectation, we obtain
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E

[
∂ log f(Ỹ |X; Π, Σ)

∂Σ−1
|Yobs, X

]
=

n

2
Σ− 1

2

∑

i=A

[
(yi −Πxi) (yi −Πxi)

′]

−1
2

(
1 σ12

σ11
σ12
σ11

σ2
12

σ2
11

) ∑

i=B

(yi1 −Πxi)
2 − nB

2

(
0 0

0 σ11σ22−σ2
12

σ11

)

−1
2

(
σ2

12
σ2

22

σ12
σ22

σ12
σ22

1

) ∑

i=C

(yi2 −Πxi)
2 − nC

2

(
σ11σ22−σ2

12
σ22

0
0 0

)
− nD

2
Σ

Remarking that
n

2
Σ− nD

2
Σ =

nA + nB + nC

2
Σ

we have

E

[
∂ log f(Ỹ |X; Π, Σ)

∂Σ−1
|Yobs, X

]

=
nA

2
Σ +

nB

2

(
σ11 σ12

σ12
σ2

12
σ11

)
+

nC

2

(
σ2

12
σ22

σ12

σ12 σ22

)
− 1

2

∑

i=A

[
(yi −Πxi) (yi −Πxi)

′]

− 1
2

(
1 σ12

σ11
σ12
σ11

σ2
12

σ2
11

) ∑

i=B

(yi1 −Π1xi)
2 − 1

2

(
σ2

12
σ2

22

σ12
σ22

σ12
σ22

1

) ∑

i=C

(yi2 −Π2xi)
2 (A1.22)

This proves the identity (4.7) for the bivariate normal regression. Infact, the explicit form of the right
hand side of (4.7) are the expressions (4.5) and (4.6) and the left hand side of (4.7) are the (A1.21) and
(A1.22); we reach the result observing that (4.5) is equal to (A1.21) and (4.6) is equal to (A1.22).

Appendix 2: Simulated score

The simulated scores estimator of θ = (elements of Π and Σ) is obtained solving

∂ log f(Ỹ |X; Π,Σ)
∂Π

= 0 (A2.23)

and
∂ log f(Ỹ |X; Π,Σ)

∂Σ−1
= 0 (A2.24)

where Ỹ is the completed matrix. Expliciting (A2.23) we obtain




YA1 −XAΠ1

YB1 −XBΠ1

σ12
σ22

eC2 +
√

σ11 − σ2
12

σ22
ũC1√

σ11ũD1




′

X = 0 (A2.25)

and 


YA2 −XAΠ2

σ12
σ11

eB1 +
√

σ22 − σ2
12

σ11
ũB2

YC2 −XCΠC

σ12√
σ11

ũD1 +
√

σ22 − σ2
12

σ11
ũD2




′

X = 0 (A2.26)
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Expliciting (A2.24) we obtain

n Σ−




YA1 −XAΠ1 YA2 −XAΠ2

YB1 −XBΠ1 ỸB2 −XBΠ2

ỸC1 −XCΠ1 YC2 −XCΠ2

ỸD1 −XDΠ1 ỸD2 −XDΠ2




′ 


YA1 −XAΠ1 YA2 −XAΠ2

YB1 −XBΠ1 ỸB2 −XBΠ2

ỸC1 −XCΠ1 YC2 −XCΠ2

ỸD1 −XDΠ1 ỸD2 −XDΠ2


 = 0 (A2.27)

In order to obtain the simulated scores estimator for Σ we have to solve (A2.27) or equivalently the
following sistem

n σ11 =
∑

i∈A,B

(yi1 −Π1xi)
2 +

(
σ12

σ22

)2 ∑

i∈C

(yi2 −Π2xi)
2 +

(
σ11 − σ2

12

σ22

) ∑

i∈C

ũ2
i1

+2
σ12

σ22

√
σ11 − σ2

12

σ22

∑

i∈C

(yi2 −Π2xi) ũi1 + σ11

∑

i∈D

ũ2
i1

n σ12 =
∑

i∈A

(yi1 −Π1xi) (yi2 −Π2xi) +
σ12

σ11

∑

i∈B

(yi1 −Π1xi)
2

+

√
σ22 − σ2

12

σ11

∑

i∈B

(yi1 −Π1xi) ũi2 +
σ12

σ22

∑

i∈C

(yi2 −Π2xi)
2

+

√
σ11 − σ2

12

σ22

∑

i∈C

(yi2 −Π2xi)
2

ũi1 + σ12

∑

i∈D

ũ2
i1 +

√
σ22σ11 − σ2

12

∑

i∈D

ũi1 ũi2

n σ22 =
∑

i∈A,C

(yi2 −Π2xi)
2 +

(
σ12

σ11

)2 ∑

i∈B

(yi1 −Π1xi)
2

+
(

σ22 − σ2
12

σ11

) ∑

i∈B

ũ2
i2 + 2

σ12

σ11

√
σ22 − σ2

12

σ11

∑

i∈B

(yi1 −Π1xi) ũi2 +
σ2

12

σ11

∑

i∈D

ũ2
i1

+
(

σ22 − σ2
12

σ11

) ∑

i∈D

ũ2
i2 + 2

σ12

σ11

√
σ22σ11 − σ2

12

∑

i∈D

ũi1 ũi2

Appendix 3: Numerical convergence

The estimation procedure directly considers the data generating process (2.1) and estimates the unknown
parameters by ordinary least squares (Ols) method. The procedure starts (Iteration 0) considering only
the observed part of the data matrix (A-block); the reduced form coefficients (Π) are estimated by Ols

and Σ (variance-covariance matrix) is estimated from Ols residuals, obtaining the initial estimates of
the reduced form coefficients

Π̂
′(0) =

[
Π̂(0)

1 , Π̂(0)
2

]
= (X ′

AXA)−1
X ′

AYA

and (without degrees of freedom correction)

Σ̂(0) =

[
σ̂

(0)
11 σ̂

(0)
12

σ̂
(0)
12 σ̂

(0)
22

]
=

1
nA

(
Ê
′(0)
A Ê

(0)
A

)
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as the residual variances, where Ê
(0)
A = YA −XAΠ̂′(0).

After k − 1 iterations have been performed, let us consider iteration k.

Iteration k

The two normal linear regressions on the data (A+B+C+D) completed at the (k − 1) iteration are
estimated obtaining Π̂′(k) =

[
Π̂(k)

1 , Π̂(k)
2

]
and Σ̂(k)

1 , as follows

Π̂
′(k)
1 = Π̂

′(k−1)
1 + (X ′X)−1

X ′




ê
(k−1)
A1

ê
(k−1)
B1

σ̂
(k−1)
12

σ̂
(k−1)
22

ê
(k−1)
C2 +

√
σ̂

(k−1)
11 − σ̂

(k−1)2
12

σ̂
(k−1)
22

ũC1√
σ̂

(k−1)
11 ũD1




Π̂
′(k)
2 = Π̂

′(k−1)
2 + (X ′X)−1

X ′




ê
(k−1)
A2

σ̂
(k−1)
12

σ̂
(k−1)
11

ê
(k−1)
B1 +

√
σ̂

(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũB2

ê
(k−1)
C2

σ̂
(k−1)
12

σ̂
(k−1)
11

√
σ̂

(k−1)
11 ũD1 +

√
σ̂

(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũD2




Σ̂(k) =

[
σ̂

(k)
11 σ̂

(k)
12

σ̂
(k)
12 σ̂

(k)
22

]
=

1
n

[
Ỹ (k−1) −XΠ̂′(k)

]′ [
Ỹ (k−1) −XΠ̂′(k)

]
=

=
1
n




YA1 −XAΠ̂(k)
1 YA2 −XAΠ̂(k)

2

YB1 −XBΠ̂(k)
1 ỸB2 −XBΠ̂(k)

2

ỸC1 −XCΠ̂(k)
1 YC2 −XCΠ̂(k)

2

ỸD1 −XDΠ̂(k)
1 ỸD2 −XDΠ̂(k)

2




′ 


YA1 −XAΠ̂(k)
1 YA2 −XAΠ̂(k)

2

YB1 −XBΠ̂(k)
1 ỸB2 −XBΠ̂(k)

2

ỸC1 −XCΠ̂(k)
1 YC2 −XCΠ̂(k)

2

ỸD1 −XDΠ̂(k)
1 ỸD2 −XDΠ̂(k)

2




In particular, we display the explicit expression of the element (1, 1) (the others would be analogous)

nσ̂
(k)
11 = ê

(k)′
A1 ê

(k)
A1 + ê

(k)′
B1 ê

(k)
B1 +

(
Π̂(k−1)

1 − Π̂(k)
1

)2 ∑

i∈C

x2
i

+

(
σ̂

(k−1)
12

σ̂
(k−1)
22

)2

ê
(k−1)′
C2 ê

(k−1)
C2 +


σ̂

(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22


 ũ′C1 ũC1

+ 2
(
Π̂(k−1)

1 − Π̂(k)
1

) σ̂
(k−1)
12

σ̂
(k−1)
22

∑

i∈C

xi ê
(k−1)
i2 + 2

σ̂
(k−1)
12

σ̂
(k−1)
22

√√√√√σ̂
(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22

ê
′(k−1)
C2 ũC1

+ 2
(
Π̂(k−1)

1 − Π̂(k)
1

)
√√√√√σ̂

(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22

∑

i∈C

xiũi1

+
(
Π̂(k−1)

1 − Π̂(k)
1

)2 ∑

i∈D

x2
i + σ̂

(k−1)
11 ũ′D1 ũD1 + 2

(
Π̂(k−1)

1 − Π̂(k)
1

) √
σ̂

(k−1)
11

∑

i∈D

xi ũi1

Missing values are simulated as in the previous iterations, so the completed data are

yi1 = Π1xi +
√

σ11 ui1

yi2 = Π2xi + σ12
σ11

(yi1 −Π1xi) +
√

σ22 − σ2
12

σ11
ui2

, i ∈ A
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yi1 = Π1xi +
√

σ11 ui1

ỹ
(k)
i2 = Π̂(k)

2 xi + σ̂
(k)
12

σ̂
(k)
11

(yi1 − Π̂(k)
1 xi) +

√
σ̂

(k)
22 − σ̂

(k)2
12

σ̂
(k)
11

ũi2
, i ∈ B

yi2 = Π2xi +
√

σ22 ui2

ỹ
(k)
i1 = Π̂(k)

1 xi + σ̂
(k)
12

σ̂
(k)
22

(yi2 − Π̂(k)
2 xi) +

√
σ̂

(k)
11 − σ̂

(k)2
12

σ̂
(k)
22

ũi1

, i ∈ C

ỹ
(k)
i1 = Π̂(k)

1 xi +
√

σ̂
(k)
11 ũi1

ỹ
(k)
i2 = Π̂(k)

2 xi + σ̂
(k)
12

σ̂
(k)
11

√
σ̂

(k)
11 ũi1 +

√
σ̂

(k)
22 − σ̂

(k)2
12

σ̂
(k)
11

ũi2

, i ∈ D

or equivalently

Ỹ (k) =




YA1 YA2

YB1 Ỹ
(k)
B2

Ỹ
(k)
C1 YC2

Ỹ
(k)
D1 Ỹ

(k)
D2




In practice, by this method we estimate iteratively the coefficients Π̂(k) and the residuals covariance
matrix Σ̂(k) of a two equations reduced form system by Ols, and parameters estimates are used for
simulating missing values. We indicate with Π̂(k) the Ols estimation of the unknown parameter Π at the
k-iteration (thus using Ỹ (k−1) data completed at the end of iteration k−1) and with Ê(k) =

(
ê
(k)
1 , ê

(k)
2

)
=

Ỹ (k−1) −XΠ̂(k) the corresponding residuals, from which we estimate Σ̂(k). Supposing that convergence
is achieved at the k-iteration, we have (up to a reasonably large number of digits) Π̂(k)

1 = Π̂(k−1)
1 and

Π̂(k)
2 = Π̂(k−1)

2 , so the following conditions become true

(X ′X)−1
X ′




ê
(k−1)
A1

ê
(k−1)
B1

σ̂
(k−1)
12

σ̂
(k−1)
22

ê
(k−1)
C2 +

√
σ̂

(k−1)
11 − σ̂

(k−1)2
12

σ̂
(k−1)
22

ũC1√
σ̂

(k−1)
11 ũD1




= 0 (A3.28)

(X ′X)−1
X ′




ê
(k−1)
A2

σ̂
(k−1)
12

σ̂
(k−1)
11

ê
(k−1)
B1 +

√
σ̂

(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũB2

ê
(k−1)
C2

σ̂
(k−1)
12

σ̂
(k−1)
11

√
σ̂

(k−1)
11 ũD1 +

√
σ̂

(k−1)
22 − σ̂

(k−1)2
12

σ̂
(k−1)
11

ũD2




= 0 (A3.29)

When convergence on Π is achieved, the expression for Σ̂(k), obtained from the k-th iteration residuals,
is as follows

n σ̂
(k)
11 = ê

(k)′
A1 ê

(k)
A1 + ê

(k)′
B1 ê

(k)
B1 +

(
σ̂

(k−1)
12

σ̂
(k−1)
22

)2

ê
(k−1)′
C2 ê

(k−1)
C2 +


σ̂

(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22


 ũ′C1 ũC1

+2
σ̂

(k−1)
12

σ̂
(k−1)
22

√√√√√σ̂
(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22

ê′
(k−1)

C2 ũC1 + σ̂
(k−1)
11 ũ′D1 ũD1 (A3.30)
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n σ̂
(k)
12 = ê

(k)′
A1 ê

(k)
A2 +

(
σ̂

(k−1)
12

σ̂
(k−1)
11

)2

ê
(k−1)′
B1 ê

(k−1)
B1 +


σ̂

(k−1)
22 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
11


 ê

(k−1)′
B1 ũB2

+
σ̂

(k−1)
12

σ̂
(k−1)
22

ê
(k−1)′
C2 ê

(k−1)
C2 +

√√√√√σ̂
(k−1)
11 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
22

ê′
(k−1)

C2 ũC1

+σ̂
(k−1)
12 ũ′D1 ũD1 + .

√
σ̂

(k−1)
22 σ̂

(k−1)
11 −

(
σ̂

(k−1)
12

)2

ũ′D1 ũD2 (A3.31)

n σ̂
(k)
22 = ê

(k)′
A2 ê

(k)
A2 + ê

(k)′
C2 ê

(k)
C2 +

(
σ̂

(k−1)
12

σ̂
(k−1)
11

)2

ê
(k−1)′
B1 ê

(k−1)
B1 +


σ̂

(k−1)
22 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
11


 ũ′B2 ũB2

+2
σ̂

(k−1)
12

σ̂
(k−1)
11

√√√√√σ̂
(k−1)
22 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
11

ê′
(k−1)

B1 ũB1 +

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
11

ũ′D1 ũD1

+


σ̂

(k−1)
22 −

(
σ̂

(k−1)
12

)2

σ̂
(k−1)
11


 ũ′D2 ũD2 + 2

σ̂
(k−1)
12

σ̂
(k−1)
11

√
σ̂

(k−1)
22 σ̂

(k−1)
11 −

(
σ̂

(k−1)
12

)2

ũ′D1 ũD2 (A3.32)

We may regard (A3.30-A3.32) as the convergence condition for the iterative estimation of Σ. The estima-
tion/simulation procedure achieves convergence when equations (A3.28-A3.32) are jointly solved. These
equations are the same that we solve to obtain the simulated scores estimator (A2.25, A2.26 and A2.27).
Thus, the Ols estimator of the reduced form system with completed data (at convergence achieved) is a
simulated scores estimator.

Appendix 4: Asymptotic (in)efficiency

The potential advantage of the method of simulated scores is to use an estimator with the efficiency
properties of the Ml and the consistency properties of the method of simulated moments Msm. The
Msm estimator is asymptotically efficient if the proper weights are used (those that turn the moment
condition into the score statistic) and the simulated scores estimator ensures that such weights are used
(Gouriéroux, Monfort, 1996, p. 35).

In order to define and make explicit the asymptotic variance-covariance matrix, it is necessary to introduce
some convenient notations: the expression of Σ−1 in terms of its elements is

Σ−1 =
[

σ11 σ12

σ12 σ22

]

The vectorization of such a matrix is

vec
(
Σ−1

)
=

[
σ11, σ12, σ12, σ22

]′

but being Σ−1 a symmetric matrix, the shorter form

vech
(
Σ−1

)
=

[
σ11, σ12, σ22

]′
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has been used in practice. The information matrix derived from equations (4.5) and (4.6), also called
information matrix of the observable model, will be indicated as I; the information matrix derived from
the multivariate normal with complete variables, also called information matrix of the latent model, will
be indicated as I∗. They are, respectively

I = E

[
−∂2 log f(Yobs|Xobs; θ)

∂θ∂θ
′

]
=

[
[IΠΠ] [0]
[0] [IΣΣ]

]

= E




[
−∂2 log f(Yobs|Xobs;Π,Σ)

∂(vecΠ)∂(vecΠ)′

] [
−∂2 log f(Yobs|Xobs;Π,Σ)

∂(vecΠ)∂(vechΣ−1)′

]
[
−∂2 log f(Yobs|Xobs;Π,Σ)

∂(vechΣ−1)∂(vecΠ)′

] [
− ∂2 log f(Yobs|Xobs;Π,Σ)

∂(vechΣ−1)∂(vechΣ−1)′

]

 (A4.33)

I∗ = E

[
−∂2 log f(Ỹ |X; θ)

∂θ∂θ
′

]
=

[
[I∗ΠΠ] [0]
[0] [I∗ΣΣ]

]

= E




[
−∂2 log f(Ỹ |Xobs;Π,Σ)

∂(vecΠ)∂(vecΠ)′

] [
−∂2 log f(Ỹ |Xobs;Π,Σ)

∂(vecΠ)∂(vechΣ−1)′

]

[
−∂2 log f(Ỹ |Xobs;Π,Σ)

∂(vechΣ−1)∂(vecΠ)′

] [
− ∂2 log f(Ỹ |Xobs;Π,Σ)

∂(vechΣ−1)∂(vechΣ−1)′

]


 (A4.34)

Each expression inside small square brackets represents a block of the matrix inside big brackets. The
upper-left block has dimensions (2× 2), the lower-right block has dimensions (3× 3), and the two off-
diagonal blocks have dimensions (2× 3)−the upper-right- and (3× 2)−the lower-left.

The off-diagonal blocks, for both (A4.33) and (A4.34), are identically zero (the proof is straightforward).

Expliciting the block (1, 1) of the matrix on the right hand side of the ( A4.33), we have

∂2 log f(Yobs|Xobs; Π, Σ)
∂(vecΠ)∂(vecΠ)′

= −Σ−1




∑
i∈A,B

x2
i ,

σ12
σ22

∑
i∈C

x2
i

σ12
σ11

∑
i∈B

x2
i ,

∑
i∈A,C

x2
i




which remains unchanged when applying the expected value

IΠΠ = E

[
−∂2 log f(Yobs|Xobs; Π,Σ)

∂(vecΠ)∂(vecΠ)′

]
= Σ−1




∑
i∈A,B

x2
i ,

σ12
σ22

∑
i∈C

x2
i

σ12
σ11

∑
i∈B

x2
i ,

∑
i∈A,C

x2
i




Explicitly, the block (2, 2) of the matrix on the right hand side of the (A4.33) is the following (3 × 3)
matrix

A =




∂2 log f(Yobs|Xobs;Π,Σ)
∂σ11∂σ11

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ11∂σ12

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ11∂σ22

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ12∂σ11

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ12∂σ12

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ12∂σ22

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ22∂σ11

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ22∂σ12

∂2 log f(Yobs|Xobs;Π,Σ)
∂σ22∂σ22


 (A4.35)

whose elements will be indicated as Alm, l, m = 1, 2, 3.

To compute (A4.35), we first differentiate log f(Yobs|Xobs; Π, Σ) with respect to the elements of vech(Σ−1)
obtaining a (3 × 1) vector whose elements are labelled with Al (l = 1, 2, 3). Reminding that σ12/σ11 =
−σ12/ σ22 and that σ12/σ22 = −σ12/σ11, we can write the Al elements as follows

A1 =
nA

2
σ11 − 1

2

∑

i∈A

(yi1 −Π1xi)2 +
1
2

[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]

+
1
2

(
σ12

σ11

)2
[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]
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A2 = nAσ12 −
∑

i∈A

(yi1 −Π1xi)(yi2 −Π2xi)− σ12

σ22

[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]

−σ12

σ11

[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]

A3 =
nA

2
σ22 − 1

2

∑

i∈A

(yi1 −Π1xi)2 +
1
2

(
σ12

σ22

)2
[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]

+
1
2

[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]

With further differentiation, we obtain the second derivatives, which are the elements of the (3×3) matrix
(A4.35) (being symmetric, we explicit only the lower triangle)

A11 = −nA

2
σ2

11 −
1
2
nBσ2

11 −
(
σ12

)2

(σ11)3

[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]

+
1
2

(
σ12

σ11

)2 (−nCσ2
12

)

A21 = −nAσ11σ12 − σ12

σ22

(−nBσ2
11

)
+

σ12

(σ11)2

[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]
− σ12

σ11

(−nCσ2
12

)

A22 = −nA

(
σ2

12 + σ11σ22

)− 1
σ22

[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]
− σ12

σ22
(−2nBσ11σ12)

− 1
σ11

[
nCσ22 −

∑

i∈C

(yi2 −Π2xi)2
]
− σ12

σ11
(−2nCσ12σ22)

A31 = −nA

2
σ2

12 +
1
2

(
σ12

σ22

)2 (−nBσ2
11

)− 1
2
nCσ2

12

A32 = −nA

2
(2σ12σ22) + 2

σ12

(σ22)2

[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]

+
1
2

(
σ12

σ22

)2

(−2nBσ11σ12)− 1
2

(−2nCσ12σ22)

A33 = −nA

2
σ2

22 −
(
σ12

)2

(σ22)3

[
nBσ11 −

∑

i∈B

(yi1 −Π1xi)2
]

+
1
2

(
σ12

σ22

)2 (−nBσ2
12

)− 1
2
nCσ2

22

In order to explicit the lower block of the information matrix I, according to the (A4.33), we have to
apply the expected value to the matrix (A4.35), or equivalently to each Alm previously defined, so we
have

I11 = E [−A11 ] =
(

nA + nB

2

)
σ2

11 +
(nC

2

) σ4
12

σ2
22

I21 = E [−A21] = (nA + nB)σ11σ12 + nC
σ3

12

σ22

I22 = E [−A22] = nA

(
σ2

12 + σ11σ22

)
+ 2(nB + nC)σ2

12

I31 = E [−A31]
nA + nB + nC

2
σ2

12
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I32 = E [−A32] = (nA + nC)σ12σ22 + nB
σ3

12

σ11

I33 = E [−A33] =
(

nA + nC

2

)
σ2

22 +
(nB

2

) σ4
12

σ2
11

So we can indicate

IΣΣ = E

[
− ∂2 log f(Yobs|Xobs; Π, Σ)

∂(vechΣ−1)∂(vechΣ−1)′

]
=




I11 I21 I31

I21 I22 I32

I31 I32 I33




Now all the elements of the I matrix have been computed, and we follow the same procedure to compute
the elements of I∗. Let us consider the (A4.34). Expliciting the element (1, 1) of the right hand side
matrix, we obtain

∂2 log f(Ỹ |Xobs; Π, Σ)
∂(vecΠ)∂(vecΠ)′

= −Σ−1




∑
i

x2
i , 0

0
∑
i

x2
i




applying the expected value we obtain

I∗ΠΠ = E

[
−∂2 log f(Ỹ |Xobs; Π, Σ)

∂(vecΠ)∂(vecΠ)′

]
= Σ−1




∑
i

x2
i , 0

0
∑
i

x2
i




We explicit now the elements of the block (2, 2) of the matrix (A4.34 ). Labelling with A∗l the first
derivative and reminding (4.4) we easily obtain

A∗1 =
n

2
σ11 − 1

2

∑

i

(yi1 −Π1xi)2 (A4.36)

A∗2 = nσ12 −
∑

i

(yi1 −Π1xi)(yi2 −Π2xi) (A4.37)

A∗3 =
n

2
σ22 − 1

2

∑

i

(yi2 −Π2xi)2 (A4.38)

Now, differentiating (A4.36-A4.38) with respect to [vech
(
Σ−1

)
]′ we obtain

A∗ = −n




σ2
11
2 σ11σ12

σ2
12
2

σ11σ12 σ2
12 + σ11σ22 σ12σ22

σ2
12
2 σ12σ22

σ2
22
2




I∗ΣΣ = E

[
− ∂2 log f(Ỹ |Xobs; Π, Σ)

∂(vechΣ−1)∂(vechΣ−1)′

]
= E [A∗] = n




σ2
11
2 σ11σ12

σ2
12
2

σ11σ12 σ2
12 + σ11σ22 σ12σ22

σ2
12
2 σ12σ22

σ2
22
2




The simulated scores estimator θ̂S based on S replications and sample size n, being a Msm estimator,
when n goes to infinity and S is fixed, is consistent and asymptotically normal (Gouriéroux and Monfort,
1996); about the efficiency the same authors (p. 36) show that the asymptotic variance covariance matrix
is

Vas

[√
n

(
θ̂S − θ

)]
= I−1 +

1
S

I−1 (I∗ − I) I−1 (A4.39)

What we have described in detail in this paper is a simulated scores estimator based on one replication
and sample size n, so its asymptotic variance-covariance matrix is
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Vas

[√
n

(
θ̂ − θ

)]
= I−1 + I−1 (I∗ − I) I−1 (A4.40)

It is clear from (A4.40) that there is a loss of efficiency with respect to maximum likelihood, whose
asymptotic variance-covariance matrix would be I−1. Roughly speaking, we can say that there is price
that must be paid for the simulation, and it is I−1 (I∗ − I) I−1. We notice that it is proportional to the
difference between the information of the latent and observable model (so, if the latent and the observable
model were the same -no missing data- the difference would be zero and obviously there would be no
loss of efficiency; of course, there would be no simulation). The difference (I∗ − I) should be a positive
semidefinite matrix, and should be “quite small” when the latent and the observable model are similar.
To show this result we write explicitly the difference

(I∗ − I) =
[

[I∗ΠΠ] [0]
[0] [I∗ΣΣ]

]
−

[
[IΠΠ] [0]
[0] [IΣΣ]

]

The difference between these two matrices can be represented subtracting the corresponding blocks, so
that

I∗ΠΠ − IΠΠ = Σ−1




∑
i

x2
i , 0

0
∑
i

x2
i


− Σ−1




∑
i∈A,B

x2
i ,

σ12
σ22

∑
i∈C

x2
i

σ12
σ11

∑
i∈B

x2
i ,

∑
i∈A,C

x2
i




= Σ−1




∑
i∈C,D

x2
i , −σ12

σ22

∑
i∈C

x2
i

−σ12
σ11

∑
i∈B

x2
i ,

∑
i∈B,D

x2
i




I∗ΣΣ − IΣΣ = n




σ2
11
2 σ11σ12

σ2
12
2

σ11σ12 σ2
12 + σ11σ22 σ12σ22

σ2
12
2 σ12σ22

σ2
22
2


−




I11 I21 I31

I21 I22 I32

I31 I32 I33




=




[
nC

2
σ2

11σ2
22−σ4

12
σ2

22
+ nD

2 σ2
11

]
, −, −[

nC
σ11σ22−σ2

12
σ22

σ12

+nDσ11σ12)

]
,

[
(nB + nC) (σ11σ22 − σ2

12)
+nD(σ2

12 + σ11σ22)

]
, −

[
nD

2 σ2
12

]
,

[
nB(σ11σ22 − σ2

12)
σ12
σ11

+nDσ12σ22

]
,

[
nB

2
σ2

11σ2
22−σ4

12
σ2

11

+nD

2 σ2
22

]




=




nC

2
σ2

11σ2
22−σ4

12
σ2

22
, −, −

nC
σ11σ22−σ2

12
σ22

σ12, (nB + nC) (σ11σ22 − σ2
12), −

0 nB(σ11σ22 − σ2
12)

σ12
σ11

, nB

2
σ2

11σ2
22−σ4

12
σ2

11




+




nD

2 σ2
11, −, −

nDσ11σ12, nD(σ2
12 + σ11σ22), −

nD

2 σ2
12, nDσ12σ22,

nD

2 σ2
22


 = T + R

To prove that the difference (I∗ − I) is positive semidefinite, we remember that if a symmetric matrix A

can be written as
A = QQ′ (A4.41)

then the matrix is positive semidefinite. So, it is sufficient to show that both matrices I∗ΠΠ − IΠΠ and
I∗ΣΣ − IΣΣ can be written in a form like (A4.41). The matrix I∗ΠΠ − IΠΠ can be rearranged as follows

21



I∗ΠΠ − IΠΠ = Σ−1




∑
i∈C,D

x2
i , −σ12

σ22

∑
i∈C

x2
i

−σ12
σ11

∑
i∈B

x2
i ,

∑
i∈B,D

x2
i




=
1

det(Σ)




σ22

∑
i∈C,D

x2
i + σ2

12
σ11

∑
i∈B

x2
i , −σ12

∑
i∈B,C,D

x2
i

−σ12

∑
i∈B,C,D

x2
i

σ2
12

σ22

∑
i∈C

x2
i + σ11

∑
i∈B,D

x2
i




=
1

det(Σ)




√
σ2

12
σ11

X ′
B ,

√
σ22X

′
C

−√σ11X
′
B ,

√
σ2

12
σ22

X ′
C







√
σ2

12
σ11

X ′
B ,

√
σ22X

′
C

−√σ11X
′
B ,

√
σ2

12
σ22

X ′
C



′

+
1

det(Σ)

[
σ22 −σ12

−σ12 σ11

] ∑

i∈,D

x2
i =

1
det(Σ)

QΠΠQ′ΠΠ + Σ−1
∑

i∈,D

x2
i (A4.42)

concluding that I∗ΠΠ−IΠΠ is a positive semidefinite matrix being sum of two positive semidefinite matrices.

Considering the matrix I∗ΣΣ − IΣΣ

I∗ΣΣ − IΣΣ = T + R

=




nC

2
σ2

11σ2
22−σ4

12
σ2

22
, −, −

nC
σ11σ22−σ2

12
σ22

σ12, (nB + nC) (σ11σ22 − σ2
12), −

0 nB(σ11σ22 − σ2
12)

σ12
σ11

, nB

2
σ2

11σ2
22−σ4

12
σ2

11




+




nD

2 σ2
11, −, −

nDσ11σ12, nD(σ2
12 + σ11σ22), −

nD

2 σ2
12, nDσ12σ22,

nD

2 σ2
22


 (A4.43)

We show that it can be rewritten specifying both T and R as in (A4.41). Let us first consider T ; indicating
t = σ2

12 + σ11σ22, we have

T =




1
σ22

√
nc

2 t, 0, 0
σ12

√
2nc√
t

,
√

nB+n
C− 2ncσ12

t
, 0

0, σ12
σ22

nB

√
t

t(nB+nC)−2ncσ12

√
nB

2
t

σ2
11
− σ2

12
σ2

11

t
t(nB+nC)−2ncσ12

n2
B




·




1
σ22

√
nc

2 t, 0, 0
σ12

√
2nc√
t

,
√

nB+n
C− 2ncσ12

t
, 0

0, σ12
σ22

nB

√
t

t(nB+nC)−2ncσ12

√
nB

2
t

σ2
11
− σ2

12
σ2

11

t
t(nB+nC)−2ncσ12

n2
B




′

Being T written as (A4.41) we can conclude that T is a positive semidefinite matrix.

Let us consider R; indicating r = σ2
12 − σ11σ22, we have

R =




σ11√
2
, 0, 0√

2σ12,
√

r, 0
σ2

12√
2σ11

σ12
σ11

√
r r

σ11
√

2


 ·




σ11√
2
, 0, 0√

2σ12,
√

r, 0
σ2

12√
2σ11

σ12
σ11

√
r r

σ11
√

2




′

The R matrix has been arranged as (A4.41), so we can conclude that also R is a positive semidefinite
matrix.

Being I∗ΣΣ − IΣΣ = T + R we can conclude that it is a positive semidefinite matrix; having proved the
same for the matrix I∗ΠΠ−IΠΠ, we can conclude that (I∗ − I) is a positive semidefinite matrix. The larger
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the difference (I∗ − I), the larger is the loss of efficiency with respect to maximum likelihood. Although
appearing in a complicated form, this difference is larger when larger is the contribution of the sections
with missing data B, C and D, while section A (complete data) does not contribute at all.

What has been discussed till now is one replication, till convergence, of the iterative estimation/simulation
procedure. As it usually happens when an estimator is computed by simulation, its efficiency increases
when the number of replications increases. Thus, the way to improve the efficiency of the estimator is,
also in our case, to replicate the procedure S times independently, each time till convergence. Then we
average the S estimates of θ̂, obtaining the estimate θ̂S . It is clear that if S →∞, the asymptotic variance-
covariance matrix is I−1; in other words, the simulated scores estimator would reach the efficiency of the
Ml estimator.

Appendix 5: Proof of the proposition (section 6)

The structural (underidentified) equation system to be estimated is

{
Y1 = Xγ11 + Y2γ12 + ε1

Y2 = Xγ21 + Y1γ22 + ε2
with Ψ = E

{[
εi1

εi2

] [
εi1

εi2

]′}
(A5.44)

Note that each equation is not identified, as it violates the necessary order condition for identification
(e.g. Greene, 2008, Ch. 16); roughly speaking, in each equation there are more explanatory variables (X
and Y1 or Y2) than exogenous variables in the whole system (X only). The corresponding reduced form
is {

Y1 = XΠ1 + e1

Y2 = XΠ2 + e2

The Ols direct estimator of the reduced form coefficients

Π̂′ = (X ′X)−1X ′Y (A5.45)

and the variance-covariance estimator based on the Ols residual (Ê = Y −XΠ̂′)

Σ̂ =
1
n

Ê′Ê (A5.46)

are consistent, and we can write

{
Y1 = XΠ̂1 + ê1

Y2 = XΠ̂2 + ê2

(A5.47)

The Ols estimates of the structural form coefficients of the equation having Y1 as dependent variable
(A5.44) are [

γ̃11

γ̃12

]
=

[ ∑
x2

i

∑
xiyi2∑

xiyi2

∑
y2

i2

]−1 [ ∑
xiyi1∑
yi2yi1

]

We can replace yi1, yi2 with the expressions (A5.47), obtaining

[
γ̃11

γ̃12

]
=

[ ∑
x2

i Π̂2

∑
x2

i +
∑

xiêi2

Π̂2

∑
x2

i +
∑

xiêi2 Π̂2
2
∑

x2
i + 2Π̂2

∑
xiêi2 +

∑
ê2
i2

]−1

·
[

Π̂1

∑
x2

i +
∑

xiêi1

Π̂1Π̂2

∑
x2

i + Π̂1

∑
xiêi2 + Π̂2

∑
xiêi1 +

∑
êi1êi2

]
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Now posing
∑
i

x2
i = q2 and reminding that

∑
xiêi1 =

∑
xiêi2 = 0, because êi1 and êi2 are Ols residuals,

we obtain for the first equation

[
γ̃11

γ̃12

]
=

[
q2 Π̂2q

2

Π̂2q
2 Π̂2

2q
2 +

∑
ê2
i2

]−1 [
Π̂1q

2

Π̂1Π̂2q
2 +

∑
êi1êi2

]

=
1

q2
∑

ê2
i2

[
Π̂2

2q
2 +

∑
ê2
i2 −Π̂2q

2

−Π̂2q
2 q2

][
Π̂1q

2

Π̂1Π̂2q
2 +

∑
êi1êi2

]

=
1

q2
∑

ê2
i2

[
Π̂1Π̂2

2q
4 + Π̂1q

2
∑

ê2
i2 − Π̂1Π̂2

2q
4 − Π̂2q

2
∑

êi1êi2

−Π̂1Π̂2q
4 + Π̂1Π̂2q

4 + q2
∑

êi1êi2

]

=
1∑
ê2
i2

[
Π̂1

∑
ê2
i2 − Π̂2

∑
êi1êi2∑

êi1êi2

]
=




Π̂1 −
∑

êi1êi2∑
ê2

i2

Π̂2∑
êi1êi2∑

ê2
i2


 (A5.48)

and analogously for the second equation of the structural form system

[
γ̃21

γ̃22

]
=




Π̂2 −
∑

êi1êi2∑
ê2

i1

Π̂1∑
êi1êi2∑

ê2
i1


 (A5.49)

The reduced form coefficients, derived from the structural form, are obtained as

Π̃ = −B̃−1Γ̃ (A5.50)

where

B̃ =
[

1 −γ̃12

−γ̃22 1

]
Γ̃ =

[ −γ̃11

−γ̃21

]
(A5.51)

Substituting (A5.48) and (A5.49) into (A5.51) and then into (A5.50) we obtain exactly the Π̂ as in
(A5.45)

Π̃ = Π̂

So that, estimating the structural form coefficients (γ11, γ12, γ21, γ22) of our underidentified system
(A5.44) by Ols and trasforming them into reduced form coefficients (by the proper trasformation) gives
exactly the same as estimating directly by Ols the reduced form coefficients.

The same result holds for the estimator of the variance-covariance matrix. The structural form Ols

residuals are

ε̃i1 = yi1 − γ̃11xi − γ̃12yi2 = Π̂1xi + êi1 − γ̃11xi − (Π̂2xi + êi2)γ̃12 = êi1 −
∑

êi1êi2∑
ê2
i2

êi2

ε̃i2 = yi2 − γ̃21xi − γ̃22yi1 = Π̂2xi + êi2 − γ̃21xi − (Π̂1xi + êi1)γ̃22 = êi2 −
∑

êi1êi2∑
ê2
i1

êi1

so that the estimator of the variance-covariance matrix of the structural form error terms is

Ψ̃ =
1
n

∑ {[
ε̃i1

ε̃i2

] [
ε̃i1

ε̃i2

]′}

=
1
n

∑







êi1 −
∑

êi1êi2∑
ê2

i2

êi2

êi2 −
∑

êi1êi2∑
ê2

i1

êi1







êi1 −
∑

êi1êi2∑
ê2

i2

êi2

êi2 −
∑

êi1êi2∑
ê2

i1

êi1




′


(A5.52)
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The corresponding reduced form variance-covariance matrix is obtained, as usual (see eq. 6.20), comput-
ing

Σ̃ = B̃−1Ψ̃
(
B̃−1

)′
(A5.53)

Substituting (A5.52) and (A5.51) into (A5.53) we obtain exactly the same Σ̂ as in (A5.46)

Σ̃ = Σ̂

So the proof is completed; in fact we have shown that the reduced form parameters estimator derived
from the Ols estimator of the strucural form parameters is equal to the Ols direct estimator of the
reduced form parameters.
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